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ABSTRACT
To study the role of torque in motility-induced phase separation (MIPS), we simulate a system of self-propelled particles whose shape
varies smoothly from isotropic (disks/spheres) to weakly elongated (rods). We construct the phase diagrams of 2D active disks, 3D active
spheres, and 2D/3D active rods of aspect ratio l/σ = 2. A stability analysis of the homogeneous isotropic phase allows us to predict the
onset of MIPS based on the effective swimming speed and rotational diffusion of the particles. Both methods find suppression of MIPS as
the particle shape is elongated. We propose a suppression mechanism based on the duration of collisions and argue that this mechanism
can explain both the suppression of MIPS found here for rodlike particles and the enhancement of MIPS found for particles with Vicsek
interactions.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5086733

I. INTRODUCTION

Recently, there has been an increased interest in the thermo-
dynamics of what has been coined as active matter: systems formed
by agents that can convert ambient or external energy into kinetic
energy. These systems are diverse. Many are biological in nature:
birds, fish, cells, and bacteria all convert some form of ambient
chemical energy into kinetic energy. Synthetic systems also exist in
the form of colloidal particles that self-propel, typically by diffusio-
phoresis.1–4 All these active-matter systems are driven so far out of
equilibrium that current theories of statistical thermodynamics fail
to describe many of their properties. The dynamics of active-matter
systems can be modeled quite easily. However, it has unfortunately
proven to be very difficult to relate the dynamics to their steady
states or to any kind of probability distribution. If we could apply
the concepts of equilibrium statistical thermodynamics to active
systems, it would greatly improve our ability to describe and pre-
dict the structure and behavior of these systems. Some progress
has been made in this regard. For instance, for self-propelled
disks, the pressure has been defined,5,6 the glass transition has
been investigated,7 and equations of state have been constructed.8

Furthermore, the work of Cates and Tailleur contributes signifi-
cantly in constructing effective free energies for these nonequilib-
rium systems.9
For active 2D disks or 3D spheres, two well-studied model systems,
there is often a parameter regime in which the system demixes into
a dense and a dilute region. This phase separation closely resem-
bles the well-known gas-liquid coexistence found in, for instance,
water or Lennard-Jones systems. Unlike the gas-liquid phase sep-
aration, however, the clustering in active matter occurs because of
the motility rather than the particle-particle attractions. Hence, the
phenomenon has been coined motility-induced phase separation
(MIPS). Recently, MIPS has been studied extensively: it has been
identified for both active Brownian10–13 and run-and-tumble parti-
cles,14 its nucleation has been studied,15 its interface has been shown
to allow for a negative surface tension,16 and it has been derived from
equations of state6,8 and from nonequilibrium thermodynamics
theories.9

All of the above studies logically constrained themselves to
the simplest possible model systems, in which particles inter-
act either through hard-particle excluded-volume interactions or
through short-range repulsions. Importantly, such models contain
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no torques. Studies that do include torques typically fall into two
categories. The first uses particles with Vicsek-like alignment inter-
actions,17,18 which mimic a visual alignment mechanism, such as for
birds or fish. The second uses particles with an anisotropic, typically
rodlike shape.19–23 This most closely mimics bacteria, whose align-
ment arises simply from bumping into one another. While studies
of active rods reveal a zoo of nonequilibrium phases, they do not
exhibit MIPS; there seems to be no parameter regime for which there
is a separation into dense and dilute regions without strong align-
ment. Naturally, this raises questions such as the following: "Why
does MIPS occur for 2D disks and 3D spheres but not for 2D and
3D rods? How anisotropic or rodlike must a particle be for MIPS
to disappear?" In this paper, we will address these questions by both
simulations and theory.

To address these questions numerically, we need a model sys-
tem which exhibits MIPS and a means to identify MIPS when it
occurs. Section II describes both the Active Brownian Particle (ABP)
model we use and the modified cluster algorithm we apply to iden-
tify MIPS. In Sec. III, we present an analytical criterion for the onset
of MIPS on the basis of a stability analysis of density fluctuations
in the homogeneous isotropic phase, with the full derivation pre-
sented in the Appendix. In Sec. IV A, we discuss the phase diagrams
for the 2D disks, 3D spheres, and 2D and 3D rods, showing unam-
biguously that MIPS indeed disappears for increasing aspect ratio.
Subsequently, we discuss the mechanism behind this suppression
in Sec. IV B. Section V then concludes this paper by discussing the
influence of torque on MIPS in a more general context.

II. COMPUTATIONAL METHODS
A. Active Brownian particles

Using Brownian Dynamics (BD) simulations, we study a sys-
tem of N spherocylinder-shaped active Brownian particles (ABPs)
of head-to-tail length l and diameter σ ≤ l in a periodic area
A, self-propelling with a velocity v0 along their long axis ê. The
particles are subject to rotational and translational noise, with
rotational diffusion constant Dr and translational diffusion tensor
Dt = D∥êê+D�(I− êê), with parallel and perpendicular components
D∥ and D�, respectively. For such a 2D system, shown schemat-
ically in Fig. 1, the overdamped Langevin equations are given
by

∂tri = v0êi + βDt,i ⋅∑
i≠j

Fij +
√

2Dt,i ⋅Λt
i , (1)

∂tθi = βDr∑
i≠j

Tij +
√

2DrΛr
i , (2)

where i = 1, . . ., N is the particle label, ri is the position of parti-
cle i, êi = (cos θi, sin θi) is the particle orientation, and β = 1/kBT.
The force Fij and torque Tij are due to particle-particle interactions.
We assume fluctuation-dissipation to hold on the scale of individual
particles such that the translational and rotational noise terms Λt,α

i
and Λr

i , respectively, are Gaussian distributed random numbers with
zero mean and unit variance, i.e.,

⟨Λi⟩ = 0, (3)

⟨Λαi (t)Λ
β
j (t

′
)⟩ = δijδαβδ(t − t′). (4)

FIG. 1. Schematic representation of the model. Particles are 2D or 3D sphero-
cylinders of diameter σ and head-to-tail length l, self-propelled with a velocity v0
in their forward direction ê. They interact based on their core-to-core distance rs,ij ,
causing repulsive forces Fij and torques Tij. Additionally, they diffuse rotationally
with diffusion constant Dr and translationally along their long and short axis with
diffusion constants D∥ and D�, respectively.

To describe excluded-volume interaction between particles i and j,
we let the forces Fij = (∂uWCA(rs,ij)/∂rs,ij)r̂s,ij be the result of a
short-range pairwise repulsive Weeks-Chandler-Andersen (WCA)
potential uWCA(rs ,ij) acting on the shortest distance rs ,ij between
particle cores

uWCA(rs,ij) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

4�[( σ
rs,ij

)
12
− ( σ

rs,ij
)

6
] + �, if rs,ij < 21/6σ,

0, if rs,ij ≥ 21/6σ.
(5)

For disks (l/σ = 1), the distance rs ,ij is simply the distance between
their centers. For l/σ > 1, the cores of the particles are no longer
points but lines. The distance rs ,ij then corresponds to the shortest
distance between these two line segments. The torques T are calcu-
lated from the forces by Tij = aij ×Fij, where aij is the lever arm for
the applied force Fij on rod i by rod j. For each pair of particles, both
the shortest distance rs ,ij and the lever arms aij are calculated using
the algorithm described in Ref. 24. In 2D, this torque always points
out of plane, so we only need to consider its scalar magnitude T in
the equations of motion.

This 2D model easily generalizes to 3D: aside from vectorial
quantities now being three- rather than two-dimensional, we must
now also consider the direction of the torque. For convenience,
we also switch to vector notation in the orientational equation of
motion. The equations of motion in 3D are thus

∂tri = v0êi + βDt,i ⋅∑
i≠j

Fij +
√

2Dt,i ⋅Λt
i , (6)

∂t êi = βDr∑
i≠j

Tij × êi +
√

2Dr(êi ×Λr
i ). (7)

We nondimensionalize the 2D and the 3D system by expressing
all distances in units of the particle diameter σ, all energies in
terms of the thermal energy kBT, and all units of time in terms of
τ = 1/Dr .
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B. Choice of model parameters
and additional assumptions

For our investigation, we will study the influence of four param-
eters: the dimensionality d = 2 and d = 3, the aspect ratio p = l/σ,
the packing fraction � = N((π/4)σ2 + (l − σ)σ)/A [� = N((π/6)σ3

+ (π/4) (l− σ)σ2)/V in 3D], and the Péclet number Pe = v0/σDr . Note
that the literature sometimes defines the Péclet number in terms of
the translational diffusion instead. The diffusion constants D∥ and
D� for rodlike particles can be calculated from simulations includ-
ing hydrodynamics as in, e.g., Ref. 25 or, for short spherocylinders,
approximated by the exact results for ellipsoids (Ref. 26; see also the
supplementary material). We found that the influence of this change
of diffusion constants is negligible for the aspect ratio range we look
at, so for simplicity, we will set D∥ = D� = Dt = σ2Dr/3 from now on.
This choice corresponds to the correct ratio between translational
and rotational diffusion for 3D spheres.

Some care is required in the way we vary the Péclet number.
The most straightforward way is to simply vary it by changing the
self-propulsion velocity v0. However, if we do this and keep the pair
interaction strength fixed, the ratio between active and interaction
forces will depend on the Péclet number. The result of changing this
ratio is that the particle interaction effectively becomes softer as the
Péclet number increases. In the extreme case, MIPS may even dis-
appear for high enough Péclet numbers. Earlier work has remarked
on this subtlety of varying the Péclet number.27,28 As our aim is
not to provide quantitative but only qualitative data on the phase
behavior, we nevertheless use the straightforward approach by fixing
� = 24kBT and changing the Péclet number by varying v0.

C. Identifying motility-induced phase separation
by clustering regions of similar density

MIPS is a separation of a system of self-propelled particles into
a dense and a dilute region. While it can be identified quite read-
ily from visual inspection of particle configurations, it is also use-
ful to have a more quantitative method. Two of these methods are
common. The first is to measure the distribution of the local den-
sity: for a homogeneous system, such a distribution is unimodal,
while for a phase-separated system, it is bimodal.29–31 However,
such a distribution can not tell us whether the system has separated
into one or into multiple domains, which means it cannot distin-
guish between micro- and macrophase separation. This distinction
becomes important for rods.
The other method is to group particles together into clusters based
on a distance cutoff and to determine the fraction f cl of particles

in the largest cluster.3,10,32 Since MIPS eventually forms one large,
dense cluster in a very dilute background gas, f cl → 1 for MIPS for
large enough systems, while for a homogeneous fluid, f cl → 0. This
latter method requires a cutoff distance that specifies whether par-
ticles are close enough to belong to the same cluster. In practice,
we found that there is no single cutoff distance that yielded reason-
able results for the resulting cluster fraction across all shapes and
densities we wish to study.

To solve this problem, we developed a slightly different clus-
tering method, shown schematically in Fig. 2. From the particle
positions [Fig. 2(a)], we make a Voronoi construction. This provides
us not only with a parameter-free way to define neighboring parti-
cles but also with a means of measuring the local packing fraction
�l = ((π/4)σ2 + (l − σ)σ)/Av or ((π/6)σ3 + (π/4) (l − σ)σ2)/Vv ,
with Av and Vv the area (2D) or volume (3D) of the Voronoi cell
[colors in Fig. 2(b)]. Our requirements for two particles to belong
to the same cluster are then that (a) their Voronoi cells are con-
nected and (b) they both have a local packing fraction that is either
lower or higher than the mean packing fraction � by a certain cut-
off ∆�. Using this method, we create clusters of similar local density
[Fig. 2(c)]. We choose ∆� = 0.025 as we found through trial and
error that this cutoff allows us to meaningfully distinguish between
homogeneous states with f cl < 0.5 and phase-separated states with
f cl ≥ 0.5 for all aspect ratios and Péclet numbers of interest and for
nearly all densities, both in d = 2 and d = 3. Note that f cl is not
guaranteed to go to zero in the homogeneous phase when using this
definition of clusters due to density fluctuations, but f cl = 0.5 still
offers a reasonable threshold.

III. AN ANALYTICAL CRITERION
FOR THE ONSET OF MIPS

Having described the means to obtain and identify MIPS
numerically, we now describe an analytical criterion for the onset of
MIPS. We are aware of three ways to obtain such a criterion: by con-
sidering the particle flux balance between a dense cluster and a dilute
gas phase,11,33 by constructing an effective free energy and proceed-
ing as in equilibrium,9,34 and by a stability analysis of density fluc-
tuations of the homogeneous isotropic phase.28,35 All three methods
have previously been used for torque-free systems. We extend the
mean-field-like third method laid out in Ref. 35 to 3D systems with
torque. The derivation of this extension is given in the Appendix.
In short, we map our system to an active ideal gas, where the effect
of the many-body forces and torques is subsumed into a modified,
effective swim speed veff, rotational diffusion Deff

r , and translation

FIG. 2. Representation of our clustering algorithm. From
unlabeled coordinates (a), construct a Voronoi tessellation
and obtain local densities (b) and then use these to create
clusters of particles with similar density (c).
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diffusion Deff
t . These effective constants then depend on the mean

density ρ̄ and input swimming speed v0. By doing this mapping, we
effectively make two approximations: the only effect of the inter-
particle forces F is to slow particles down, and the only effect of
the torques T is to change the rate at which particles change their
orientation. The former is a good approximation in the absence of
structural order and the latter in the absence of orientational order.
Both approximations become poorer at higher densities, where
structure and alignment become important.
As will be derived in Subsection 2 of the Appendix, the evolution of
long-range density perturbations δρ(r, t) for this active ideal gas is
given by

∂tδρ(r, t) ≈ Dδρ(ρ̄, v0)∇
2δρ(r, t). (8)

This is a diffusion equation with a diffusion coefficient Dδρ given by

Dδρ(ρ̄, v0) = Deff
t +

veff
(2veff

− v0)

d(d − 1)Deff
r

, (9)

where d now indicates the dimensionality. In agreement with the lit-
erature and as detailed in the supplementary material, we confirm
from our simulations that Deff

t ≈ Dt for spheres to a reasonable
approximation, similar to what was reported in Ref. 35 for disks.
This result extends to 3D rods as well. Thus, we set Deff

t = Dt from
here on.

The effective constants veff and Deff
r can now be found in two

ways: we can either formulate closed-form equations for these effec-
tive constants or we could measure them in some way. We choose
the latter method and determine their value from the following
correlation functions:

⟨ṙi(t) ⋅ êi(t)⟩ = veff, (10)

⟨êi(t) ⋅ êi(0)⟩ = exp(−(d − 1)Deff
r t), (11)

which measure the effective velocity in the direction of self-
propulsion and how quickly a particle loses its orientation, respec-
tively. In other words, we can measure veff and Deff

r by simulating a
(small) system in the homogeneous isotropic phase.

IV. RESULTS AND DISCUSSION
To explore the MIPS-related phase behavior, we performed

Brownian dynamics simulations with N = 104 particles in the
packing-fraction range 0.1 ≤ � ≤ 0.7 and the Péclet-number range
1 ≤ Pe ≤ 100 (2D) and 1 ≤ Pe ≤ 150 (3D). This spans the
entire density range from the fluid regime to just below the hex-
atic/solid regimes.36,37 The Péclet range spans from below the
MIPS critical point to high enough Péclet that the MIPS region
attains a near-constant width in density.27,38 We also performed
smaller simulations to measure the effective constants veff and Deff

r .
The initial state for all simulations was one with random posi-
tions and orientations. Using only a limited number of particles
(N = 100) ensures that the system remains in the homogeneous
isotropic phase regardless of density or activity. Of course, these
smaller simulations suffer from finite-size effects. The supplemen-
tary material contains a more detailed analysis of these finite-size
effects.

We now turn to answer the questions posed in Sec. I: How elon-
gated do particles have to be to not display MIPS and what is the
mechanism that suppresses MIPS for rods?

A. Phase diagrams of self-propelled disks,
spheres, and rods

Before we can appreciate how the phase behavior changes with
aspect ratio, we must first establish the relevant features of MIPS for
isotropic particles. Let us start in 2D.

While the phase boundaries of MIPS for disks have been stud-
ied by a number of authors,5,8,11,35,38 a comprehensive study that
also includes the high-density hexatic and solid phases has only
appeared quite recently.37 In this study, the authors report not only
the commonly reported U-shaped MIPS region (in the density-
activity plane) but also that there is a narrow density regime wherein
a hexatic phase can be found. This regime spans from the pas-
sive system (Pe = 0) to connect to the MIPS region (Pe ∼ 100).
Note that Ref. 37 defines the Péclet number in terms of the active
force, while we express it in terms of v0 and Dr—this shifts the
scale by a constant factor of Drσ2/Dt = 3. We can expect to find
qualitatively similar features here. Quantitatively, the phase bound-
aries will be shifted somewhat because of differences in the repul-
sive pair potential: Ref. 37 uses U ∝ (σ/r)64

− (σ/r)32, while we
use U ∝ (σ/r)12

− (σ/r)6. Our softer potential decreases the size
of the liquid-hexatic coexistence region.39 Given the similar tem-
peratures (kBT/� = 1/24, vs kBT/� = 1/20 in Ref. 37), the slightly
longer range of the WCA potential (cutoff radius r/σ = 21/6

∼ 1.12,
as opposed to r/σ = 21/32

∼ 1.02 in Ref. 37) will shift the solid phases
to slightly lower packing fractions. However, an in-depth compar-
ison of the high-density phase boundaries falls outside the scope
of this paper. Instead, we will merely identify the solidlike phases
by looking at where the effective velocity veff becomes vanishingly
small (veff

< 0.1σDr). Although this is not a very accurate measure,
it serves to crudely distinguish the solid or hexatic phase from the
fluid and MIPS phases, at least at low self-propulsion. We use this
criterion for all phase diagrams throughout this paper. With this
information in mind, let us now consider the phase diagrams in
Fig. 3.

Figure 3 shows phase diagrams in the Péclet number Pe—
packing fraction � representation for 2D disks and rods that show
both the MIPS region predicted on the basis of the stability anal-
ysis (blue-tinted region, D < 0) and the MIPS region found in
the simulations using N = 104 (black points). Both methods seem
to indicate MIPS in roughly the same region, but there are a few
notable differences. On the low density side, we also find MIPS
outside of the predicted spinodal region. Making the analogy with
the gas/liquid phase separation, we would expect MIPS in this
region to then occur through nucleation and growth. Is this also the
case?

A simple way to see if MIPS forms through a nucleation pro-
cess is to look at domain growth, which we can track using a time
series of cluster fraction f cl defined in Sec. II C. If the system imme-
diately decays from an isotropic to a MIPS state, this fraction will
likewise increase immediately. If, on the other hand, the system stays
in the fluid state for a prolonged period of time, only to later transi-
tion into MIPS through a nucleation process, f cl will retain the value
corresponding to the fluid for a finite time.

J. Chem. Phys. 150, 164501 (2019); doi: 10.1063/1.5086733 150, 164501-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-001916
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-001916
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-001916


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Phase diagram of 2D self-
propelled disks (a) and rods of aspect
ratio l/σ = 2.0 (b) for different Péclet num-
bers Pe and packing fractions �. Data
points indicate the resulting phase of
N = 104 particles as obtained from
Brownian dynamics simulations, in which
we distinguished MIPS, fluid, and solid
phases. The colors indicate the diffu-
sion constant of density fluctuations Dδρ.
Spinodal decomposition to a MIPS state
is then predicted where Dδρ < 0.

Figure 4 compares the time evolution of the fraction f cl of par-
ticles in the largest cluster for a number of Péclet numbers at two
different densities: one on the low density side of the MIPS regime
at � = 0.25 and one on the high density side at � = 0.7. On the
low density side and outside of the predicted spinodal region, the
cluster fraction can stay constant for a significant amount of time
(t > 30τ) before transitioning to a MIPS state. On the high density
side of the MIPS region, such a delay is absent. The stability analy-
sis predicts spinodal decomposition in this regime, and the cluster
growth agrees. This asymmetry is consistent with the findings of
Speck et al.,35 who report that the MIPS transition is discontinuous
at low densities but continuous at high densities.

There is also a discrepancy between the stability analysis and
the large-scale simulation at low Péclet numbers. This is to be
expected: in this region, the fluid-MIPS transition is continuous,
and the difference in density between the coexisting phases is small
when we are close to a critical point. Consequently, distinguish-
ing between clusters of particles is difficult, and the exact choice of

FIG. 4. Time series of the largest cluster fraction f cl for active disks (l/σ = 1). At low
density � = 0.25, the system occasionally only clusters after a significant amount
of time (t > 10τ), suggesting that the transition is triggered by a rare nucleation
event. At high density� = 0.7, this is never the case—only spinodal decomposition
is observed.

cluster fraction threshold f cl can shift the boundary quite a bit in
this region.

Having identified the most important features of the phase dia-
gram for active disks, let us now turn to rods and see how these
features change. Figure 3(b) shows the phase diagram in the density-
activity representation for rods with an aspect ratio of l/σ = 2, using
the same density and activity ranges as for the disks. The most obvi-
ous difference with the rods is that the MIPS region is now both
shifted to higher densities and much narrower. The predictions of
the stability analysis are worse for the rods: the predicted spin-
odal now lies in the middle of the simulated MIPS region. We find
that the transition from the fluid to MIPS now appears to be com-
pletely continuous—the system always starts clustering immediately
without any nucleationlike transient period. As can be seen from
Fig. 5(a), the suppression is continuous with increasing aspect ratio,
and it eventually pushes the fluid-MIPS transition into the regime
where solid phases typically emerge.

Let us now see whether the 3D case is similar. Figure 6 dis-
plays phase diagrams in the (�, Pe) representation, in Fig. 6(a) for
3D spheres and in Fig. 6(b) for 3D rods with l/σ = 2. Somewhat
unsurprisingly, they are similar to their 2D counterparts. The most
important feature is retained: MIPS disappears when the aspect ratio
is increased. The fluid gap we found in between the solid and MIPS
phases is also present for the active spheres. However, there are
notable differences between the 2D and 3D cases.

In contrast to the 2D case, we observe no region for the active
spheres where the MIPS transition is discontinuous. All simulations
that form MIPS appear to undergo immediate spinodal decomposi-
tion. This does not necessarily mean that there is no binodal region:
it may simply be quite small or have low nucleation barriers. The
density regime of the metastable region for 3D active spheres is
not well understood. We are only aware of one comparable sim-
ulation study by Stenhammar et al.,27 who looked at 2D and 3D
active disks/spheres to study the influence of dimensionality. How-
ever, their binodal lines were defined as the density at which a high-
Péclet system phase separated, which is not directly comparable to
the metastable region we define here. Hence, further studies are
needed to explain the difference in the width of the metastable region
between d = 2 and d = 3.

Another difference is at high Péclet number, where the pre-
dicted MIPS region for the spheres continues to shift toward higher
density instead of moving toward a constant one. We believe this to
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FIG. 5. Spinodal lines for 2D active rods as predicted from
Eq. (A22), as a function of aspect ratio (a), and the cor-
responding effective self-propulsion velocity veff and rota-
tional diffusion Deff

r at Péclet number Pe = 100 as a function
of packing fraction (b). At high activity, the effective self-
propulsion decreases more slowly with density, while the
rotational diffusion is enhanced.

be the behavior that we discussed in Sec. II B: for higher Péclet num-
bers, the particles can approach each other closer due to the active
forces, causing the effective diameter of the particles to decrease.
This effect appears to be stronger in 3D than in 2D, presumably due
to the increased coordination of each particle.

The final difference between the 2D and 3D cases is perhaps the
most notable one: for the rods, MIPS has disappeared completely.
Whatever mechanism suppresses MIPS, it appears to be stronger in
3D than in 2D. Curiously enough, the stability analysis still predicts
MIPS in a significant portion of the phase diagram. This discrep-
ancy, combined with its 2D counterpart, suggests that our theo-
retical approach breaks down for longer aspect ratios. We will see
why this is the case in Sec. IV B, where we discuss the suppression
mechanism.

Armed with the knowledge of these phase diagrams, can we
now answer the first question posed in our introduction: “How rod-
like must a particle be for MIPS to disappear?” Only partially, unfor-
tunately. Determining the exact aspect ratio where MIPS disappears
turns out to be quite difficult. We now know that the nature of the
suppression stems from the fluid-MIPS transition shifting to higher
densities, but unfortunately, our methods to identify MIPS are less
reliable at higher densities. More importantly, however, when the

particle interactions are not isotropic, MIPS is no longer defined
unambiguously and multiple types of clustered phases are possible
which all fit the present criteria. When we identify MIPS accord-
ing to (a) the system phase-separating into a single dense cluster
in a background gas and (b) this cluster having no net orienta-
tional order, there are still multiple realizations of such a system
(see the supplementary material, Fig. S5), such as a dense cluster
with large domains of oppositely oriented particles (l/σ = 1.1) or
a percolating cluster with low orientational order and many voids
(l/σ = 1.3, 2.0). Therefore, establishing the boundaries of MIPS at
these higher densities requires a more careful consideration of both
hexatic37 and orientational order.40 We leave this investigation to
future work, and instead, having established that MIPS is suppressed
when particles become elongated, we now turn to finding out
why.

B. Torque-induced suppression of motility-induced
phase separation

Since the main difference between the disk and rod systems is
the presence of torque, it is likely that the suppression of MIPS must
arise there. In our stability analysis, the only effect of torques is to

FIG. 6. Phase diagram of 3D self-propelled spheres (a) and rods of aspect ratio l/σ = 2.0 (b) in the Péclet number Pe-packing fraction � representation. Data points indicate
the resulting phase of N = 104 particles as obtained from Brownian dynamics simulations, in which we distinguished MIPS, fluid, and solid phases. The colors indicate the
diffusion constant of density fluctuations Dδρ. Spinodal decomposition to a MIPS state is then predicted to occur in the blue region where Dδρ < 0. The small region of
predicted instability in (b) under the points indicated as solid is an artifact of the fluid-solid transition there, where Dδρ fluctuates strongly as both veff and Deff

r go to zero.
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modify the rotational diffusion. Looking at Eq. (A22), it might be
possible to suppress MIPS if Deff

r is increased enough to make the
second term smaller than Deff

t . Is this the case? Is the rotational dif-
fusion perhaps enhanced so much that we effectively end up with a
thermal system again?

Not so. Looking at Figs. 7(e) and 7(f), we can see that Deff
r is

indeed increased significantly where MIPS vanishes. However, when
we insert the actual values of veff and Deff

r , we see that this is not the
case: the typical values of veff are simply too large. So if it is not
Deff

r , it must be veff that contains the key information that allows
us to predict MIPS or its suppression. After all, the stability anal-
ysis does correctly predict that MIPS is suppressed for high aspect
ratios. Comparing the effective swimming speeds of different aspect
ratios [Figs. 7(a) and 7(c) or 7(b) and 7(d)], we see that the rods slow
down less with increasing density than the disks. In other words, the
rods hinder each other’s movement less than the disks do. Why is
this? Again we must look into the main difference between the two
systems: torque.

For disks, one can derive the linear decrease in the velocity with
increasing density veff = v0(1 − ρ/ρ∗) from mean-field theory and
kinetic arguments.7,31,41 This is done by assuming that particles slow
down at low density due to time spent in binary collisions, which
leads to veff(ρ) ≃ v0(1− τc/τf ), where τc is the time spent in a collision
and τf = 1/(σv0ρ) is the mean free time between collisions. At low
density, we expect the mean free time τf to be mostly unaffected by
the presence of torques as long as there are no significant short-range
orientational correlations. The duration of collisions τc, however,
can change significantly when torques are involved. For disks, the

duration of their collision—of their hindrance—is determined by
how long it takes for them to slide around each other. Rods, how-
ever, will rotate to reorient their swimming directions away from
the combined center of mass of the collision. This will decrease the
collision duration. Since collisions are now shorter, the rods spend
more time moving freely: less hindered. Furthermore, this reorien-
tation leads to an enhanced rotational diffusion—exactly what we
find.

Interestingly, this suggests that an inverse mechanism might
also exist. If the torques between two colliding particles cause the
particles to rotate toward their center of mass, collisions would be
prolonged and MIPS would be enhanced. Precisely, this inverse
effect was reported earlier in Refs. 17 and 18: MIPS is enhanced
for self-propelled particles that align through Vicsek interactions. In
binary collisions, the Vicsek torques always rotate particles toward
the combined center of mass, increasing the duration of collisions,
increasing hindrance, and thus enhancing MIPS.

Is the changing density dependence of veff with increasing
anisotropy enough to completely describe the suppression of MIPS?
If we would have a system of self-propelled particles with some
arbitrary shape and we would know how the effective swim speed
depends on density, could we then predict whether and where it will
undergo MIPS? Unfortunately, no. As we can see from the rod phase
diagrams in Figs. 3(b) and 6(b), our stability analysis predicts the
right qualitative trend, but its quantitative prediction is poor. This
is probably due to neglecting alignment effects in the stability analy-
sis. As the rod length increases, nematic and polar alignments of the
particles start playing a more significant role in their phase behavior,
which is not captured by our theory. For instance, consider Fig. 8,

FIG. 7. Simulation results for the effec-
tive self-propulsion speed veff of 2D
active disks and 3D active spheres [(a)
and (b)], effective self-propulsion speed
veff for 2D and 3D active rods [(c) and
(d)], and effective rotational diffusion Deff

r
for 2D and 3D rods with an aspect ratio
l/σ = 2.0 [(e) and (f)]. All insets show
effective velocity divided by input veloc-
ity, for comparison with veff = v0(1 −
�/�cp) with �cp the close packing den-
sity.
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FIG. 8. Simulation snapshot of 2D rods with aspect ratio l/σ = 2 at a packing frac-
tion of� = 0.5 and a Péclet number of Pe = 100. Particles are colored according to
their orientation. Dense clusters display significant short-range orientational order,
and no large-scale phase separation can be seen.

where we show a snapshot of rods at � = 0.5, Pe = 100, just outside
the MIPS region, and color particles according to nematic orienta-
tion. The clusters formed by the rods have significant short-range
nematic order. Incorporating the dynamics of the polarization and
nematic fields using theory developed for active nematics42,43 might
allow for more accurate predictions for the onset of MIPS for longer
rods.

V. CONCLUSIONS AND OUTLOOK
In this paper, we showed that motility-induced phase separa-

tion does not occur for rodlike particles when they become suffi-
ciently anisotropic. This disappearance is observed both from many-
particle simulations and from a stability analysis of the homoge-
neous isotropic phase. The latter provides a simple criterion for the
onset of MIPS by considering the effective swimming speed of the
particles and their effective rotational diffusion. Both methods agree
qualitatively in that MIPS is pushed to higher densities for increas-
ing rod aspect ratio, and they agree quantitatively for short rods
that deviate only slightly from disks or spheres. For longer aspect
ratios the quantitative agreement is lost, presumably due to align-
ment interactions that are present, but not taken into account in the
stability analysis.

We also propose a more intuitive explanation for the sup-
pression mechanism. MIPS relies on particles slowing down suffi-
ciently with increasing density.9 This hindrance is closely linked to
the duration of collisions between particles.7,31,41 Excluding torques,
the duration of collisions is determined by how long it takes for
them to slide along one another. Including torques can dramat-
ically decrease the duration of collisions by rotating the forward
axes of the self-propelled particles away from each other. For-
mulated in this way, we can also explain the results of Refs. 17

and 18, where MIPS is enhanced for particles with Vicsek interac-
tions. Simply put, Vicsek torques prolong particle collisions, while
rodlike excluded volume torques shorten them. Intriguingly, this
provides us with a particle design tool to enhance or suppress
MIPS. MIPS is enhanced for Vicsek-like interactions17,18 for faceted,
concave, and/or rough particles,32,44,45 while it is suppressed for
smooth particles and rodlike shapes.40 In addition to steric inter-
actions, hydrodynamic interactions between active particles also
play an important role in whether or not MIPS can form. While
hydrodynamics seems to usually suppress MIPS,46–48 the details
depend on whether particles are “pushers” or “pullers” and on the
dimensionality.49,50

Despite recent advancements, the role of torque in active sys-
tems is still not well understood. Much of the developed theory
has been restricted to the torque-free regime, but recent numeri-
cal studies suggest that torque, either from boundaries51 or from
particle interactions,17,18 can have a significant effect on the struc-
ture and dynamics of active matter systems. In order to understand
active matter beyond torque-free model systems, more theoreti-
cal work is needed to elucidate the influence of torques in active
systems.

SUPPLEMENTARY MATERIAL

See supplementary material for an analysis of the significance
of the effective translational diffusion Deff

t , the hydrodynamic fric-
tion coefficients for short spherocylinders, a finite-size analysis of
the effective self-propulsion velocity veff and effective rotational
diffusion Deff

r , and additional simulation snapshots.
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APPENDIX: STABILITY ANALYSIS
OF THE HOMOGENEOUS ISOTROPIC
PHASE, INCLUDING TORQUE

There is currently no general theory for out-of-equilibrium sta-
tistical physics from which we can derive the onset of MIPS. In
equilibrium, one can derive spinodal and binodal lines by consid-
ering (derivatives of) the free energy. Out of equilibrium, effective
free energies can only be constructed under specific circumstances.9
Nevertheless, there are other ways to derive criteria for the onset
of MIPS. We are aware of three ways to obtain such criteria: by
constructing an effective free energy and proceeding as in equilib-
rium,9,34 by looking at the particle flux balance between a dense
cluster and a dilute gas phase,11,33 and by a stability analysis of
density fluctuations of the homogeneous isotropic phase.28,35 The
first method cannot be applied directly to our system as one of its
underlying assumptions is that no torques act between the parti-
cles. The second method is also likely to fail for rods as it relies
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on the assumption that the orientations of particles in the bound-
ary of the dense cluster evolve diffusively. Thus, we opt for the
third method: deriving a criterion for the (in)stability of the homo-
geneous isotropic phase to density fluctuations by extending the
mean-field-like method from Ref. 35 to 3D systems with torques.
This is done by capturing the effect of the torques into a modified,
effective rotational diffusion Deff

r . Here, we describe this extended
derivation.

1. Effective Smoluchowski equation
To render the problem analytically tractable, our first goal is to

simplify the effect of the pairwise forces and torques. We will do this
using a mean-field-like approximation. Following the same proce-
dure as Refs. 28 and 35, we start from the Smoluchowski equation
for the one-particle probability density ψ(r, ê, t), given by

∂tψ = −∇ ⋅ (v0êψ + βDtF −Dt∇ψ) −R ⋅ (βDrT −DrRψ), (A1)

where ∇ are the 2D and 3D gradient operators and R is the rota-
tion operator, defined as R = ∂θ in 2D and R = ê × ∇ê in 3D.
Note that similar to our numerical model, we neglect the influ-
ence of particle shape anisotropy on the translational diffusion and
simply set Dt = DtI. The pairwise force density F and torque den-
sity T, which arise due to the particle-particle interactions of a pair
potential Vê1 ,ê2(r1, r2), can then be written in terms of the two-body
probability density ψ(2)ê1 ,ê2

(r1, r2, t) as

F(r1, ê1, t) ≡ ∫ dr2dê2(−∇1Vê1 ,ê2(r1, r2))ψ(2)ê1 ,ê2
(r1, r2, t), (A2)

T(r1, ê1, t) ≡ ∫ dr2dê2(−R1Vê1 ,ê2(r1, r2))ψ(2)ê1 ,ê2
(r1, r2, t). (A3)

In order to close this hierarchy, the force and torque densities F and
T need to be expressed in terms of the one-body probability density
function (PDF). To do so, we first use the identity

ψ(2)ê1 ê2
(r1, r2, t) = ψ(r1, ê1, t)ψ(r2, ê2, t)gê1 ê2(r1, r2, t), (A4)

to rewrite Eq. (A2) as F = F̃ψ, where

F̃(r1, ê1, t) ≡ ∫ dr2dê2(−∇1Vê1 ,ê2(r1, r2))

×ψ(r2, ê2, t)gê1 ,ê2(r1, r2, t). (A5)

To obtain a closure, we make the following assumptions. First, we
assume that the force F acts along the direction of self-propulsion,
i.e., F = (F ⋅ ê)ê. Whereas this is exact in a homogeneous, isotropic
bulk as dictated by symmetry, in general, we neglect a possible sec-
ond component that is perpendicular to ê. In Ref. 35, Speck et al.
consider this second component to act along the gradient of the one-
particle PDF, i.e., F = (F ⋅ ê)ê + a∇ψ. This additional assumption
leads to a modified translational diffusion Deff

t = (1 − βa)Dt . We
measured the magnitude of this modification for 3D spheres and
rods and found that the modification provided by βa is of negligi-
ble influence on the location of the phase boundaries. Thus, we do

not consider this additional component here and simply set a = 0,
i.e., Deff

t = Dt , from now on. We did not explicitly check the valid-
ity of this assumption in the 2D case but see no reason to assume a
difference.

To continue our derivation, we make the second assumption
that F̃ ⋅ ê is linear in the local density ρ(r, t) = ∫ dêψ(r, ê, t) and has
no further dependence on (r, ê, t)

F̃(r, ê, t) ⋅ ê = −ρ(r, t)ζ(ρ̄, v0). (A6)

Here, the constant ζ is independent of (r, ê, t) but can still depend on
the mean density ρ̄ = N/A (or N/V in 3D) and the self-propulsion
strength v0. In this way, using Eq. (A1), the effect of the interaction
forces can be absorbed into a modified self-propulsion velocity veff,
which is given by

veff
= v0 − βDtρ(r, t)ζ(ρ̄, v0). (A7)

For the torques, we make the approximation that its only influence
is to modify the rotational diffusion, i.e.,

T(r, ê, t) ≈ bR1ψ(r, ê, t). (A8)

Proceeding on, we assume the corresponding constant to be homo-
geneous and isotropic, depending only on the mean density and
self-propulsion b = b(ρ̄, v0). With these approximations, we can
simplify Eq. (A1) as the Smoluchowski equation for an active ideal
gas

∂tψ = −∇ ⋅ (veffêψ −Dt∇ψ) + Deff
r R ⋅Rψ, (A9)

where veff and Deff
r are now the effective self-propulsion and rota-

tional diffusion constant, respectively.

2. Stability analysis of the homogeneous
isotropic phase

Now that we have reduced the full Smoluchowski Eq. (A1) into
the ideal-gas form of Eq. (A9), we can perform a linear stability anal-
ysis on the homogeneous isotropic phase. We start by defining the
relevant moments of the one-particle PDF ψ(r, ê, t)

ρ(r, t) = ∫ dêψ(r, ê, t) (density), (A10)

mα(r, t) = ∫ dêeαψ(r, ê, t) (polarization), (A11)

Sαβ(r, t) = ∫ dê(eαeβ −
1
d
δαβ)ψ(r, ê, t) (nematic). (A12)

Here, the Greek indices label the Cartesian vector- or tensor com-
ponents, and in the following, we shall employ the Einstein sum-
mation convention. Considering the same moments of the ideal
gas Smoluchowski equation (A9) yields the following evolution
equations:

∂tρ = −∇ ⋅ (veffm −Dt∇ρ), (A13)

∂tmα = −∂β[v
eff
(Sαβ +

1
d
ρδαβ) −Dt∂βmα] − (d − 1)Deff

r mα, (A14)
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∂tSαβ = −∂γ[veff
(Bαβγ −

1
d
δαβmγ +

1
d+ 2

(δαβmγ +δαγmβ +δβγmα))

−Dt∂γSαβ]− d(d− 1)Deff
r Sαβ. (A15)

Here, B is the next (third) order moment. The structure of this
hierarchy of time-evolution equations (A13)–(A15) is such that
the time-derivative of each moment depends linearly on itself and
lower order ones and on the next one. However, as we shall see,
moments beyond m are irrelevant for the instability we wish to
consider.

A steady-state solution to Eq. (A9) is the homogeneous
isotropic phase ψ(r, ê, t) ∝ ρ̄. Expressed in terms of the moment
equations (A13)–(A15), this gives ρ(r, t) = ρ̄ and m(r, t) = S(r,
t) = 0. To obtain a criterion for the stability of this solution, we
investigate the behavior of small perturbations to the homogeneous
state

ρ(r, t) = ρ̄ + δρ(r, t), (A16)

m(r, t) = δm(r, t), (A17)

S(r, t) = δS(r, t). (A18)

Since MIPS is a macroscopic phase separation, we should study the
instability with respect to long-range perturbations, i.e., perturba-
tions with small spatial gradients. In this limit, the dynamics are
dominated by the terms in Eqs. (A13)–(A15) with the fewest gra-
dients. Of the three moments, it is ρ whose time evolution is the
slowest. Its time scale is of order ∇−1, while m and S evolve as
(Deff

r )
−1

∼ ∇
0. As we are interested in the evolution of the density

perturbations, i.e., of the slow variable, we can assume that at any
given time, the higher moments m and S are given by their steady-
state solutions that correspond to the density profile ρ(r, t) at that
instant. Solving Eq. (A15) for its steady-state solution δSαβ reveals
that it scales as O(∇

1
). Therefore, its contribution to the evolution

of polarization perturbations [Eq. (A14)] is of higher order. To lead-
ing order, the evolution of polarization perturbations is then given
by

δm(r, t) = −
1

d(d − 1)Deff
r
∇(veff

(r, t)ρ(r, t)). (A19)

Recalling that veff
= v0−βDtρ(r, t)ζ(ρ̄, v0), we can take this gradient

explicitly and obtain

δm(r, t) = −
1

d(d − 1)Deff
r

(v0 − 2βDtρ(r, t)ζ)∇ρ(r, t). (A20)

Using this result, the equation for the time evolution of density
perturbations becomes

∂tδρ(r, t) = Dδρ(ρ̄, v0)∇
2δρ(r, t), (A21)

which is a diffusion equation with diffusion constant

Dδρ(ρ̄, v0) = Dt +
(v0 − βDt ρ̄ζ)(v0 − 2βDt ρ̄ζ)

d(d − 1)Deff
r

= Dt +
veff

(2veff
− v0)

d(d − 1)Deff
r

. (A22)

Whenever the diffusion constant Dδρ is negative, density per-
turbations δρ(r, t) will grow. Therefore, the region in (ρ̄, v0)-
space where the homogeneous isotropic phase becomes unstable
is then given by the condition Dδρ(ρ̄, v0) < 0. This can only
occur for self-propulsion velocities v0 above the critical threshold
v∗ = 2

√
2
√
d(d − 1)

√
DtDeff

r .
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