Dynamic Electric Field Alignment of Metal–Organic Framework Microrods

1Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
2Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna A-1090, Austria
3Department of Physics and Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
4Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Vienna A-1090, Austria
5Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht 3584 CC, The Netherlands

Supporting Information

ABSTRACT: Alignment of metal–organic framework (MOF) crystals has previously been performed via careful control of oriented MOF growth on substrates, as well as by dynamic magnetic alignment. We show here that bromobenzene-suspended microrod crystals of the MOF NU-1000 can also be dynamically aligned via electric fields, giving rise to rapid electrooptical responses. This method of dynamic MOF alignment opens up new avenues of MOF control which are important for integration of MOFs into switchable electronic devices as well as in other applications such as reconfigurable sensors or optical systems.

Metal–organic frameworks (MOFs), which are crystalline materials composed of inorganic nodes linked by organic ligands, are of significant research interest due to their flexible choice of linkers and metals which afford them wide-ranging applications6−8 such as in optics, sensing, electronics, gas separations and energy storage.

When considering MOFs for applications, it should be noted that as most MOFs possess lattice anisotropy along different crystallographic axes, their corresponding physicochemical properties also significantly differ along different crystallographic directions. Therefore, to fully exploit directional functionality of MOFs, it is important to control MOF particle orientation. However, as MOF materials are typically synthesized as loose colloidal powders, it is challenging to impose and integrate particle orientational control into their utilization. Research has consequently focused on growth of MOF crystals on various substrates, to favor selective directional growth.4–6 Unfortunately, this is time-consuming, and significant care must be taken to control crystal growth. Furthermore, the growth conditions for one type of MOF cannot simply be applied wholesale to other MOFs, with considerations of MOF-substrate lattice matching and interfacial physicochemical interactions complicating the widespread application of this approach.7 Significantly, this approach renders the MOF orientation static, hindering the use of MOFs in applications requiring dynamism, such as in stimuli-responsive devices, whereby the MOFs can reorient themselves under changing conditions. Given the vast applicability of MOFs, dynamic control of MOF alignment will have significant implications for many areas.

The long-range molecular order imposed by the MOF lattice, and their tunable physicochemical properties, also render MOFs especially attractive for use in electronic devices.9 E-field control of MOFs is therefore particularly desirable, and there are emerging reports of external E-field MOF manipulation. Examples include current driven synthesis of ZIF-8,10 field-driven rotation of MOF ligands,11 as well as the E-field induced polymorph switching of ZIF-812 and MIL-S3.13–15 Reports pertaining to control of MOF crystal assembly include their electrophoretic deposition into electroactive thin films,10,16 and the assembly of polyhedral ZIF-8 microparticles into locked chains under an alternating E-field,17 whereby the flat particle facets allowed for interparticle facet-to-facet adhesion through van der Waals forces, as the alternating E-field polarized the electrostatic double layer. Further, Choi et al. showed that suspensions of Cu₉(BTC)₂ in silicone oil possessed electrorheological properties, whereby E-field application leads to Cu₉(BTC)₂ particle chaining.18 Nevertheless, reports of E-field control of MOF particle assembly are still extremely sparse, and have not focused on switchable control of MOF orientation despite the promise this area offers.

NU-1000, a zirconium-based MOF, possesses an anisotropic lattice, composed of 8-connected Zr₆(μ₃-OH)₄(μ₃-O)₄(μ₃-OH)₄(OH)₄ nodes linked by tetratopic 1,3,6,8-tetrakis-(p-benzoate)pyrene (TBAPy) ligands.19,20 31 Å hexagonal channels and 12 Å triangular channels are oriented along the c-axis of NU-1000 crystals (Figure 1) and smaller 10 Å pores perpendicular to these channels, resulting in anisotropic molecular diffusivity21 and photophysical properties for NU-1000.22
We previously showed that magnetized NU-1000 could be dynamically aligned via magnetic fields. However, the use of E-fields for MOF alignment would significantly widen the scope for device integration as it is simpler and more practical to implement for many applications. E-fields also have a greater dynamic range of field strengths and are easier to localize, avoiding cross-talk or interference within devices. Here we demonstrate, for the first time, the utilization of E-fields to dynamically and reversibly control NU-1000 alignment. NU-1000 was selected for these investigations, due to its lattice and particle shape anisotropy, high chemical and thermal stability, large specific surface area, synthetic scalability, as well as its potential uses in catalysis and as modifiable functional substrates.

NU-1000 microcrystals were synthesized and activated according to the literature. This led to size monodisperse NU-1000 microrods, although we also observed the occurrence of some cross-shaped particles, presumably due to NU-901 cocrysalization and subsequent NU-1000 growth on the NU-901 nodes (Figure S1). To improve the dispersibility of the NU-1000 microcrystals in organic solvents, the NU-1000 was functionalized with trimethoxy(octadecyl)-silane (TMODS) to form siloxy bridges. Powder X-ray diffraction (PXRD) also indicates that the NU-1000 Si retains its silane (TMODS) to a certain extent.

Inductively coupled plasma-mass spectrometry (ICP-MS) of NU-1000 Si showed the ratio of Zr:Si to be 1:1.39, or 8.3 Si per Zr6 node. These findings can be explained by silyl ethers on the Zr6 nodes further reacting with TMODS to form siloxy bridges. Powder X-ray diffraction (PXRD) also indicates that the NU-1000 Si retains its crystalline framework structure after silanization (Figure S5).

Rectangular and square cross section capillary cells were prepared whereby opposite sides of the cells were coated with Au/Cr via e-beam deposition and connected to an AC source (Figure 2a). The capillaries were filled with NU-1000Si/bromobenzene suspensions. Bromobenzene solvent was selected as its density (1.474 g·mL−1 at 25 °C) was relatively closely matched with that of NU-1000Si, giving stable suspensions across the time scale of weeks. Furthermore, bromobenzene with its low dielectric constant (ε = 5.19) and polarity possesses low electrolyte content, which affords relatively large inverse Debye screening lengths 1/κ. This facilitates large interparticle separations, which may allow for more rapid particle alignment. However, as the NU-1000Si scaffold is expected to have a high refractive index (different from the averaged refractive index of the MOF lattice and the pore-filling fluid) due to its zirconia nodes, it was not possible to find an index-matched solvent to minimize van der Waals interactions and light scattering. Nevertheless, by minimizing the thickness of the focal plane through decreasing the pinhole size, we were able to study the particle dispersions via confocal microscopy.

Conveniently, the pyrene-based ligand in NU-1000Si acts as a fluorophore, causing NU-1000Si to absorb 405 nm radiation and fluoresce at 470 nm, circumventing the need for additional dye functionalization for confocal microscopy. The NU-1000Si crystals are well separated by electrostatic repulsion, preventing their aggregation or gelation (Figure 2b) and show some order in their positional arrangement, despite their random orientation as well as thermal and Brownian motion (Figure S6). This is reminiscent of the colloidal plastic crystals or rotator phases described by van Blaaderen’s group, whereby interparticle electrostatic repulsions afford positional but not orientational order as the microrods rotate randomly around in their positions. However, the presence of the cross-shaped NU-1000Si particles appeared to disrupt the positional order.

Figure 1. (a–c) View of NU-1000 lattice along the a, b and c crystallographic axes respectively, showing the lattice anisotropy. (d) Scanning electron micrograph of NU-1000 microrods showing shape anisotropy of the particles.

Figure 2. (a) Illustration of a capillary setup where the NU-1000Si suspension in the cell is exposed to an alternating E-field perpendicular to the viewing direction (top) and cross-sectional view of the glass capillary setup (bottom). Confocal microscope images of NU-1000Si suspensions in bromobenzene (b) without E-field, showing randomly oriented particles and (c) in the presence of 500 Hz, 37.5 V·mm−1 peak-to-peak E-field showing aligned particles.
observed here. Upon exposure to an alternating E-field, however, the NU-1000$_{Si}$ microrods rapidly align along the E-field (Figure 2c). Under these conditions, we did not observe particle chaining of NU-1000$_{Si}$. Like in the case of electroresponsive SiO$_2$-based plastic crystals,26 the observed inter-particle repulsion prevents the particles from aggregating. Furthermore, as the tips of the NU-1000$_{Si}$ microrods are not perfectly flat, and the microrods surfaces were sterically stabilized by octadecysilslox groups, van der Waals based facet-to-facet attraction at the tips is expected to be relatively low.

To determine the electroresponse rate and extent, electro-optical measurements were carried out, using a polarized optical microscope and a photodetector (Thorlabs PDA100A Si Amplified Detector) to measure light transmission through the cell. NU-1000 crystallizes in the hexagonal space group P6$_3$/m and is uniaxially birefringent. When viewed through crossed polarizers on an optical microscope, the particles appear blue against a dark background (Figure 3a). When the E-field is off, the NU-1000$_{Si}$ microrods are randomly oriented and undergo Brownian motion. Turning on the alternating E-field results in rapid, vertical microrod alignment (Figure 3a, particles appearing as blue dots), whereby the long axis of the microrods aligns with the light transmission direction and their effective light transmitting cross-sectional area decreases (Figure 3b,c). This is similar to previous observations of liquid crystalline niobate nanosheets where light propagation is minimized during particle alignment.28 By plotting light transmission and E-field switching against time, we can determine the response rate and its extent. When the E-field is switched off, the particles relax slowly back into random orientations, and the light transmission returns to a maximum, as shown by the curved, unshaded sections of the graphs (Figure 3d).

The E-field alignment of NU-1000$_{Si}$ in bromobenzene is frequency dependent, with the most rapid alignment occurring at 500 Hz (0.1 s) (Figure S7). The E-field induces polarization of NU-1000$_{Si}$ and the particles align their axes of greatest polarizability along the field direction.29 Particle polarization is induced through various mechanisms in an alternating E-field, with the mechanism dependent upon the field frequency and the particle material.30,31 In this case, the low frequency suggests that the alignment process most likely takes place through Maxwell–Wagner–Sillars and O’Konski interfacial polarization.$^{32–35}$ In particular, we hypothesize that ions present within the NU-1000$_{Si}$ channels and in the electoral double layer on the external MOF particle–solvent interface undergo electromigration due to the imposed E-field.36 These ions may result from the presence of adsorbed water and polar groups such as Zr–OH and Si–OH at the MOF–solvent interface37,38 as well as from the sample preparation. Indeed, we found that the NU-1000$_{Si}$ particles possess negative ζ-potentials when dispersed in bromobenzene (Table S1). As the MOF channels run along the c-axis, the ions are attracted towards the MOF. In the case of 1-D MOF channels, the alignment of the NU-1000$_{Si}$ microrods is further induced through ion migration along the channel. From physiosorption measurements of NU-1000$_{Si}$, we found that the particles have a high specific surface area of 916 m2·g$^{-1}$ and pore volume (Figures S8 and S9, Table S2), stabilizing particles from aggregating. Furthermore, as the tips of the NU-1000$_{Si}$ microrods are not perfectly flat, and the microrods surfaces were sterically stabilized by octadecysilslox groups, van der Waals based facet-to-facet attraction at the tips is expected to be relatively low.

We previously showed that magnetically aligned NU-1000/Sylgard 184 composites exhibited a fluorescence response which was dependent upon the angle of linearly polarized excitation.22 This dependence arises from the lattice anisotropy of NU-1000, as the pyrene-based TBAPy ligands are oriented along the c-axis (Figure 1) and hence absorb linearly polarized light anisotropically. However, we cannot absorb linearly polarized light anisotropically, a half-wave plate was used to adjust the polarization angle of the incident light, and measurements were taken at 10° intervals (Figure 4a). The azimuthal plot in Figure 4 shows the integrated fluorescence intensity, normalized to its maximum value. When the NU-1000$_{Si}$ particles are electrically aligned, the photoluminescence anisotropy determined. A half-wave plate was used to adjust the polarization angle of the incident light, and measurements were taken at 10° intervals (Figure 4a). The azimuthal plot in Figure 4 shows the integrated fluorescence intensity, normalized to its maximum value. When the NU-1000$_{Si}$ particles are electrically aligned, the photoluminescence anisotropy is determined. A half-wave plate was used to adjust the polarization angle.
Experimental details and characterization results (PDF)
Video showing electrooptical switching of NU-1000$_{Si}$ in bromobenzene (100 V·mm$^{-1}$ peak-to-peak, 500 Hz) viewed through crossed polarizers on an optical microscope (MP4)
Video showing E-field induced alignment of NU-1000$_{Si}$ in bromobenzene as viewed through a confocal microscope where individual NU-1000$_{Si}$ rods can be seen (100 V·mm$^{-1}$ peak-to-peak, 1 kHz) (MP4)

AUTHOR INFORMATION

Corresponding Authors

*j.chin@hull.ac.uk
*michael.reithofer@univie.ac.at

ORCID

Neil T. Kemp: 0000-0002-1906-4608
Ali M. Adawi: 0000-0001-6850-5679
Freddy Kleitz: 0000-0001-6769-4180
Arnout Imhof: 0000-0002-7445-1360
Michael R. Reithofer: 0000-0002-6328-1896
Jia Min Chin: 0000-0002-0540-1597

Author Contributions

*These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the University of Vienna and the University of Hull for providing the financial support to carry out this work. A.J.Y. thanks the University of Hull for the provision of his University scholarship.

REFERENCES

(9) Zhou, S.; Wei, Y.; Li, L.; Duan, Y.; Hou, Q.; Zhang, L.; Ding, L.-X.; Xue, J.; Wang, H.; Caro, J. Paralyzed membrane: Current-driven...

