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Supplementary Information

Note 1: Comparison of rheology for smooth and sand-blasted top plate to test for wall-slip effects.
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Fig S1: Strain response of $= 0.33 % CMF networks to an increasing and decreasing stress ramp, showing
inconsistencies at different gap sizes when (a) a smooth top plate was used. A more uniform response

was recorded with (b) a sand-blasted top plate, confirming the absence of wall-slip in this case.



Note 2: Determination of fractal dimension of single CMFs in DMSO.
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Fig. S2: (a) 3D coordinates of single fibrils dispersed in DMSO traced in confocal image stacks using

VAA3D.! (b) Esimation of fractal dimension from the length parameters of the traced fibrils (N= 50).

A dilute suspension (with a volume fraction of 0.01%) of CMFs in DMSO was sonicated using a bath
ultrasonicator (Branson 8800, 40 kHz, 90 s) to disperse the fibrils. The suspension was then imaged in 3D
ina 512 X 512 pixel format with an average voxel size of 80 X 80 X 200 nm3, using a reflectance
confocal microscope (Leica TCS SP8) in resonant scanner mode. We used a 100x NA 1.4 objective (n,; =
1.515). From the volume image, the coordinates (with sub-pixel resolution) of the individual fibrils were
obtained by semi-automatic tracing, using VAA3D software (version 3.20).! From the fibril coordinate

data, both the fibril contour length (L) and end-to-end length (S) were obtained, from which a fractal

1

D
dimension of 1.03 + 0.03 was deduced, using the expressionS %L Fa



Note 3: Constant maximum stress cycle using cone-plate geometry
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Fig. S3: (a) Strain response of CMF networks (@= 0.33%) to the application of stress cycles with a
constant maximum of 8 Pa in a cone-plate measuring system at two different loading rates as indicated.

(b, c) The recorded plastic and elastic component of the deformation with respect to the number of

stress cycles.



Note 4: Cyclic constant linear strain ramp measurements
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Fig. S4: (a) Constant maximum strain ramp protocol. (b) Stress response of $= 0.33 % CMF network to
the applied strain ramp at a strain rate of 1%/s. (c, d) The stress at the maximum applied strain of 100%
(Tmax) @and back at 0% strain (t.,,) at the end of every cycle, both shown as a function of strain cycles. (e)
Dissipation energy which corresponds to the hysteresis loop area (normalized to kgT) plotted as a

function of the number of applied strain cycles.
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