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Abstract

In this thesis, floating behavior was investigated in a binary mixture of colloids
in a gravitational field. The effects of the size ratio, mass ratio and gravity

were determined using density functional theory and a mechanical equilibrium
condition.. Monte Carlo simulations were performed to confirm the theories.
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Chapter 1

Introduction

This master thesis focuses on binary systems of hard spheres in an external
field. Both Monte Carlo simulations and theoretical calculations were performed
to describe the phase behavior of a mixture consisting of two types of hard
spheres, varying in size and mass, in a gravitational field. In particular, the
floating behavior of large particles in a surrounding sea of smaller particles was
investigated.

Such particles are also known as colloids. Colloids are very small particles
that have a typical size between 10−9 and 10−6 meters and are always dissolved
in water or oil. Examples of colloidal mixtures are: milk, mayonnaise, blood
and jelly. Colloids are thus very common and are used in everyday products.

One of the defining features of colloids is Brownian motion. This effect was
discovered by Robert Brown, who observed a jittery motion of pollen grains
suspended in water. The same behavior was found with dust particles, ruling
out the hypothesis that the pollen were alive. The effect was clearly related to
particles with sizes smaller than about a micrometer. This motion is caused
by collisions of the particles with micronsized particles. While individual sol-
vent particles are not visible, their collisions with the colloids and the resulting
movement is clearly visible. Particles which undergo Brownian motion are called
colloids.

We describe the colloids as hard spheres. These hard spheres are microscopic
billiard balls, with no long range interaction and a steep short range repulsion.
This is a drastic simplification, since the effect of charges is often important
in colloidal mixtures. This simple view does grasp the essence of the problem,
allowing us to study the problem in great detail.

When a suspension of hard spheres is placed in gravity, the particles will
sediment to the bottom. A bit like billiard balls in a swimming pool. Billiard
balls are so heavy, that they do not experience brownian motion. However, our
system does not contain billiard balls, but colloids. The thermal motion which
they experience causes them not to completely float to the bottom, but some
keep ’jumping’ up. An analogy to this is the air. Air molecules do not lie on top
of the earth as if they are a sea. The concentration of air particles and thus the
pressure, declines as you rise up through the air. The colloids in gravity have a
similar behavior.

At the bottom of the suspension, there are thus more colloids than at the
top. The average mass density of the suspension is thus not a constant, but
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a function of height. At the bottom, the total mass density is higher than at
the top. Now, when you place another particle in this suspension with a mass
density somewhere between the mass density at the top and at the bottom, it
will float somewhere in the middle. In fact, due to Archimedes’ principle, it
should float at the position where its internal mass density matches that of the
surrounding medium.

The first measurements of such a density profile were done in 1910 by Perrin,
using a microscope. This allowed him to determine the Boltzmann constant [1].
Recently, such density profiles were calculated using density functional theory
and simulations [2, 3, 4, 5] and are measured using light scattering techniques
[6, 7] and confocal microscopy [8].

This floating behavior can be used in sedimentation experiments. The speed
of the sedimentation of a colloid mixture can be determined by inserting large
and thus clearly visible particles with a mass density between the minimum and
maximum density of the mixture. Because these particles will float at the height
where their internal mass density matches that of the mixture, a clear meniscus
will appear. The position of such a meniscus can then be tracked over time to
determine a sedimentation speed. An example of such behavior can be seen in
figure 1.1 [9]. In the photo, large particles, which are visible to the eye, float
at a specific height. Tracer layers of different mass densities float at different
heights.

Figure 1.1: PS (upper) and PMMA (lower) tracer layers in a suspension of α-
alumina. [9]

In this thesis we have investigated how the parameters of the experiment
influence the positions of the floating particles. These parameters are the size
ratio, the relative mass densities and the effect of gravity. Several different
theories were tested against Monte Carlo simulations and each other. In chapter
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2, the various theories are described and the methods to extract data from this
are briefly explained. In chapter 3, I give the results from the various theories
and determine which theory holds when.
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Chapter 2

Theory & Methods

For the description of the hard sphere system, a variety of models were used.
First a mechanical equilibrium argument, which gives analytic expressions for
the location and width of the large particles. Second was a statistical mechanics
calculation, using the full chemical potential to obtain numerical density profiles
and third, a Monte Carlo simulation which also gave numerical density profiles.
For each model, some theoretical background will be given and also the methods
used to extract data will be discussed.

2.1 Test particle theory

Figure 2.1: Schematic representation of the two types of particles. The small (red)
particle has a diameter of σ1 = 2a1 and an internal mass density of δ1. The large
(blue) particle has a diameter of σ2 = 2a2 and an internal mass density of δ2.

In this section we consider the case of one large particle in a background of
sedimented smaller particles, where we assume the distribution of small particles
to be known. First the use of a buoyant mass will be justified by considering
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only the smaller particles and then we will use their pressure to determine the
height and width of the large particle distribution.

First, we define mechanical equilibrium for a pure incompressible solvent

dP0(z)
dz

= −gδs, (2.1)

where δs is the mass density of the solvent, P0(z) the pressure of the solvent at
height z and g is the gravitational constant.

We now consider mechanical equilibrium of colloids suspended in this solvent

dP (z)
dz

= −gδ(z), (2.2)

where P is the total pressure of the solvent and colloids and δ(z) is the total
mass density. Equation (2.2) can then be rewritten in terms of internal mass
densities δs and δ1, for the solvent and colloids respectively, and the volume
fraction η1(z) of the colloids. The pressure P is expanded to contain an osmotic
pressure term Π which is the pressure caused by the addition of colloids to the
system

dP (z)
dz

= −gδ(z)

= −g
(

(1− η1(z)) δs + η1(z)δ1
)

= −g
(
δs + η1(z) (δ1 − δs)

)
(2.3)

≡ d (P0(z) + Π(z))
dz

. (2.4)

From Eq. (2.3) and (2.4) with Eq. (2.1) it follows that

dΠ(z)
dz

= −gη1(z) (δ1 − δs)

= −gρ1(z) (δ1 − δs) v1
= −gm1ρ1(z), (2.5)

where m1 is defined by (δ1 − δs) v1 which is equal to M1 − v1δs, the buoyant
mass. Here v1 = 4π

3 a
3
1 is the volume of a single particle with radius a1, M1

its mass and ρ1(z) is the number density. The osmotic pressure is thus only
influenced by the buoyant mass of the particles.

We now add a single large particle of radius a2 and mass density δ2 and
determine the force ~F1s2(z) exerted on this particle by the solvent and the small
colloids. The pressure is integrated over a sphere with radius a1 + a2, because
this is typical distance at which the large colloid interacts with the smaller
colloids.
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ẑ · ~F1s2(z) = −
∫
dn̂ (a1 + a2)2P (z + (a1 + a2)n̂ · ẑ))(ẑ · n̂)

= −(a1 + a2)2
∫
dn̂

(
P (z) + ((a1 + a2) n̂ · ẑ) dP (z)

dz
+O

(
(\̂ · ‡̂)∈

))
(ẑ · n̂)

= −(a1 + a2)3
dP (z)
dz

∫
dn̂ (ẑ · n̂)2

= −4π
3

(a1 + a2)3
dP (z)
dz

. (2.6)

Here we have ignored the terms involving higher order derivatives of the pres-
sure. The integral over P (z) is antisymmetric and hence zero, so that this term
drops out of the equation. This implies that the force on the large particle is
determined by the derivative of the pressure from the smaller particles. We can
consider the force on particle 2 to be due to a potential energy term. Because
ẑ · ~F12(z) ≡ −dW2(z)

dz , this potential energy due to the presence of the solvent
and small colloids is given by

W2(z) = C + ṽP (z), (2.7)

where ṽ is defined as 4π
3 (a1 + a2)3 and C is an integration constant. Using the

potential energy of particle 2 due to gravity W2,grav(z) = M2gz, yields the total
potential energy of particle 2

W (z) = W2,grav(z) +W2(z). (2.8)

The equilibrium position z∗ of particle 2 can be determined from the equilibrium
condition, that the derivative of the total potential energy of particle 2 is zero.
Using Eq. (2.3), we find

0 =
dW (z)
dz

|z=z∗

= ṽ
dP (z)
dz

+M2g

= ṽ (−gδs − gη1(z) (δ1 − δs)) +M2g.

Defining the adjusted mass density of the larger particle δ̃ = M2
ṽ . we find

δ̃ = (1− η1(z)) δs + η1(z)δ1, (2.9)

Because ṽ is larger then v2 due to the fact that the radius is a1 + a2 instead of
a2, the large particle gets a lower effective mass density. If the volume fraction
distribution is known, solving equation 2.9 for z will determine the height z∗

at which the larger particles will float. If a2 >> a1, a1 + a2 ≈ a2, so for
very large particles, the position at which they will float is when their internal
mass density becomes equal to the mass density of the surrounding medium,
so small particles plus solvent. This principle is widely used and also known
as Archimedes’ Principle. However, when the particle radii are about the same
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size, the larger particle will have a smaller effective mass density, thus floating
higher than one would expect.

A taylor expansion can be used at z = z∗ to expand the potential energy up
to its second derivative. Using d2W (z)

dz2

∣∣∣
z=z∗

= ṽ d
2P (z)
dz2 = −m1gṽρ

′

1(z∗),

W (z) = W (z∗) +
1
2

(z − z∗)2 d
2W (z)
dz2

∣∣∣∣
z=z∗

(2.10)

= W (z∗)− 1
2
m1gṽρ

′

1(z∗) (z − z∗)2 , (2.11)

since the first derivative of the potential energy vanishes at z∗. Because the
density of the large particles is low, they can be described by an ideal gas in an
external field and we can add the potential energy to the chemical potential to
obtain the distribution of the large particle,

ln ρ2(z) + βW (z) = βµ. (2.12)

Which gives

ρ2(z) ∝ exp(−βW (z)) (2.13)

∝ exp(
1
2
βm1gṽρ

′

1(z∗) (z − z∗)2 , (2.14)

i.e. a Gaussian distribution of the position of the large particle around its height
z∗ with a width

σ =
〈
(z − z∗)2

〉1/2
=

√
−kBT

m1gṽρ
′
1(z∗)

. (2.15)

of the particle distribution. Upon increasing the gravitational strength, the
volume of particle 2 or the steepness of the density profile of the small particles,
the density distribution of the large particle becomes narrower. This equation
and also equation (2.9) will be checked against numerical data in section 3.2.

2.2 The Local Density Approximation

2.2.1 Density functional theory

For the theoretical description of the mixture consisting of 2 types of hard
spheres in a gravity field, density functional theory (DFT) was used. This
theory is an extension of classic statistical physics. This is done by replacing
the number density ρ by a positional dependent ρ(z) and by using the intrinsic
Helmholtz free energy functional F [ρ0] instead of considering the Helmholtz
free energy F (N,V, T ). By functional minimization of the grand potential, the
number density is determined. This minimization can be rewritten in terms of
the free energy functional as

δF [ρ]
δρ(~r)

∣∣∣∣
ρ0(~r)

= µ− Vext(~r), (2.16)

where Vext(~r) is the external potential, i.e. an electric field or gravity and µ is
the total chemical potential. The obtained equilibrium number density ρ0(~r)
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will be a unique function, depending on F and Vext. However, it is nearly
impossible to determine the free energy functional explicitly for non-ideal cases
and often an approximation has to be made. The approximation used in this
thesis is the local density approximation (LDA). The free energy functional is
approximated using the free energy of the bulk system by

F [ρ(~r)] =
∫
d~rf(ρ(~r), T ) (2.17)

where f(ρ, T ) = F (N,V, T )/V is the free energy per unit volume of the system
and ρ = N/V . The LDA is very useful to model systems with low density
fluctuations, because in the integral, nearby densities are not considered, only
those at ~r. This is a poor model for systems with interfaces, because the rapid
fluctuations are not incorporated. In our hard sphere model, we only expect
rapid fluctuations as at the bottom due to the layering of the particles, but the
physics of interest for us happens above the layering where the LDA can be
safely used.

2.2.2 Hard spheres in gravity

Before tackling the binary mixture problem, the LDA will be applied to a one
component fluid, from which the binary mixture will be a natural extension. Let
N be the number of particles with diameter σ. These particles are contained in
a box with size V = A×L, where A is the surface area and L the height of the
box. The potential energy of a particle i in an external gravitational field reads

Vext(zi) = mgzi, (2.18)

where m is the buoyant mass of the particles, g the gravitational constant and
zi the height. The density profiles ρ(z) induced by gravity are normalized by

n =
1
L

∫ L

0

dz ρ(z) (2.19)

where n = N/V , the average number density in the box. Because we are
interested in the overall shape of the density profile we can use the LDA to
obtain it. In particular, we are not interested in the layering that occurs at the
bottom of the box, which the LDA cannot describe, since it is a local density
approximation. The free energy functional of hard spheres in the LDA is

F [ρ] =
∫ L

0

dz
(
fid[ρ, T ] + fHSexc [ρ, T ]

)
(2.20)

Taking the functional derivative with respect to the local density and inserting
it into Eq. (2.16) gives

µid(ρ(z)) + µHSexc (ρ(z)) = µ− Vext(z). (2.21)

The chemical potential of a hard sphere system can be approximated using the
Percus Yevick approximation followed by a linear combination of the virial and
compressibility routes , i.e., the Carnahan Starling expression,. This results in
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βµid + βµHSexc = βµHS = log(ρΛ3) +
3η3 − 9η2 + 8η

(1− η)3
(2.22)

where η = π
6σ

3ρ is the volume fraction, Λ is the thermal wavelength and β =
1/(kbT ). Equations (2.21) and (2.22) can be combined into a local equation

η(z) =
π
6σ

3

Λ3
exp

(
βµ− βmgz − 3(η(z))3 − 9(η(z))2 + 8η(z)

(1− η(z))3

)
. (2.23)

This equation can be solved numerically by a simple bisection root finding algo-
rithm. For instance, if the logarithm of equation 2.23 is taken and is rewritten
to

log(η(z))− βµ+ βmgz +
3η(z)3 − 9η(z)2 + 8η(z)

(1− η(z))3
= 0, (2.24)

where we have absorbed the prefactor π
6σ

3/Λ3 into βµ, we find that the volume
fraction profile η(z) is a monotonically decreasing function with height z, as
expected.

2.2.3 A binary mixture of hard spheres

We now consider a binary mixture of hard spheres as in Ref. [3]. To describe
the colloid mixture, we characterize the system with N1 the number of particles
with mass m1 and diameter σ1 and N2 the number of particles with mass m2 and
diameter σ2. The particles are enclosed in a box with with volume V = A× L,
where A is the surface area and L is the vertical height of the box. The size
ratio is defined as y = σ1/σ2 ≤ 1, where species 2 has a larger diameter. In
absence of gravity, the number densities are given by ni = Ni/V .

The effect of gravity is incorporated by an external field,

Vext,i(zi) = migzi (2.25)

where mi is the buoyant mass of particle i, g is the gravitational constant and
zi is the height of particle i in the vertical direction.

Due to this external field the system is inhomogeneous and is characterized
by density profiles ρ1(z) and ρ2(z) which satisfy the normalization conditions

1
L

∫ L

0

dzρi(z) = ni. (2.26)

As in the the pure case, we assume that the density profiles vary slowly compared
to the particle diameter, so that we can use the local density approximation.
This results in the free energy functional

F [ρ1(z), ρ2(z)] =
∫ L

0

dz fid [ρ1(z), ρ2(z), T ] +
∫ L

0

dzfext [ρ1(z), ρ2(z), T ] .

(2.27)
Taking the functional derivative of Eq. (2.27) to ρi(z) gives
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µid,i(ρi(z), T ) + µHSexc,i(ρ1(z), ρ2(z), T ) = µi − Vext,i(z), (2.28)

where we take the Mansoori Carnahan Starling chemical potential for hard
spheres mixtures [10] for µHSexc . Because µid(ρi(z), T ) = kBT log(ρi(z)Λ3

i ) this
can be inserted into Eq. (2.28) to obtain the local equations

ρi(z) =
1

Λ3
i

exp
(
βµi − βVext,i(z)− βµHSexc,i(ρ1(z), ρ2, T )

)
for i ∈ {1,2}. (2.29)

Solving this is not as trivial as in the pure case because it is a coupled set of
equations and a higher dimensional root finding algorithm is computationally
demanding.

2.2.4 Solving the coupled set of equations

We start of by rewriting equations (2.29) into the form f(x) = x. All number
densities are converted to volume fractions.

η1(z) = exp
(
C1 − βm1gz − βµHSexc,1(η1(z), η2(z), T )

)
(2.30)

η2(z) = exp
(
C2 − βm2gz − βµHSexc,2(η1(z), η2(z), T )

)
(2.31)

Since beforehand the chemical potential is undetermined and the total volume
fraction is known, an additional condition is made

1
L

∫ L

0

dzηi(z) = ηi,tot, (2.32)

which determines the chemical potential.
Next, an initial guess is made for both packing fraction profiles. These are

then inserted into the right hand side of equations (2.30) and (2.31) where C1

and C2 are adjusted so that the profiles are normalized according to equation
(2.32). These new profiles are again inserted into the right hand side and this
process is repeated until the difference between two subsequent profiles becomes
sufficiently small or a fixed number of iterations is reached.

One iteration can unfortunately give values of η which are larger than 1.0.
The chemical potential is not defined for these values of η, so this must be
avoided. This is done by only adding a fraction of the new profile to the previous,
so that each new profile is a linear combination of the previous profile and the
calculated one.

This process is repeated until the difference between two subsequent profiles
becomes sufficiently small or a fixed number of iterations is reached.

2.3 A Free volume-like DFT

A slightly more intuitive way of looking at the mixture is by no longer using the
chemical potential for a binary mixture and by using the single mixture hard
sphere chemical potential and some approximations instead. This approxima-
tion is that the large particles essentially do not feel the smaller spheres and
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Figure 2.2: Schematic representation of two large particles. The area within the grey

dashed lines represents the excluded volume vLS =
π

6

“σ1 + σ2

2

”3

for the smaller parti-

cles. When two large particles are close, their excluded volume may overlap (indicated
by the orange area). This causes a decrease in the total excluded volume, but the effect
is not incorporated in the simplified DFT.

that the small particles cannot be at the same place as the large particles by
means of an excluded volume term. This stems from the following derivation,
which starts from the canonical partition function of the binary mixture in the
bulk

Z = exp (−βFmix) =
1

Λ3NL

L NL!
1

Λ3NS

S NS !∫
drNL

L

∫
drNS

S exp (−β[ΦSS + ΦLL + ΦSL]) , (2.33)

where ΛS and ΛL are the thermal wavelengths of the small and large particles
respectively, β the inverse temperature, ΦSS the potential governing the small
particle interaction, ΦLS the interspecies interaction and ΦLL the large particle
interaction. Due to the hard sphere nature of the particles, the interspecies
interaction causes a volume where the small particles can not be, since it is
occupied by large particles. So now the integral over the small particles changes
into the following equation

exp (−βFmix) =
1

Λ3NL

L NL!∫
drNL

L

exp(−βΦLL)
Λ3NS

S NS !

∫
V−Vexcluded(r

NL
L )

drNS

S exp(−βΦSS). (2.34)

Now that the integrals have been separated, they can be written in the form of
free energies to obtain the mixing free energy Fmix from the partition function.
The excluded volume can be approximated by Vexcluded = vLSNL. Every large
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particle excludes a volume for the smaller particles. This approximation thus
ignores an overlap in excluded volume and a possible restructuring of small
particles at the edges of the excluded large particle volume.

Z = exp (−βFmix) ≈ exp (−βFCS(NL, V, T )) exp (−βFCS(NS , V − vLSNL, T ))
(2.35)

This results in the following mixing free energy

Fmix ≈ FCS(NL, V, T ) + FCS(NS , V − vLSNL, T ) (2.36)

= V

(
fCS(ρL, T ) +

V − vLSNL
V

fCS(
ρS

1− vLSρL
, T )
)
, (2.37)

where ρL = NL

V , ρS = NS

V , vLS the excluded volume of a large sphere for a small
sphere and ρL the volume fraction of the large particles and f(ρ, T ) = F (N,V,T )

V .
Again the local density approximation is used to obtain the intrinsic free

energy

F [ρS , ρL] =
∫
dr

(
fCS(ρL, T ) + (1− vLSρL)fCS(

ρS
1− vLSρL

, T )
)
(2.38)

Taking the functional derivative then gives the conditions for the density profiles.
The first condition is given by

δF
δρS(r)

=
1− vLSρL
1− vLSρL

µCS(
ρS

1− vLSρL
, T ) = µ1 −mSgz (2.39)

and the other can be obtained from

δF
δρL(r)

= µCS(ρL, T )− vLSfCS(
ρS

1− vLSρL
, T ) +

(1− vLSρL)µCS(
ρS

1− vLSρL
, T )ρSvL(1− vLSρLS)−2 (2.40)

= µCS(ρL, T ) +

vLS

(
−fCS(

ρS
1− vLSρL

, T ) +
ρS

1− vLSρL
µCS(

ρS
1− vLSρL

, T )
)
(2.41)

= µCS(ρL, T ) + vLSPCS(
ρS

1− vLSρL
, T ) = µ2 −mLgz. (2.42)

(2.43)

These can then be inverted to obtain the density profiles

ρS
1− vLSρL

= µ−1
CS(µ1 −mSgz) (2.44)

ρL = µ−1
CS(µ2 −mLgz − vLPCS(

ρS
1− vLSρL

, T )) (2.45)

Two effects can be noted from this. First, the density profiles of the small
particles is nearly identical to that in the single mixture, except for a factor
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(1 − vLSρL), which ’pushes’ the small particles away. The other effect is that
a pressure term appears in the equation for the density profiles of the large
particles, similar to the test particle theory and also similar to Biesheuvels
approach, but slightly different.

2.4 Maxwell-Stefan diffusion theory

Another approach to the binary mixture is by making use of the Maxwell-Stefan
theory for mass transfer [11]. This diffusion theory is an improvement of Fick’s
law which can take the thermodynamical properties and external fields into
account. In this theory the driving forces on the particle species are given by
the negative gradient of the chemical potential of that species. This means that
particles tend to move from high to low chemical potential.

Taking external forces into account, this force is defined by:

ρiRTdi ≡ −ρi∇Tµi +miρiF̃i (2.46)

Here ρi is the particle concentration or number density, R the gas constant, T
is temperature, di the diffusion force, ∇Tµi the chemical potential gradient at
fixed temperature, mi the particle mass and F̃i the force per kg of species i.
Under the assumption that mechanical equilibrium is obtained,

− 1
ρt
∇P +

n∑
i=1

ωiF̃i = 0 (2.47)

where P is the pressure, ρt the total mass density and ωi is the mass fraction,
equation 2.47 can be added to 2.46 to get

ρiRTdi ≡ −ρi∇Tµi +miρiF̃i +miρi

(
− 1
ρt
∇P +

n∑
i=1

ωiF̃i

)
. (2.48)

Then the chemical pressure gradient is expanded to include a pressure term

∇Tµi = ∇T,Pµi + V i∇P. (2.49)

where V i is the partial molar volume
(
δV
δNi

)
T,P,Ni6=j

and ∇T,Pµi the chemical

potential gradient at constant temperature and pressure. This is included into
2.48 and after some rewriting we obtain

ρikBTdi ≡ −ρi∇T,Pµi −
(
ρiV i − ωi

)
∇P +miρi

(
F̃i −

n∑
k=1

ωkF̃k

)
(2.50)

Now we can apply the theory to the case of a binary hard sphere mixture in
gravity. Since we are dealing with a mixture in thermodynamic equilibrium,
the diffusion forces are set to zero. The external forces are gravitational, so the
force per kilogram is simply −g, the gravitational constant. The vanishing term
that was included can be taken out again. This results in

0 = −ρi∇T,Pµi − ρiV i∇P −miρig. (2.51)
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2.4.1 Our approach

Equation can be shown to be equivalent to our DFT approach, by simply not
doing the expansion of the chemical potential. This results in

∇Tµi = −mig (2.52)

Integrating this equation over z from 0 to z′ results in

µi(z′) = µi(0)−migz
′. (2.53)

Equation 2.53 is found to be the same as equation 2.28, which shows that
Maxwell-Stefan diffusion theory is equivalent to the Local Density approxima-
tion for this problem.

2.4.2 Biesheuvel’s approach

In the article by Biesheuvel et al. [12], a different approach is taken. The
starting point is equation 2.50. Then the observation is made that in mechanical
equilibrium,

dP

dh
= ρt

∑
j

ωjFj . (2.54)

Here ρt =
∑
i ηiδi + (1 − ηi)δL is the total mass density, ωi the mass fraction

of particle species i, δi the internal mass density of particle species i and ηi its
packing fraction. After inserting equation 2.54 and some rewriting, equation
2.50 becomes

−di = ∇T,Pµi + V i∇P +mig. (2.55)

Dropping the constant T and P restrictions results in

−di =
dµi
dh

+ V i
dP

dh
+mig. (2.56)

Ignoring an external chemical potential, meaning that µi = log φi and substi-
tuting dP

dh = −ρtg, results in

−di =
d log φi
dh

+mb
ig, (2.57)

with a buoyant mass

mb
i = vi(miρi − ρt). (2.58)

Here the partial molar volume V i is replaced by the volume vi of a particle.
It is unclear to us if this is allowed. From equation 2.57, it is then argued the
gravitational action is based on a buoyant mass defined by the difference in mass
density between the particle and it’s total surrounding medium (miρi − ρt), in-
stead of between the mass density of the particle and the solvent (miρi − ρL).
However, this argument is based on the expansion of the chemical potential in
equation 2.49, which is not done in our work. Therefore Biesheuvel should use
the derivative of the chemical potential under constant pressure and tempera-
ture, but it is not clear from the article if he does this.
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2.5 Monte Carlo Simulations

Monte Carlo methods are techniques that rely on random number generators
to obtain results. What this implies is that you can use a random number
generator to create a random walk through phase space (the collection of all
availabe states) to get as many of these states as possible from which you can
then obtain the thermodynamics of the system. Because you want to create as
many states as possible, computers are very well suited for these calculations.

A statistical average of a measurable quantity Q is then determined by

〈Q(~rN )〉 =
∫
d~rNQ(~rN ) exp[−βE(~rN )]∫

d~rN exp[−βE(~rN )]
, (2.59)

where β = 1/(kBT ) the inverse temperature, E the energy and ~rN the postions
of all particles. How much an individual state contributes to the statistical
average is determined by its energy. By giving all states an equal probability to
occur, there will be a lot of states with a relatively high energy, wasting precious
computer time on calculations that have no large influence on the result.

2.5.1 The Metropolis Algorithm

One way to prevent wasting time on states that have a negligible contribution
is by making use of the Metropolis algorithm [13]. Instead of allowing all states
to occur at an equal probability, we bias the random walk so that states with
a lower energy - and thus higher contribution - occur more often then those
with higher energy. This breaks the condition that every state has an equal
probability, but we evade that by computing the statistical average in a different
way. The defining feature of a Metropolis algorithm is the acceptance ratio used,
which is

A(µ→ ν) =
{

exp(−β(Eν − Eµ)) if Eν − Eµ > 0
1 otherwise (2.60)

Every state that is generated with a lower energy then the previous state, is
accepted, while a state with a higher energy has a probability to be accepted
based on the energy difference Eν −Eµ and inverse temperature β. This accep-
tance ratio is chosen in such a way that a high acceptance rate is ensured and
the thermodynamics of the system is kept intact. The statistical average of a
measurable quantity Q is now determined by the simple average,

〈Q〉 =
1
M

M∑
i=1

Qi. (2.61)

For a detailed explanation read the book by Newman and Barkema [14].

2.5.2 Modelling a system of binary hard spheres in gravity

System parameters

The model describes a system of Nl large particles with diameter σl and mass
ml and Ns small particles with diameter σs and mass ms, bound in a ’box’
with possible coordinates (x, y, z) ∈ [0, a) × [0, b) × [0,∞). Periodic boundary
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conditions are imposed in the x and y directions. Particles have a gravitational
energy V = migz with g the gravitational constant and a hard sphere potential

φ(ri,j)i,j =
{

0 if ri,j > (σi + σj)/2,
∞ if ri,j ≤ (σi + σj)/2

(2.62)

with i, j ∈ (1, 2).

Figure 2.3: Schematic representation of a large (blue) and a small (red) particle.
Overlap occurs when the distance between the two particles becomes less then (σ1 +
σ2)/2.

The simulation in a nutshell

The first step of a simulation is generating an initial state. It should not matter
how this is done, because this state will be forgotten and will not be used in
measurements. However, a good choice of initial state will make equilibration go
faster. My first choice was a completely random system, however after problems
with equilibration, the small particles were put randomly into the bottom half
of the box and the large particles were put in randomly in the top half.

New states are generated by a random walk. First a particle is chosen at
random. Its position is then altered by adding a random step in the x, y and
z directions, delimited by the stepsize δ in each direction. This then gives us a
new state.

Next up is the decision to accept or reject this new state. This is done via the
Metropolis algorithm 2.60. It is easy to see that two overlapping hard spheres
generate infinite energy and such a state is therefore always rejected. Particles
can also not fall through the floor, so if a particle intersects the xy-plane, the
new state is also rejected. Suppose that the move has not caused problems with
overlap or the floor. The metropolis algorithm is now invoked again, where the
energy difference is determined by the size of the step in the z-direction.

If the state was rejected, we keep the old state and try a different move. If
the state was accepted, it becomes the old state and we try a different move.
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Obtaining the density profile

Once the system has achieved equilibrium, we wish to obtain the density profile
ρ(z) = 1

A 〈
∑
i δ(z − zi)〉. The z-postions of the particles are regularly binned

and then averaged.

Cell lists

Cell lists are a method to speed up the simulation. Whenever a particle is moved,
all other particles must be checked for overlap. For very large systems, this can
take a while. A cell list is a list which optimizes the search for overlapping
particles. The simulation volume is divided in boxes with a size slightly larger
then the radius of the overlap check. The cell list keeps track of which particle is
in which box. So when a particle is moved, you only have to check the particles
in nearby boxes, instead of checking all particles.
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Chapter 3

Results & Discussion

3.1 Comparison with Literature and Monte Carlo

3.1.1 Pure hard spheres

Two different approaches were used to make sure the programs were giving
correct output. The first is a direct comparison with literature. The second a
comparison between the Monte Carlo simulations and the LDA calculations. In
this section the first approach is described.

Figure 3.1: Reduced density profile ρ∗(z) = ρ(z)σ3 of a hard spheres system against
reduced altitude z/σ, for n∗s = 40 and (a) α∗ = 0.2 and (b) α∗ = 0.4. The solid curves
are Monte Carlo data; the dashed lines represent the LDA results.

The first version of the LDA program, where density profiles for a one com-
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ponent system of hard spheres in gravity was calculated, was checked against
Ref. [2]. The results of the first program were then compared to figure 3.1,
using the same parameters. In Ref. [2], Monte Carlo results were used to check
the LDA data and were found to match. In this work, this has also been done,
giving a first confirmation that the Monte Carlo code and the LDA are correct.
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Figure 3.2: Reduced density profile ρ∗(z) = ρ(z)σ3 of a hard spheres system against
reduced altitude z/σ, for n∗s = 40 and (a) α∗ = 0.2 and (b) α∗ = 0.4.

Figure 3.2 shows plots of the density against the reduced height, the light
blue dashed line is the calculated density profile from the LDA and the darker
blue solid line the Monte-Carlo data. At low altitudes, layering can be seen in
the Monte-Carlo data. The LDA does not show this, because it is incapable of
describing systems where rapid fluctuations of the density occurs. At altitudes
above the layering, the LDA and MC data are in agreement, showing an ex-
ponential decay of the density at high altitudes and low density. Because the
gravity in figure 3.2(b) is higher than that of 3.2(a), the profile is more compact
and shows more layers.

Comparing our figures to figure 3.1, we see that they match very well. Thus
we can conclude that for a one component fluid, our work is in agreement with
literature.
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3.1.2 Binary

Next we compare our work on binary mixtures to the available literature. The
article to which we compare this work is from Biben and Hansen [3], who per-
formed LDA calculations on this subject. The theory we use is the same as
that of Biben, so the set of equations solved is the same, however, we use a
different method to solve the equations. The method used by Biben et al. is
to rewrite equations 2.30 and 2.31 into differential equations and then use a
Runge-Kutta method to solve the coupled set of differential equations, while we
use an iterative method as described in section 2.2.

Below, our data can be seen in figure 3.3(b) and that of Biben in figure
3.3(a).

(a) Biben’s results
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(b) Our results

Figure 3.3: Packing fraction profiles ην = πρν(z)σ
3
ν/6, against reduced altitude z/σ1,

for small (ν = 1, full curves) and large (ν = 2, dashed curves) spheres; the mean
packing fractions are η1 = 0.1, η2 = 0.02; the reduced gravitational parameter is
α∗1 = 5 × 10−3; solutions of the LDA equations are shown for size ratios y = 0.5,0.2,
0.1 and 0.05.

In the figures the packing fraction can be seen as a function of reduced
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height z/σ1. The small particles are indicated with the green lines and the
large particles by the colored lines. The large particles do not form a profile
independent from the small particles, as an ideal gas would, but the interaction
can be clearly seen by the forming of a peaked (Gaussian) density profile. The
parameter y = σ1/σ2 is a parameter that determines the size ratio of the par-
ticles. For a large size ratio, the particles float at a higher position and have a
broader distribution. Biben also incorporates the size ratio in the equation that
determines the mass ratio of the particles.

m1

m2
= γ

(
σ2

σ1

)3
η1

1− η2(1 + y)3
(3.1)

In the table below the relative mass and relative mass densities are given
with the figure parameters for several values of the size ratio y.

Size ratio (y) Mass ratio (m1/m2) Mass density ratio ((m1σ
3
2)/(m2σ

3
2))

0.5 0.857909 0.107239
0.2 12.9475 0.10358
0.1 102.735 0.102735
0.05 818.961 0.10237

It is clear from the table that while the absolute mass differences vary enor-
mously, the relative mass densities are pretty constant at around 0.10-0.11. The
large particles have a lower mass density then the small particles, thus it comes
as no surprise that they float, even though they are usually much heavier then
the smaller particles. If both species were ideal gasses instead of hard spheres,
the large particles would be lower because of their higher mass, the hard sphere
interaction insures the mass density becomes more important. Also, since the
resulting mass densities from equation 3.1 do not vary much, we do not use it
and prefer to vary the size and mass ratios independently.

3.1.3 Monte Carlo simulations on these parameters

As a final confirmation of the LDA model, Monte Carlo simulations have also
been done. The results are shown in figure 3.4.
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Figure 3.4: Packing fraction profiles from Biben are the solid lines, Monte Carlo
profiles are the dashed lines. There are no MC profiles for y = 0.1, 0.05

Because of the huge number of particles involved for these specific param-
eters, only two out of the four profiles were reproduced with the Monte Carlo
simulations, namely those with a size ratio y = 0.5 and y = 0.2. The other size
ratios involved both more particles and higher densities, slowing thermalisation
down to a crawl. The length of the sides of the box would have to be doubled
or quadrupled, and also would the moves from the large particles be rejected
more. However, for the two profiles that were determined, they match decently.
So we conclude that our Monte Carlo simulations match with literature.

3.1.4 Monte Carlo confirmation for more accessible pa-
rameters

Because the parameters used in the calculations by Biben and Hansen require
a large number of particles (about forty thousand), Monte Carlo simulations
are rather slow in that situation. Therefore simulations and calculations were
done with parameters that require less particles. Most notably, the inverse
gravitational length α1 was increased by a factor 10. A series of measurements
were done at varying relative mass densities, namely 0.1, 0.2 and 0.3. Two
size ratios were used, y = 0.5 and y = 0.3. For every combination of relative
mass and size ratio, the gravity α1 was increased from 0.05 to 0.20 with steps
of 0.05. The results can be seen in figure 3.5. The solid lines are the LDA
calculations, green represents the small particles and yellow, green, blue and
purple represent the large particles for gravities of 0.05 through 0.20 respectively.
The Monte Carlo simulations are represented by the dashed green lines for the
small particles and the dashed blue lines for the large particles. The average
packing fraction of the small particles was set to 0.1. The packing fraction of the
large particles was chosen in such a way that there was only one large particle
present in the simulations.
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(a) Mass densities δ2/δ1 = 0.1,size ratio
y = 0.3
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(b) Mass densities δ2/δ1 = 0.1,size ratio
y = 0.5
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(c) Mass densities δ2/δ1 = 0.2,size ratio
y = 0.3
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(d) Mass densities δ2/δ1 = 0.2,size ratio
y = 0.5
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(e) Mass densities δ2/δ1 = 0.3,size ratio
y = 0.3
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(f) Mass densities δ2/δ1 = 0.3,size ratio
y = 0.5

Figure 3.5: Several packing fraction profiles for varying values of relative mass density
δ2/δ1 and size ratio y. In every figure α1 runs (right to left) from 0.20 to 0.05. The
LDA and MC curves match closely, so are often distinguishable.

In all of the 24 above calculation-simulation pairs, the resulting packing
fraction profiles match. The profiles at a relative mass density of 0.3 might
not overlap as well as the others, but a longer run time should smooth out the
wiggles. From these figures we can conclude that our LDA matches with the
MC simulations when the relative mass densities are of the order of 0.1. Also
can we conclude that the LDA, which does not treat particle on an individual
basis, but rather is a profile, gives accurate packing fraction profiles even in
the case of only one large particle, and therefore can be safely used to test the
results of the test particle theory.

3.2 Test particle theory

In this section we will take a look at the results from the test particle theory
in section 2.1. The two results that are easiest to check are equations 2.9 and
2.15. Only LDA calculations are used for this, because we have already de-
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termined that the Monte-Carlo simulations give the same results as the LDA
calculations. LDA calculations are preferred for this analysis, since they are
much faster. These LDA calculations take about an hour, while corresponding
MC simulations will take up to a year.

δ̃ = (1− η1(z)) δs + η1(z)δ1 (3.2)

σ =

√
kBT

m1gṽ|ρ
′
1(z∗)|

(3.3)

Equation 3.2 can be rewritten into the following condition

η1(z) =
δ2
δ1

1
(1 + y)3

(3.4)

using δ̃ = δ2
1

(1+y)3 (definitions) and δs = 0 (equivalent to δi − δs → δi) and the
same can be done to equation 3.3 resulting in

σ =

√
1

α1(1 + 1/y)3|η′1(z∗)|
. (3.5)

All input variables for these equations are calculation parameters, with the
exception of η1(z) and η′1(z∗). The derivative was introduced in the theory
under the assumption that the small particle profile is unperturbed, therefore it
is determined by calculating a profile in absence of large particles. The derivative
now only depends on small particle parameters.

3.2.1 Checking the theory against LDA calculations

To see wether the obtained equations made sense, LDA calculations were per-
formed for varying values of α1 and y at a constant mass density ratio of δ2/δ1 =
0.1, The average packing fraction of the small particle was η1 = 0.100 and
η2 = 0.001 for the large particles. The values of α1 = 0.005, 0.010, 0.015, 0.020
and y was varied between 0.06 and 0.5 with a step size of 0.01. The results of
this calculation can be seen in figure 3.6.
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Figure 3.6: LDA packing fractions for four different values of α1. for every value of
α1, the size ratio y was increased from .06 to 0.5 in steps of 0.01

The packing fraction is plotted against the reduced height z/σ1. For every
value of α1, a rainbow colored subseries of peaks can be discerned, these are
the packing fractions of the large particles, the green lines are that of the small
particles. For higher gravity, the small particle density profiles are shifted to
the left, which then shifts the peaks of the large particles to the left as well.

The test particle theory predicts a Gaussian profile for the large particles.
These fit the calculated data very well, so we can extract a position and width
from the fits with confidence. For every value of α1, the position and width of
the profiles is plotted against the size ratio. From there, we can check the data
easily with equations 3.4 and 3.5.
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Figure 3.7: Peak position against the size ratio for several values of α1. The dashed
lines are the predictions from the theory, the solid lines are from the fits to the LDA.

In figure 3.7 the peak postion is plotted against the size ratio for several
values of α1. With increasing y, the peak postion also shifts upward, showing
that the effective mass density is lowered somewhat.
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The lines are very close, so we can conclude that for these variables, the test
particle theory accurately gives the peak position.

Next we test the accuracy of equation 3.5. In figure 3.8 the profile width is
plotted against the size ratio.
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Figure 3.8: Peak width against size ratio for several values of α1. The dashed lines
are the predictions from the theory, the solid lines are from the fits to the LDA.

The test particle theory underestimates the width for all values of y. The
values are pretty close and the shape of the curve is also correct. So while the
theory does not exactly match the fitted data, it gives a good indication.

3.2.2 Limits of the test particle theory

When the large particles are light enough to float on top of the smaller particles,
the test particle theory can predict the peak position accurately. To see whether
the theory remains accurate once the large particles become heavier and start
sedimenting on the bottom, a series of LDA calculations was done for increasing
relative mass density. The parameters used were η1 = 0.10, η2 = 0.02, α1 =
0.005, y = 0.2 and the relative mass density was increased from 0.1 to 0.35 in
steps of 0.05. At a relative mass density of 0.1, the large particles clearly float
on top and at 0.35, they have practically reached the bottom. The resulting
packing fraction profiles can be seen in figure 3.9.
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Figure 3.9: A series of density profiles for varying relative mass densities, calculated
with the LDA

For every profile, a gaussian was fitted and the peak position was determined.
In figure 3.10 these position are plotted against the relative mass density and
represented by the solid green line. The dashed blue line is determined by solving
equation 3.4 for z and gives the predictions for the peak position according to
the test particle theory.
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Figure 3.10: Peak position against relative mass density. The dashed lines are the
predictions from the theory, the solid lines are from the fits to the LDA.

From figure 3.10, it is clear that for relative mass densities below 0.2, the test
particle theory is pretty accurate, while for values above 0.2 the theory becomes
increasingly less accurate. This is because we use an adjusted mass density for
the large particle which is always lower then the actual mass density. Not using
this adjusted mass density will result in a lower peak position, but removes the
dependence on the size ratio, which is evident from figure 3.7. So for a higher
relative mass density, our theory is no longer accurate. This is because we
assume that the excluded volume per particle is given by ṽ = 4π

3 (a1 + a2)3. For
higher relative mass densities, the larger particles sink lower and the packing
fraction increases. At these packing fractions, overlap of excluded volume may
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occur and a restructuring of the small particles around the large particles is
likely. These effects are not captured in our simple theory and are most likely
the causes for the discrepancy.

3.3 Results and limits of the simpler theory

In this section I will show calculations done to compare the simpler DFT from
section 2.3 with that in which the more extensive chemical potential is used.
The first test was done with the parameters from section 3.1.
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Figure 3.11: Packing fraction profiles η versus reduced height z/σ for y-values of
0.5, 0.2, 0.1 and 0.05. The colored lines are the data from a full treatment and the
thick green (dotted) lines are from the simple theory

As can be seen in figure 3.13, the simple theory is pretty accurate for these
parameters. The peak position is overestimated a little but the width is spot
on. The profiles of the small particles are also matched very well. From the
similarity we conclude that for these parameters, the dominant effect which
causes the peaked profiles is excluded volume.

From this we can conclude that for parameters where the large particles have
a low mass density and the packing fraction of the small particles is low, the
assumptions of the simple theory are valid.

According to the test particle theory, the large particle has a lower effective
mass density then expected, giving rise to higher peak positions. Here we con-
sider the limit of the situation, where the relative mass densities of both particle
species are equal. The size ratio of these particles is y = 0.5. This then gives
an adjusted mass density of 1/(1 + 0.5)3 ≈ 0.3. When the packing fraction of
the small particles becomes higher then 0.3 at the bottom, we would expect the
particle to float according to equation 2.9. To test this we compared it to the
full LDA theory and Monte Carlo simulations. The resulting profiles can be
seen in figure 3.12.
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Figure 3.12: η1 = 0.1, η2 = 0.02, α1 = 0.05, 0.10, 0.15 and 0.20 Relative mass
density is 1.0

The green lines in figure 3.13 are the small particle profiles, the blue lines
represent the larger particles. At the bottom of the simulation box, due to
layering, the LDA and Monte Carlo do not entirely agree, but they do agree
that the larger particles do not float. So for this particular case, the test particle
theory is not correct.

Next we consider the simpler DFT theory for the same set of parameters.
The resulting packing fractions are plotted along with the LDA results in figure
3.13.

Figure 3.13: η1 = 0.1, η2 = 0.02, α = 0.15. Relative mass density is 1.0 Dotted lines
are the simple DFT profiles, solid lines are the LDA profiles. The large particles in
blue, small particles in green.

It is clear that the simple DFT also fails at these parameters. As the sim-
plified DFT theory and the test particle theory both use the same excluded
volume and rely on the one component Carnahan Starling chemical potential,
it is unsurprising that they agree to disagree.
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3.4 Comparison with Biesheuvel

Maarten Biesheuvel argues that the effect of floating particles is best described
by making the buoyant mass dependent on position, by taking a pressure term
into account [12]. From our point of view, we do not have to consider this varying
buoyant mass, because we do not use the chemical potential under constant
pressure. Thus our chemical potential also takes into account the pressure effects
that Biesheuvel thinks are so important. We have tried to produce some data
from the article from Biesheuvel. He distinguishes two cases. One where the
excess chemical potential - or volume effect as he calls it - is not considered and
another where he does use a hard sphere chemical potential to describe volume
effects, but it is unclear how he takes care of the constant pressure. Here we
only consider calculations with the volume effects, since calculations without
give very, very odd results.

To produce some datasets with his equations, the LDA program was adapted
to solve another set of equations. The chemical potential used was the same
as for our LDA calculations, since Biesheuvel states to use the same chemical
potential. The difference between the equations lies in the gravity term. In
equation 2.25 our buoyant mass mi is replaced by his mb

i . In order to keep
using the parameter α1 indepently of height, a factor mb

i/mi was included to
account for the change in model. The conversion from Biesheuvel’s mass to our
parameters can be seen in equations 3.6 and 3.7.

mb
1 = m1

(
1− η1 −

v1
v2

m2

m1
η2

)
(3.6)

mb
2 = m2

(
1− η2 −

v2
v1

m1

m2
η1

)
(3.7)

In figure 3.14 packing fraction profiles are plotted for the LDA (red), MC
(yellow dashed) and Biesheuvel (purple). It is clear that the LDA and MC data
overlap and that the calculations with an adapted buoyant mass underestimate
the position of the large particles.
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Figure 3.14: Monte Carlo (yellow dashed), LDA (red) and Biesheuvel (purple) pack-
ing fraction profiles for a relative mass of δ2

δ1
= 0.1, a size ratio of y = 0.3 and

α1 = 0.05

From this we conclude that our methods are correct and do not need an
adjustment to the mass. Because we have investigated a system without charges,
the results can not be directly compared to the results from Biesheuvel’s article.
However we have tried to produce results using the theory in his article and they
fail to match to the Monte Carlo data, where ours does coincide.
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Chapter 4

Conclusion

In this thesis, we have studied a binary mixture of hard spheres in gravity.
Especially concerning the floating behavior when the large particles have a lower
density. We have investigated this by the use of Monte Carlo simulations and
density functional theory (using the local density approximation). These two
methods were first compared to literature and were shown to match for the
non-binary mixture. For the binary mixture, only theoretical results are in
the literature. Our LDA matches these and also do the simulations. For all
parameters used, the simulations match the calculations.

To further investigate the behavior of the large particles in the sea of smaller
particles, we developed two theories. The first assumes a single large particle in
a sea of small particles and considers the effects of pressure to obtain equations
for the position and width of the large particles. The resulting equations were
checked against LDA calculations and were found to be accurate to for floating
large particles.

The second theory is another local density approximation, but instead of
using the free energy for a binary mixture of hard spheres, it makes the as-
sumption that the interparticle interaction is dominated by an excluded volume
effect. The resulting density profiles were again found to match for when the
large particles float. From this we can conclude that the excluded volume effect
is dominant for the behavior of the large particles.

Next we decided to check the limits of these theories and for that we inves-
tigated the crossover region, where the large particles start to sediment to the
bottom. WE used parameters where the two simplified theories predicted that
the large particle would still float. However, using the full LDA and simula-
tions, the large particles were found at the bottom. The simulations and full
LDA matches with each other but not with the two simpler theories. Therefore,
when the large particles start to sediment, the assumption of excluded volume
fails. This is probably caused by a restructuring of the smaller particles around
the large particles, which is not included in the theories.

Finally, we have compared our results with the theory that Biesheuvel thinks
is the correct way of describing the mixture. We show that our theories differ
in a subtle manner and have tried to compare his theory to ours. The data
we made using his theory does not match our LDA and also doesn’t match the
simulations. Therefore we can say that our theory is correct.
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