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Small asymmetric Brownian objects self-align
in nanofluidic channels

Giulia Fiorucci, a Johan T. Padding b and Marjolein Dijkstra*a

Although the self-alignment of asymmetric macro-sized objects of a few tens of microns in size have

been studied extensively in experiments and theory, access to much smaller length scales is still

hindered by technical challenges. We combine molecular dynamics and stochastic rotation dynamics

techniques to investigate the self-orientation phenomenon at different length scales, ranging from the

micron to the nano scale by progressively increasing the relative strength of diffusion over convection.

To this end, we model an asymmetric dumbbell particle in Hele-Shaw flow and explore a wide range of

Péclet numbers (Pe) and different particle shapes, as characterized by the size ratio of the two dumbbell

spheres (R̃). By independently varying these two parameters we analyse the process of self-orientation

and characterize the alignment of the dumbbell with the direction of the fluid flow. We identify three

different regimes of strong, weak and no alignment and we map out a state diagram in Pe versus R̃

plane. Based on these results, we estimate dimensional length scales and flow rates for which these

findings would be applicable in experiments. Finally, we find that the characteristic reorientation time of

the dumbbell is a monotonically decreasing function of the dumbbell anisotropy.

1 Introduction

In recent years microfluidic devices have found increasingly
wide application in several scientific areas.1 They are widely
employed in clinical and biological research for disease
diagnosis2,3 and for cytometric analysis.4 For instance, micro-
fluidic techniques may be used to efficiently sort and analyse
mixtures of healthy and diseased cells based on their differing
physical properties.5,6 Other applications are found in chemical
and pharmaceutical industries, which use suspended micron-
sized soft particles in confined flows as models to design
deformable drugs delivery carriers.7–10 The development of
microfluidic technologies has opened new paths to manipulate
suspended particles by having fine control over their position
and orientation. Engineering particle trajectories in a device is
now possible in three different ways, by means of external
fields,11 by taking advantage of hydrodynamic interactions in
laminar flows, or by exploiting inertial effects in flow drag at
finite Reynolds numbers.12 The latter has been achieved in
recent studies on flow sculpting,13–15 while hydrodynamic
interactions are exploited in laminar flows by engineering the
geometry of the channel16–20 or, alternatively, the shape of the

suspended particles.21–23 This work is concerned with the last
of these and specifically with dumbbell shaped particles. Such a
particle, consisting of two connected disks, transported in a
Hele-Shaw flow exhibits a rich variety of dynamic behaviours,22

which are induced entirely by hydrodynamic interactions (HIs).
By fine-tuning the relative size of the two disks, it is possible to
control the trajectory of the particle. A comprehensive experi-
mental and theoretical study is reported in ref. 22, where the
authors investigated the non-Brownian regime. A recent work
has further analysed this particular system, providing an alter-
native and more efficient theoretical framework to solve the
Stokes flow around the particle.23 Their study focuses on the
already known phenomenon of self-orientation, the spontaneous
alignment of the long axis of the particle with the flow direction,
provided that the two disks have different radii (R1 a R2). This
phenomenon originates from the hydrodynamic self-interaction,
i.e. the hydrodynamic interactions the two disks exert on each
other. In the present case of high confinement, a disk with
diameter 2R1 generates a flow disturbance which decays with
distance r as a dipole field p2R1/r2. In addition, the magnitude
of the generated velocity field linearly increases with the diameter
of the disk. In case of a symmetric dumbbell, where the two disks
have equal radii (R1/R2 = R̃ = 1), the hydrodynamic force that disk
1 exerts on disk 2 is perfectly balanced by the force disk 2 exerts
on disk 1, resulting in only a lateral drift of the particle without
any rotation. However if the dumbbell is asymmetric (R1 4 R2,
R̃ 4 1) the imbalance of internal hydrodynamic forces results in a
torque on the dumbbell that must be balanced by a frictional
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torque of rigid rotation, which causes the small disk to be
dragged downstream of the large disk.

Although this specific system has been extensively examined,
the studies performed so far concern macro-sized particles, which
are much less affected by thermal fluctuations as compared to
colloids, polymer chains or macromolecules. The experiments22

were performed at very high Pe number (on the order of 104),
which was essential to drag particles of a few tens of microns in
width and 100 microns in length, dimensions that are quite big if
compared to the typical colloidal length scales (100–1000 nm).
Similarly, in numerical studies,22–24 the lack of thermal noise in
the deterministic model limits the investigations to infinite Pe and
do not provide insights on the possibility of self-orientation of
smaller objects.

On the basis of these arguments, natural questions arise: is
the self-alignment still possible for nanoparticles or macro-
molecules with an asymmetric conformation? What is the effect
of thermal fluctuations on the self-orienting process? The
progressively increasing interest in nanofluidics for ‘‘lab-on-a-
chip’’ bioanalysis techniques and for DNA manipulation,25 leads
to an urgent need to bridge these length scales and to verify whether
self-organization can still be exploited down to the nanoscale. In
this study, we show for the first time, at the best of our knowledge,
that very small Brownian objects can exhibit self-alignment in
nanofluidic channels. To do so, we combine molecular dynamics
and stochastic rotation dynamics techniques (MD + SRD) to
simulate a dumbbell particle in a Hele-Shaw flow. This hybrid
technique naturally includes hydrodynamic interactions as well
as thermal fluctuations, and will be described in more detail in
Section 2.2. In addition it enables us to arbitrarily tune the relative
strength of the convection over the diffusion. This study aims to
explore the Brownian regime where both thermal fluctuations and
hydrodynamic interactions are important. In particular, we analyse
the self-orientation phenomenon and the stability of the align-
ment with the flow by exploring a wide range of Péclet numbers,
from the fully-Brownian regime towards the non-Brownian regime,
and different particle shapes.

2 Model and methods
2.1 The dumbbell in geometrical confinement

We perform numerical simulations (MD + SRD) to study the
effect of Brownian fluctuations on the self-orientation process
of a single dumbbell particle transported by a pressure-driven
flow. In Fig. 1(a) we present a schematics of the system. We
consider a shallow channel with a rectangular cross section.
The confining walls are orthogonal to the x and y axes, while we
implement periodic boundary conditions (PBC) along the z
axis. The height of the channel is H and the width is W. The
fluid flows with an approximately uniform maximal velocity U0

parallel to the z axis, as shown by the black arrows in the figure,
and it drags the dumbbell particle embedded in the fluid. The
dumbbell is composed of two colloidal spheres with radii R1 and
R2 r R1. Note that we use spheres instead of disks as in ref. 22
and 23, because dumbbell spheres are simpler to simulate and

easier to create experimentally at the small (colloidal) scales
where Brownian motion is relevant. The spheres are bounded by
a harmonic potential bUh(r12) = k(r12 � s)2/2 a0

2, where b = 1/kBT
is the inverse temperature, kB is the Boltzmann constant and T
is the temperature. The instantaneous center-to-center distance
of the spheres is r12 = |r2 � r1|, with the spheres at positions r1

and r2, respectively. The parameter s denotes the equilibrium
distance and a0 our unit of length, to be defined later. The
parameter k is a dimensionless harmonic spring constant. We
choose k = 105 such that the characteristic period of elastic
vibration of the dumbbell is much smaller than the time needed
for the acoustic wave in the fluid to travel over the particle
radius. The phenomenon of self-orientation depends sensitively
on the shape of the particle, as characterized by the size ratio
R̃ = R1/R2. To investigate the effect of particle shape on the
hydrodynamic self-orientation, we consider dumbbells with five
different size ratios. The radius of the cyan sphere R1 is kept
constant, whereas the radius of the red sphere R2 is varied. We
test two models, in the first s is held constant for different size
ratios at a value of 8.8 a0, while in the second s = R1 + R2, as
illustrated in Fig. 1(b) and (c), respectively. The interaction
between each sphere of the dumbbell and the confining walls
is described by a purely repulsive Weeks–Chandler–Andersen
(WCA) potential26

bfcw rið Þ ¼
4becw

scw
ri

� �12

� scw
ri

� �6

þ 1

4

" #
ri � 21=6scw

0 ri 4 21=6scw;

8>><
>>:

(1)

Fig. 1 Schematics of the system. Dumbbell particle flowing at the centre
of a 3D channel of a rectangular cross section transported by the fluid flow
at constant pressure gradient (a). Model of a dumbbell particle composed
of two spheres of radius R1 and R2 r R1. We model five different dumbbell
shapes by varying the sphere size ratio R̃ = R1/R2. The center-to-center
equilibrium distance s = 8.8 a0 is kept constant (b), or changes with R̃ as
s = R1 + R2 (c). Note that the particle longitudinal axis can slightly wiggle in
the yz plane, therefore we define the angle y A (�1801,1801] as the angle
between the projection of the particle axis on the xz plane and the z axis.
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where ri is the distance along i = {x,y} between the center of the
sphere and the surface of the wall, ecw = 40kBT sets the colloid-
wall energy scale and scw represents the colloid–wall collision
radius. The dimensions of the channel are W� H = 100� 10 a0

2.
The length of the channel along the z direction, Lz, is chosen to
be sufficiently large that the hydrodynamic interactions of the
dumbbell particle with its own periodic image can be neglected.
In a quasi-2D system, the flow disturbance generated by the
presence of the particle decays as 4R1

2/r2, hence the disturbance
is less than 0.1% for r = 100 R1, and with a typical R1 of 4 a0 we
therefore choose Lz = 400 a0. We choose scw = 4.4 a0 for the
largest sphere, such that it is highly confined in the y direction,
leaving a lubricating gap of 0.6 a0 to the wall. Position Ri and
velocity Vi of each sphere i are integrated via the velocity Verlet
algorithm27

Riðtþ DtMDÞ ¼ RiðtÞ þ ViðtÞDtMD þ
FiðtÞ
2Mi

DtMD
2; (2)

Viðtþ DtMDÞ ¼ ViðtÞ þ
FiðtÞ þ Fiðtþ DtMDÞ

2Mi
DtMD; (3)

over a timestep DtMD. Fi(t) is the force acting on sphere i at time t
and Mi is the mass of the sphere. We match the mass density of
each dumbbell bead with the mass density of the fluid.

2.2 The fluid

The MD + SRD method was introduced by Malevanets and
Kapral in 1999.28,29 Since then it has been implemented to study
a large variety of systems. For example, it has been employed to
study the fluid flow in confinement, or driven by an external
force.30 In addition, it has been applied to investigate polymers
in solution31 or the sedimentation in colloidal suspensions.32

Moreover this technique is particularly convenient for the study of
colloidal suspensions embedded in a fluid, since the intrinsically
stochastic nature of the algorithm naturally incorporates the
thermal noise,28 i.e. it automatically captures the Brownian
fluctuations experienced by the colloidal particles in a suspension.
Within MD + SRD the fluid is represented by the explicit presence
of coarse-grained point particles of mass mf, whose positions and
velocities are continuous variables in space. Hence we refer to
these point particles as ‘‘fluid particles’’, even if the physical
properties of the fluid are not represented at the single particle
level, but are rather extracted from a local average. Fluid particles
are subjected to Newton’s laws of motion and their positions and
velocities are integrated via the MD scheme. This is the streaming
step of the simulation method, where we implement the velocity
Verlet algorithm27

riðtþ DtMDÞ ¼ riðtÞ þ viðtÞDtMD þ
f iðtÞ
2mf

DtMD
2; (4)

viðtþ DtMDÞ ¼ viðtÞ þ
f iðtÞ þ f iðtþ DtMDÞ

2mf
DtMD; (5)

where DtMD is the integration time step, ri and vi are, respectively,
the position and the velocity of particle i, which is subject to the
total force fi. In the streaming step fluid particles do not interact

with each other and behave as an ideal gas. Therefore the total
force acting on a fluid particle arises from the colloid–fluid
interaction and the pressure gradient imposed externally. While
executing the collision step, the SRD algorithm enables the
exchange of momentum throughout the solvent performing
coarse-grained collisions among the fluid particles. Every time
interval Dtc = 4DtMD we partition the volume of the system
into cubic cells (SRD cells of size a0

3), we compute the center
of mass velocity vcm in each cell, and we rotate the relative
velocities by a fixed angle a = p/2 about a randomly oriented
axis33

vnew
i = vcm + R(a) � (vold

i � vcm), (6)

where vold
i and vnew

i are the velocities of particle i before and
after the collision step, respectively, and R is the rotation
matrix. We shift the SRD cells before performing the collision
step, in order to maintain Galilean invariance.34,35 The SRD
method locally conserves both energy and momentum, which
is crucial for correctly reproducing the Navier–Stokes hydro-
dynamics.28 In order to generate a fluid flow, as shown in Fig. 1,
we apply an external driving force on the fluid particles. The
force is parallel to the z direction. In order to maintain a
constant temperature of the fluid, we implement a modified
version of the stochastic thermostat proposed by Heyes,36

which is extensively described in ref. 37. To ensure the velocity
of the fluid is zero at the wall, we impose no-slip boundary
condition by implementing the bounce-back rule.28 We also
insert virtual particles into the SRD cells that are overlapping
with the wall when performing the collision step30 in order to
prevent spurious slip. The fluid is represented by Nf = 2 � 106

particles, i.e. 5 particles per cell, corresponding to a mass
density rf = 5 mf/a0

3. The fluid particles interact with the
dumbbell through the repulsive WCA potential

bfcfðrÞ ¼
4becf

scf
r

� �12
� scf

r

� �6
þ 1

4

� �
r � 21=6scf

0 r4 21=6scf ;

8><
>: (7)

where ecf = 2.5kBT sets the colloid–fluid energy scale and scf is
the colloid–fluid collision radius. We remark that scf should be
smaller than scw to prevent the effect of spurious depletion that
might arise between colloid and wall.33 Therefore we impose
scw = 1.1 scf. In addition, we highlight that we implement the
slip boundary condition on the surface of the colloidal particle;
this property naturally comes from the isotropic property of the
colloid–fluid interaction potential.

The different hydrodynamic regimes are characterised by
dimensionless numbers that determine the relative importance
of the different physical processes. The dependence of these
dimensionless numbers on the simulation parameters are
described in ref. 33. First, we ensure that the fluid modelled
by SRD particles reproduces a liquid-like rather than a gas-like
dynamics. The Schmidt number Sc = n/Df, defined by the rate of
diffusive momentum transfer over the rate of diffusive mass
transfer in the fluid, distinguishes between these two different
behaviours. When momentum transfer results from collisions
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among particles rather than mass diffusion, the SRD fluid
represents a liquid and Sc c 1. In our simulations, the Schmidt
number Sc 4 6 is sufficiently high to guarantee liquid-like
dynamics. Second, we ensure that the Mach number38 Ma = U0/cf,
which compares the velocity of the fluid U0 with respect to the
speed of sound cf, is small enough to avoid compressibility effects
so that the fluid can be assumed to be effectively incompressible.
Hence, we set Ma B 0.1 in our simulations. Another important
parameter is the Reynolds number38 Re = U0scfrf/Z which
measures the relevance of inertial over viscous forces and where
Z denotes the shear viscosity of the fluid. We simulate a fluid in
the Stokes regime, i.e. in absence of turbulence. The critical
Reynolds number Rec, which discriminates the crossover from
laminar to turbulent flow, depends on the physical system
under investigation. It is known that Rec B 1 in bulk33 while
it has been recently shown that the critical thresholds is
higher in a channel (Rec B 800)39 and much higher in a pipe
(Rec B 2000).40 In our simulations Re o 0.8, which corresponds
to Stokes flow. In the present work we perform simulations
exploring a wide range of Péclet numbers. This parameter
measures the relevance of convective over diffusive transport,
and we define it as follows

Pe ¼ U0R1

D0
; (8)

where R1 and D0 are, respectively, the radius and the bare
diffusion coefficient of the larger sphere. We chose R1 as a
representative quantity for the size of the dumbbell as it
remains constant upon varying the size ratio R̃, and hence Pe
and R̃ can be changed independently. To explore different
hydrodynamic regimes, we vary the shear viscosity of the fluid Z.
More specifically in terms of simulation parameters, we
change the integration time step from DtMD = 0.025 t0 for
Pe B 40, to DtMD = 1.75 � 10�3 t0 for Pe B 500, being

t0 ¼ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf=kBT

p
. With this choice of parameters the shear

viscosity varies from Z = 2.5 Z0 to Z = 32 Z0, respectively, with
Z0 = mf/(a0t0).

2.3 Achieving steady state flow of the fluid

During the self-orientation process the asymmetric dumbbell
changes its orientation and eventually aligns with the fluid flow
with the small sphere dragged downstream of the large sphere.
This phenomenon is determined by the hydrodynamic self-
interaction, while the hydrodynamic interaction with the side
walls (the walls orthogonal to the x axis) plays no role in this
process.22 We position the particle’s center of mass at the
center of the channel x = 0, with orientation y = 1701, where
y A (�1801,1801] is defined as the angle between the projection
of the particle’s long-axis on the xz plane and the z axis (see
Fig. 1(a)). Before proceeding with the measurements of the
angle y over time, we wait till the fluid forms the expected
velocity profile. In order to achieve this steady state without
affecting the initial orientation of the dumbbell, we initially
impose a constraint on the dumbbell, such that the acceleration
of the two spheres along the y and the z axes are the same, while
the acceleration of the center of mass along the x axis is zero.

This can be achieved by imposing the following forces on the
large particle (here with label 1)

Fnew
x1 ¼ Fx1 �

m
M2
ðFx1 þ Fx2Þ

Fnew
y1 ¼

m
M2
ðFy1 þ Fy2Þ

Fnew
z1 ¼

m
M2
ðFz1 þ Fz2Þ;

(9)

where m = M1M2/(M1 + M2) is the reduced mass, Mj is the mass of
sphere j and Fij is the instantaneous force along i experienced by
sphere j. Similarly, the forces imposed on the small particle
(labelled 2) can be obtained from (9) by exchanging the sub-
scripts 1 and 2. Once the expected velocity profile is formed, we
release the constraints and start our measurements. The velocity
profile of the fluid along the z direction is determined by the specific
geometry of the channel. In our case, we expect to observe a
parabolic profile (Poiseuille flow) from the side view because of
the high confinement in the y axis, while we expect an approximately
uniform profile (Hele-Shaw flow) from the top view.

3 Results
3.1 Verification of fluid velocity profile

In Fig. 2 we report the fluid velocity profile uz from the top view
at different heights y of the channel, and from the side view at
x = 50 a0. The points represent our numerical results, obtained
by averaging the velocities of the fluid particles over the volume
of a single SRD cell (a0

3). The profiles are in very good agreement
with the theoretical prediction,41 represented here by the solid
lines. We highlight that there is no adjustable parameter for the
magnitude of the velocity field. However, our profile extra-
polates to a finite non-zero velocity at the wall, and therefore

Fig. 2 Velocity profile of the fluid flow uz along x and y at different heights.
The dots represent the results obtained with the MD + SRD method, while
solid lines are theoretical predictions. The profile is determined by the
geometry of the channel. In this shallow channel we observe almost a
flat profile (Hele-Shaw flow) from the top view, where different colors
denote velocity profiles at different heights along the y axis, and a
parabolic profile (Poiseuille flow) from the side view, where we show the
profile at x = 50.0 a0.
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we obtain the best fit by including a small slip velocity of
magnitude B0.01 a0/t0.

3.2 Hydrodynamic self-orientation: the state diagram

We perform MD + SRD simulations on a single dumbbell
particle with fixed s = 8.8 a0 as shown in Fig. 1(b) in a fluid
flow. We study the self-orientation process by measuring the
angle y of the long-axis of the dumbbell with the flow direction
as a function of time. Note that our model consists of a
dumbbell in three dimensions which can slightly wiggle in
the yz plane. Hence the angle y is defined as the angle between
the xz projection of the particle center-to-center axis and the
z axis. For example, we plot the angle y as a function of the
reduced time t̃ = tU0/s for Pe = 480 and R̃ = 1.3 in Fig. 3(a). Each
curve in the plot represents a single run performed at the same

physical conditions. We simulated eight independent runs in
order to investigate the statistical fluctuations. All the curves
show essentially the same trend. The simulation is initiated
with a dumbbell particle forming an angle y = 1701 with the
direction of the fluid flow. After a certain waiting time, the
value of y rapidly decreases towards y = 01, where it remains
stable over time within small fluctuations due to the thermal
noise. Note that at this apparently high Pe Brownian fluctuations
are still visible, but, contrary to the case of the Brownian regime,
they do not significantly interfere with the hydrodynamic drag
and the resulting particle orientation. The thermal noise is not
only the cause of the small fluctuations about the equilibrium
orientation at y = 01 but it also prevents the immediate reorientation
of the dumbbell: the configuration characterized by y C 1801 is an
unstable equilibrium configuration,22 therefore the hydrodynamic
torque about this angle is still quite weak compared to the Brownian
fluctuations. Consequently, the competition between the hydro-
dynamic torque, which leads to the reorientation of the particle,
and the Brownian fluctuations, determines the different waiting
times at which the particle starts reorienting. In Fig. 3(a) we
clearly observe this phenomenon by comparing eight independent
runs. Nevertheless the different waiting times do not affect the self-
alignment process itself. Once the hydrodynamic forces start to
dominate, the change in y with time for intermediate angles is very
similar in the eight runs. This is most clearly appreciated by the
similarity of the slopes around y = 901, in fact the typical time scale
of the self-orientation process is only intrinsically related to the
shape of the particle, parametrized here by R̃, and the geometry of
the channel. Later in this section we will provide quantitative
results on this topic, while for the moment we focus on the
alignment of the particle once the self-orientation has occurred.
Specifically, we investigate how the alignment is destabilized
by the thermal fluctuations as we decrease the Péclet number.
In addition, we show that as we enter the Brownian regime,
the stability of the alignment depends also on the shape of
the particle, therefore we will also compare the behaviour at
constant Pe and different R̃.

As we lower the Péclet number we enhance the strength of
the thermal noise relative to the strength of the convective flux.
We compare Fig. 3(b), 4(a) and (b) where we show the tilt
angle y averaged over eight realizations as a function of time,
for R̃ = 1.3 and Pe = 480, Pe = 170 and Pe = 40, respectively. It is
apparent that the curves present larger errorbars as we lower
the Péclet number, moreover the fluctuations in orientation
about the equilibrium position y = 01 are more pronounced. To
quantify the magnitude of these oscillations we measure the
standard deviation of the angle y with respect to its mean value

hyi as sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hy2i � hyi2

p
. By decreasing Pe, we observe an

increase of sy, as shown in the inset of Fig. 3(b) and 4. Here
we also display the histogram of y, which broadens up as Pe
decreases. This is clear evidence that decreasing the Péclet
number destabilizes the alignment of the particle at y = 01,
which is the hydrodynamically stable configuration.

The Péclet number is a good parameter to estimate the
relevance of the thermal fluctuations compared to the hydro-
dynamic drag, but it is not sufficient to give a complete description

Fig. 3 (a) The tilt angle y of the long-axis of the dumbbell with the flow
direction as a function of reduced time t̃ = tU0/s for a dumbbell with s =
8.8 a0 and size ratio R̃ = 1.3 in a channel under an external flow at Pe = 480.
Different curves represent independent runs. The graph shows the self-
orientation process where the particle is initially positioned with y = 1701
and, due to the hydrodynamic self-interaction, it eventually aligns with the
fluid flow (y = 01). The inset shows fluctuations of y about the equilibrium
value y = 01 as a function of t̃ for simulation runs where the dumbbell is
initially positioned with y = 01. We measure the standard deviation of y
obtaining sy = 81. (b) Tilt angle y averaged over eight runs presented in (a).
Inset: The left panel shows the tilt angle y averaged over eight runs in (a),
the right panel shows the normalised histogram of y. The horizontal lines
indicate the full width at half maximum.
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of the stability of the particle. From the definition given in eqn (8)
it is clear that Pe does not depend on the specific shape of the
particle, only on its typical length scale. However we expect that the
stability is also related to the shape of the dumbbell. For
instance we intuitively expect that as we decrease the radius
of sphere 2, the thermal fluctuations become more effective,
leading to destabilization. We therefore investigate also the
behaviour of the dumbbell by allowing R̃ to vary while we keep
Pe constant. In analogy to the previous analysis, we compare
the fluctuations around y = 01 for different R̃. In Fig. 5 we show
the average tilt angle y as a function of time for Pe = 115 and
size ratio R̃ = 1.3 (a) and R̃ = 2.5 (b). As expected, we observe
larger fluctuations as we increase the size ratio R̃: we estimate
that sy = 181 for R̃ = 1.3, while sy = 391 for R̃ = 2.5.

In order to investigate how thermal fluctuations destabilize
the alignment of the particle as we vary both the Péclet number
and the size ratio, we ran many simulations for 40 t Pe t 500
and for 1.0 o R̃ r 2.5. By analysing the fluctuations of the
angle y about the equilibrium position y = 01, we discriminate

three different regimes for the hydrodynamic self-alignment.
Our results are summarized in Fig. 6. The black dots display the
simulation runs performed at a specific value of Pe and R̃. We
compute the sy for each run and linearly interpolate between
points to obtain a heatmap. The blue region represents the
regime of strong alignment, where sy r 151. We delimit this
region with a solid black line corresponding to sy = 151. The
light blue region represents the regime of weak alignment,
where 151 o sy r 301. Finally, the red region shows the regime
of no alignment, where sy 4 301, also here delimited by a black
line corresponding to sy = 301. For a sufficiently high Péclet
number, Pe Z 400, a change in the size ratio does not affect the
angular stability regime of the dumbbell, as the convective flux
leads to a strong hydrodynamic torque. We define this range of
high Pe as the non-Brownian regime. For Pe o 50 the self-
orientation does not occur for any size ratio of the dumbbell.
Therefore we define this regime as the Brownian regime. In the
intermediate Pe regime, i.e. 50 r Pe o 400, we find all three
self-orientation behaviours: upon increasing R̃, the strong
alignment region shrinks, whereas the weak and no alignment

Fig. 4 Tilt angle y averaged over eight realizations as a function of
reduced time t̃ = tU0/s for a dumbbell with s = 8.8 a0 and size ratio
R̃ = 1.3 in a channel under an external flow at Pe = 170 (a) and Pe = 40 (b).
By decreasing Pe the curves presents larger fluctuations and sy increases,
being sy = 151 in (a) and sy = 341 in (b). Inset: The left panel shows the tilt
angle y averaged over eight runs, the right panel shows the normalised
histogram of y. The horizontal lines indicate the full width at half
maximum.

Fig. 5 Tilt angle y averaged over eight realizations as a function of
reduced time t̃ = tU0/s for a dumbbell with s = 8.8 a0 and size ratio
R̃ = 1.3 (a) and R̃ = 2.5 (b) in a channel under an external flow at Pe = 115. By
increasing R̃ the curves exhibits larger fluctuations and sy increases, being
sy = 181 in (a) and sy = 391 in (b). Inset: The left panel shows the tilt angle y
averaged over eight runs, the right panel shows the normalised histogram
of y. The horizontal lines indicate the full width at half maximum.
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regions widen. This confirms our expectations that the stability
is also strongly related to the shape of the dumbbell, and
provides a quantitative estimation of this dependence. For
completeness, we also report the values of sy for the simulated
state points in Fig. 7, where we show sy as a function of Pe for
different size ratios R̃. We note that small changes in angle cut-
offs for defining the stability regions can determine a small
shift of the boundaries, but the overall trends remain the same.

On the basis of these results, we extract information on the
required experimental conditions to achieve a certain level of
alignment. In Table 1, we list the particle radius, ranging from a
few microns for macro-colloids, to a few tens of nanometers for
nanoparticles. We compute the critical flow rate Uc

0 for different

particle sizes R1 and for different regimes of alignment Pec. The
values Pec = 50 and Pec = 150 represent the thresholds for weak
and strong alignment of a dumbbell with size ratio R̃ o 1.5, and
Pec = 400 represents the threshold for strong alignment of a
dumbbell with R̃ = 2.5, as obtained from Fig. 6. We also display
width W and height H of the channel for each particle size. For
instance, a particle with R1 = 0.1 mm and R̃ o 1.5 displays weak
alignment for Uc

0 Z 1 � 103 mm s�1 and Uc
0 o 3 � 103 mm s�1,

while it shows strong alignment for Uc
0 Z 3 � 103 mm s�1. In

order to observe strong alignment of a particle with the same
size and R̃ = 2.5, one has to set a flow rate Uc

0 Z 9 � 103 mm s�1.
The critical flow rates are derived by inverting eqn (8), obtaining

Uc
0 ¼

PeckBT

6pZR1
2
; (10)

where D0 is rewritten in terms of the fluid viscosity through the
Stokes–Einstein equation D0 = kBT/(6pZR1). In our computation,
we considered room temperature T = 300 K and the viscosity of
water Z = 0.001 Pa s. Of course, the pressure drops required to
reach these flow velocities increases with decreasing channel
dimensions. For a channel of length Lz and a height H { W, the
pressure drop is approximately given by Dp = 12ZU0Lz/H

2.
According to our results, alignment is achieved within a distance
of 100 bond lengths s, which is of the order of 100 H. For a
channel of this length, the pressure drop is Dp = 1200ZU0/H. For
example, for a channel with H = 0.25 mm and Lz = 25 mm, a
pressure drop of 0.5 bar will be sufficient to orient the R1 = 0.1 mm
particle. In addition, it has been shown that it is possible to
achieve flow rates on the order of mm s�1 in nanofluidic devices,
as reported in ref. 42 and 43.

3.3 Hydrodynamic self-orientation: the relaxation time

As mentioned earlier, in this section we provide a quantitative
analysis of the rate of the self-orientation process. An analytical
expression describing how y evolves with time t̃ was derived for
the case of a dumbbell particle composed of two disks instead
of two spheres.22 Even though the two dumbbell models are
different, the analytical expression is valid also for the present
case of a dumbbell composed of spheres. In fact it has recently
been shown that the analytical expression holds for all particles
which have the property to be mirror symmetric with respect to

Fig. 6 State diagram of a dumbbell with s = 8.8 a0 describing the stability
of the particle self-alignment along the direction of the fluid flow for
different Péclet numbers Pe and size ratios R̃. The characterization of stability is
based on the magnitude of the standard deviation sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hy2i � hyi2

p
of y with

respect to its mean value hyi. The blue region denotes oscillations limited
to sy r 151, where the alignment is strong. The light blue region is
characterized by oscillations 151 o sy r 301 so the alignment is weaker.
Finally, the red region denotes oscillations with sy 4 301, therefore the
alignment is no longer possible in this region. The black dots denote the
state points at which the simulations were performed. The heatmap is
computed by linear interpolation between these points. The black lines
delimit the three regimes of alignment.

Fig. 7 Standard deviation sy of the tilt angle y of a dumbbell with s = 8.8
a0 as a function of Pe for different size ratios R̃. The dashed lines
correspond to sy = 151 and sy = 301.

Table 1 Critical flow rate Uc
0 (last column) for different particle sizes R1

(first column) and for different regimes of alignment Pec (bottom row). The
values Pec = 50 and Pec = 150 represent the thresholds for weak and
strong alignment of a dumbbell with size ratio R̃ o 1.5, and Pec = 400
represents the threshold for strong alignment of a dumbbell with R̃ = 2.5.
The corresponding critical flow rates Uc

0 are calculated from eqn (10). We
also display width W and height H of the channel for each particle size

R1 (mm) W (mm) H (mm) Uc
0 (mm s�1)

10 250 25 (1, 3, 9) � 10�1

5 125 12.5 (0.4, 1, 4) � 100

1 25 2.5 (1, 3, 9) � 101

0.5 12.5 1.25 (0.4, 1, 4) � 102

0.1 2.5 0.25 (1, 3, 9) � 103

Pec = (50, 150, 400)
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the xy plane passing through their longitudinal axis.24 Taking
t̃ = 0 when y = 901, the dependence of y with respect to t̃ can be
expressed implicitly as22

~t ¼ ~t ln
1þ cosðyÞ
sinðyÞ

� �
; (11)

where ~t(R̃, H, W) is the relaxation time defined as the char-
acteristic time the particle spends in self-orienting from y = 901
to y = 01. This parameter depends on the shape of the particle
and the geometry of the channel. This quantity can be extracted
by fitting eqn (11) to the data obtained from the numerical
simulations. Each simulation run is parametrized by Pe and R̃.
We perform eight independent runs to carry out our statistical
analysis.

To perform the fit, we first shift each single curve y(t̃) in
time, such that y = 901 corresponds to t̃ = 0. It is worth to
mention that the time shift is usually different for each curve.

This is due to the time delay the particle accumulates before
starting the self-orientation. We shift the curves also to perform
an accurate averaging of y over the eight realizations. In fact,
this procedure guarantees that we get the best superpositions
of the curves for different runs, as the internal hydrodynamic
torque is maximal at y = 901. We obtain the value of ~t by fitting
eqn (11) to each single realization. We then average the values
of ~t over eight runs. In Fig. 8(a) we show the decay of the tilt
angle y averaged over the eight realizations as a function of
time for different R̃ at Pe = 480, in the non-Brownian regime.
Since time is scaled by ~t, all curves collapse onto the theoretical
master curve. The match with theory is remarkably good. In the
inset we represent the values of for different size ratio R̃. The
characteristic time of alignment monotonically decreases with
increasing size ratio. In fact as the size ratio starts to increase
from R̃ = 1.0, the hydrodynamic torque also increases leading to
a faster convergence to the equilibrium configuration. A similar

Fig. 8 The average tilt angle y as a function of rescaled time t̃/~t. Each coloured curve represents a different size ratio R̃ and is obtained by averaging over
eight independent runs. For R̃ = 1 the orientation of the dumbbell remains constant in time at y = 901, which is the initial orientation. For R̃ 4 1 we scale
the data by a fitted ~t, collapsing all the curves onto a master curve predicted by theory and represented here with a black dashed line. The inset shows the
fitted relaxation time ~t for different R̃. In the range of R̃ investigated, ~t is a monotonically decreasing function of R̃. (a and b) Results obtained at Pe = 480
by implementing the model with constant s = 8.8 a0 and the model with s = R1 + R2, respectively. (c and d) Results obtained at Pe = 115 by implementing
the model with constant s = 8.8 a0 and the model with s = R1 + R2, respectively. The two models give similar results.
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trend is shown in Fig. 8(c) where we illustrate the same analysis
performed at Pe = 115, in the intermediate regime. We high-
light that the only noticeable difference is the presence of small
fluctuations within the curves which denotes the relative
importance of thermal noise over the hydrodynamic convective
drag with respect to the case of the non-Brownian regime. These
insets also show that the relaxation time for self-alignment is
mostly a function of particle geometry, and not of Péclet number,
for intermediate to large Péclet numbers.

We also analyse the robustness of the model with respect to
small changes in the design of the dumbbell particle. More
specifically, we performed simulations with the model presented
in Fig. 1(c) where the dumbbell is composed of spheres with their
surfaces at contact as we vary R̃. Hence the fluid is not allowed to
flow in between them. The results are shown next to the first
model in Fig. 8(b) and (d). We observe that the two models give
consistent results and the values of ~t fall in the same range.
Therefore we infer that the model of the dumbbell particle
is robust within small variation in the design of the particle,
and that the small gap between the spheres in the first model
does not have any major consequence on the self-orientation
phenomenon observed.

In order to assess the effect of the side walls on our results,
we also performed simulations in a wider channel, characterized
by W� H� Lz = 200� 10� 400 a0

3 for a few selected state points.
We did not observe any statistically significant deviations on the
values of ~t.

4 Conclusions

In summary, we have performed numerical simulations to
analyse the self-orientation process of an asymmetric dumbbell
particle in a shallow channel at different hydrodynamic regimes.
We have implemented the MD + SRD simulation technique and
have verified that this method is able to reproduce the correct
velocity profile of the fluid flow.

Next, we have investigated the self-orientation process at
different relative strengths of Brownian motion and for different
particle shapes by varying Pe and R̃, respectively. We define three
regimes of stability by analysing the amplitude of oscillations
about the equilibrium position y = 01. For Pe Z 400 the align-
ment is strong for all R̃. As we lower the Péclet number, 50 r
Pe o 400, thermal fluctuations start to affect the self-orientation
process first at large R̃, and progressively also at lower R̃. The self-
alignment process is no longer possible for Pe o 50 for any R̃.

On the basis of these results, we have computed the experi-
mental conditions, such as flow rates and channel dimensions,
to achieve alignment of asymmetric particles whose sizes range
from tens of microns till a few tens of nanometers. This information
can guide future experimental work that focus on nanosized
objects in fluid flows.

Moreover, we have computed the time dependence of the
orientation angle y, and compared it with the theoretical
prediction derived for the fully non-Brownian regime.22 Our
results are in remarkably good agreement with theory, even for

intermediate Pe. We have fitted the analytical curves on our
data set, where the fitting parameter is the reorientation relaxation
time ~t. We find that this parameter is a monotonically decreasing
function of R̃. We stress that this result is not in contradiction with
recent work where the relaxation time shows a minimum for
R̃ = 1.9,23 since their model of dumbbell particle is fundamentally
different from our model. In our model we increase R̃ by decreasing
the radius of one sphere, leading to a particle composed of two
beads for all R̃. In their model the dumbbell is instead composed of
two disks where the center-to-center distance is kept constant and
the radius of one disk increases with increasing R̃, thus eventually
leading to a particle composed of only one disk for high R̃.

This work has provided evidence that control over particle
position and orientation is still possible at intermediate Péclet
numbers, where diffusion becomes relevant in addition to
convection. Our finding is relevant for scientific applications
which rely on controlling dispersions in micron-sized devices at
intermediate Pe. In fact, several devices are explicitly designed
to operate in this regime44,45 such as H-filters, which enable
separation of species by exploiting the difference in diffusivity
of the solute particles.46 Since the diffusivity plays a key role in
this process, it is clear that the range of applicability of these
devices is confined to the low-to-intermediate Pe regime. Another
fundamental aspect of this study reveals that the self-alignment
still occurs at length scales on the order of a few microns to a few
tens of nanometers. This finding is quite remarkable as there is
no experimental evidence yet, to the best of our knowledge,
which proves that hydrodynamic self-interaction can function
at such small length scales. Therefore our work paves the way to
new methods for particle sorting down to scales of fraction of
microns by exploiting diffusivity, hydrodynamic self-interactions
and particle shape to govern particle position and orientation.
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