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ABSTRACT

We introduce a simple, fast, and easy to implement unsupervised learning algorithm for detecting different local environments on a
single-particle level in colloidal systems. In this algorithm, we use a vector of standard bond-orientational order parameters to describe
the local environment of each particle. We then use a neural-network-based autoencoder combined with Gaussian mixture mod-
els in order to autonomously group together similar environments. We test the performance of the method on snapshots of a wide
variety of colloidal systems obtained via computer simulations, ranging from simple isotropically interacting systems to binary mix-
tures, and even anisotropic hard cubes. Additionally, we look at a variety of common self-assembled situations such as fluid-crystal
and crystal-crystal coexistences, grain boundaries, and nucleation. In all cases, we are able to identify the relevant local environments
to a similar precision as “standard,” manually tuned, and system-specific, order parameters. In addition to classifying such environ-
ments, we also use the trained autoencoder in order to determine the most relevant bond orientational order parameters in the systems

analyzed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5118867

I. INTRODUCTION

An important challenge in the study of colloidal self-assembly
is the detection of self-assembled products in the system. When the
basic phases that the system forms are well characterized, we can
design order parameters that detect, on a single particle level, which
of the expected phases a particle is in. This strategy has been exten-
sively used in studies ranging from crystal nucleation and growth' ™
to crystal melting, as well as colloidal glasses,” and grain bound-
ary dynamics.”” Over the years, a number of different routes have
been taken to characterize such local order, including order parame-
ters based on bond-orientational order,” ' common neighbor anal-
ysis (CNA),'>"” and templating."* Moreover, developments in the
last few years have started to combine these local descriptions with
supervised machine learning techniques in order to recognize spe-
cific crystal structures.”'* A very recent development has shown
that this strategy can even be applied, with the aid of deep learn-
ing techniques, to simple coordinate information (instead of the
standard local order descriptors).'” In general, supervised learning
strategies work very well to distinguish structures that we expect to
form.

However, in many cases when exploring the self-assembly of
new systems, the exact final structure and its characteristics are
unknown, complicating the selection of an ideal order parame-
ter. In such situations, the standard solution has been to apply
different potential order parameters to the system, for instance,
the bond order parameter gs, and try and see if different regions
appeared. This process is time consuming and difficult, and has
the significant drawback that one might miss important struc-
tures that are not connected with the order parameters explored.
In this context, unsupervised machine learning techniques, which
excel in autonomously finding patterns in large data sets, offer a
promising solution. In a recent paper,”’ Reinhart et al. made an
attempt to use unsupervised machine learning in order to iden-
tify different crystal structures. In their work, they described the
local environment of the particles with the adjacency criterion
from adaptive CNA and combined it with the diffusion map tech-
nique for dimensionality reduction in order to distinguish differ-
ent, frequently occurring, structures. Although very successful, this
method turned out to be very computationally demanding. In a sub-
sequent article,”’ a faster way of comparing local neighborhoods
was introduced, based on their relative graphlet frequencies. This
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reduced the computational cost of the algorithm by four orders of
magnitude.

A different approach was followed by Spellings and Glotzer in
Ref. 22, where they used a combination of unsupervised and super-
vised learning techniques in order to identify the overall crystal
structures of bulk self-assembled systems (i.e., systems of which the
majority had self-assembled into the same phase).

In this work, we present a new avenue to detect self-
assembly products and introduce an unsupervised machine learning
algorithm based on bond-orientational order parameters com-
bined with neural-network-based autoencoders” ”’ and Gaus-
sian mixture models (GMMs).”* " Autoencoders are a standard
technique for nonlinear dimensionality reduction, while mix-
ture models are probabilistic models for identifying distinct clus-
ters within a data set. Using these methods, our algorithm can
autonomously classify particles in different groups based on their
local order, making it easy to detect any self-assembly product in the
system.

In contrast to Ref. 22, the goal here is to identify local environ-
ments on a single-particle level—meaning that this method can be
used to study processes such as nucleation, grain boundary char-
acteristics, and coexistences. This algorithm has been designed to
be computationally fast, easily scalable to very large data sets, and
extremely easy to implement. To test its performance, we examine
a number of different colloidal systems, ranging from spheres to
binary mixtures to anisotropic particles. Moreover, in addition to
simply classifying local environments, we also explore whether the
unsupervised learning techniques employed can help us identify the
distinguishing features of the different particle environments found
in the system.

Il. METHODS

In this section, we describe in detail the algorithm we use to
classify local environments. We start by summarizing the main steps
of our approach and then follow with a detailed description of each
step in separate subsections.

The overall process consists of three steps. First, we require
a method to capture the local environment of each particle in
a set of local order parameters. For this, we make use of bond-
orientational order parameters. This set of order parameters is in
general high-dimensional and may contain significant amounts of
redundant and irrelevant information. In order to extract the most
relevant information, the second step of our approach makes use
of a dimensionality reduction technique, namely, a neural-network-
based autoencoder. Once trained, the autoencoder projects the orig-
inal (high-dimensional) input vectors onto a lower-dimensional
subspace encoding the features with the largest variations in the
input data. Ideally, in this subspace, particles with similar local
environments are grouped together. Finally, we apply a cluster-
ing algorithm (Gaussian mixture models) in order to identify the
distinct clusters of local environments in this lower-dimensional
subspace.

A. Bond order parameters

To characterize the local environment of each particle, we use
the averaged bond order parameters (BOPs) introduced by Lechner
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and Dellago.”"" First, we define for any given particle i the complex
quantities

1 m
NSy Z Y; (l'zj), 1)
Ny (i) je 576y
where Y}" (ry) are the spherical harmonics of order [, with m an inte-
ger that runs from m = —I to m = +I. Additionally, r;; is the vector
from particle i to particle j, and .4, (i) is the set of nearest neighbors
of particle i, which we will define later. Note that .4;(i) contains
N, (i) particles. Then, we can define an average g, (i) as

qim (i) =

1 m(k), @
Nb(l)"'lke{i;’%(i)}ql ©

Qi (i) =
where the sum runs over all nearest neighbors of particle i as well
as particle i itself. Averaging over the nearest neighbor values of g,
results effectively in also taking next-nearest neighbors into account.
Finally, we define rotationally invariant BOPs as

4 1
a0 \j 1 2 P ®

which, depending on the choice of ], are sensitive to different crystal
symmetries.

The optimal set of BOPs to be considered strongly depends on
the structures one wishes to distinguish. Since our method is meant
to be applied to systems for which such prior knowledge is miss-
ing, in order to describe the local environment of one particle, we
evaluate several g; with [ ranging from 1 to 8. Note that in princi-
ple, one could consider a larger (or smaller) range of I. For all cases
examined in this paper, however, we found 8 to be sufficient. There-
fore, when considering one component systems, our description of
the local environment of particle i is encoded into an 8-dimensional
vector,

Qi) = {a(D)})s (4)

with [ € [1, 8]. When considering binary mixtures, i.e., systems with
two species of particles, the same BOPs are evaluated both consider-
ing all the nearest neighbors of the reference particle (regardless of
particles’ species) and considering only the nearest neighbors of the
same species as the reference particle. Hence, for binary mixtures,
our description of the local environment of particle i is encoded into
a 16-dimensional vector,

Q) = (@)} {ar (H}), (5)

where s indicates the particles’ species. Here, {g;} represents the set
of BOPs evaluated considering all the nearest neighbors of parti-
cle i, while the set {g;"} is evaluated considering only the nearest
neighbors of the same species s as particle i.

Thus far, we have not discussed the definition of a nearest
neighbor, as used in the definition of the BOPs. There are a num-
ber of different avenues for identifying nearest neighbors. The sim-
plest method relies on using a fixed cutoff radius, r., such that
all particles closer than this distance are considered nearest neigh-
bors. Ideally, this cutoff radius is chosen as the distance at which
the radial distribution function has its first minimum. This method
has the advantage that it is computationally very cheap and it is
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symmetric, i.e., i is a neighbor of j if and only if j is a neighbor
of i. However, r. is system and density dependent so that it has
to be tuned for every particular case requiring prior knowledge of
the system under study. Additionally, the cutoff is defined for the
entire system and, as such, is not an optimal choice for systems with
large density gradients or interfaces, such as can occur in nucleation
studies.

Another standard method for determining nearest neighbors
is the Voronoi construction,”’ which has the advantage that it is
parameter free. However, it is also relatively computationally expen-
sive, and in this work, we have instead opted to make use of
a recently introduced alternative parameter-free nearest-neighbor
criterion, called SANN (solid angle nearest neighbor).;2 In this
approach, an effective individual cutoff is found for every particle in
the system based on its local environment. This method is not inher-
ently symmetric, i.e., j might be a neighbor of i, while i is not a neigh-
bor of j. However, symmetry can be enforced by either addingj to the
neighbors of i or removing i from the neighbors of j. In this study,
we applied the latter solution. The computational cost of SANN only
slightly exceeds that of a cutoff distance, and, since it is a parameter-
free method, it is suitable for systems with inhomogeneous
densities.

B. Unsupervised learning

1. Nonlinear dimensionality reduction
using neural-network-based autoencoders

In order to extract the relevant information contained in the
vectors Q(i), we use neural-network-based autoencoders.”””’ An
autoencoder is a neural network that is trained to perform the
identity mapping, where the network inputs are reproduced at the
output layer. The network may be viewed as consisting of two
parts: an encoder network, which performs a nonlinear projec-
tion of the input data onto a low-dimensional subspace, and a
decoder network that attempts to reconstruct the input data from
the low-dimensional projection. This architecture is represented in
Fig. 1.

By training the autoencoder to perform the input reconstruc-
tion task over an ensemble of training examples, the encoder is
forced to learn a low-dimensional nonlinear projection that pre-
serves the most relevant features of the data and from which the
higher-dimensional inputs can be approximately reconstructed by
the decoder. In this work, the training data are the vectors Q(i)

Input Encoder | Bottleneck | Decoder Output
N N

FIG. 1. Architecture of a neural-network based autoencoder. The encoder net-
work finds a low-dimensional representation of the input, from which the decoder
reconstructs an approximation of the input as output.
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[Eq. (4) or (5)] evaluated from snapshots of colloidal systems
obtained via computer simulations, and the autoencoder is trained
to find a low-dimensional projection of such vectors by eliminating
irrelevant and redundant information.

In the present context, we employ feedforward and fully con-
nected autoencoders like the one presented in Fig. 1. The number
of input and output nodes, d, is specified by the dimensionality
of the input vectors, Q(i) € RY, which are approximately recon-
structed by the network in the output layer, Q(i) € R“. The bot-
tleneck layer contains the low-dimensional projection to be learned
by the encoder, Y(i) € R, whose dimensionality is controlled by
the number of bottleneck nodes, ¢ < d. Nonlinearity is achieved
by providing both the encoder and the decoder with a fully con-
nected hidden layer with a nonlinear activation function. Here, we
set the number of nodes in the hidden layers to 10d and use a
hyperbolic tangent as the activation function. For the bottleneck
and output layers, instead, a linear activation function is used. Note
that these choices are fairly standard and were determined empir-
ically for what worked well in our case. More general information
on choosing activation functions can be found in, e.g., Refs. 27
and 33.

The internal parameters of the autoencoder, i.e., weights
W = {w;} and biases B = {b}, are initialized with the normal-
ized initialization proposed by Xavier in Ref. 33, i.e., the biases
are initialized to zero, while the weights are drawn from a normal
distribution with zero mean and a variance that depends on the
size of the layers. During the training, these parameters are opti-
mized by minimizing the reconstruction error of the input data
over a training set of N training examples. Specifically, we con-
sider the mean squared error (MSE) with the addition of a weight
decay regularization term”” to control the magnitude of the network
weights,

EW.B Q) - 1 L) - QO A W, ©
i=1 j=1

where M is the total number of weights, whose value depends on
the dimension of the network, and we set A = 107>, The function
in Eq. (6) is minimized using minibatch stochastic gradient descent
with momentum.””***’

The optimal number of nodes in the bottleneck layer, ¢, which
defines the unknown relevant dimensionality of the input data, can
be determined by computing the reconstruction MSE and looking
for the existence of an elbow in the MSE as a function of ¢.”* For con-
venience, we rescale the MSE by the mean squared deviation (MSD)
of the vectors Q(7),

2
>

N
MSD = % Yl -Q 7
i=1

where Q is the mean input vector. To detect the presence of an
elbow, we use the L-method proposed by Salvador and Chan.”” For
all systems examined in this work, we found a dimensionality of ¢ =2
to be sufficient.

Once the autoencoder is trained, the encoder network alone is
retained in order to perform the nonlinear mapping of the input

vectors Q(i) onto the low-dimensional subspace defined by the
bottleneck layer, Y(i).
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2. Learning from the autoencoder

One of the main advantages of using a neural-network-based
autoencoder over other nonlinear techniques for dimensionality
reduction is that it furnishes an exact analytical mapping (and an
approximate inverse mapping) between the original input space
and its low-dimensional projection. In finding such a mapping, the
autoencoder must understand which of all the BOPs given as input
in the vectors Q(i) are the most relevant for the system under analy-
sis. Extrapolating this knowledge would help us understand the rele-
vant symmetries distinguishing the different environments possibly
present in the system.

Several methods to assess the relative importance of input vari-
ables in neural network models have been proposed.” *' Here, we
consider the input perturbation’* ™' and the improved stepwise'""’
methods. Both techniques require the use of a single trained model,
avoiding having to repeat the training of the autoencoder multiple
times.

The input perturbation method assesses the variation in the
MSE of the autoencoder by adding, in turn, a small amount of white
noise to the kth input while holding all the other inputs at their
observed values. Here, we set the white noise to 10% and 50% of each
input, as suggested in Ref. 40. The input variables whose changes
affect the output the most, leading to a large increase in the MSE, are
the ones that have the most relative influence.

The improved stepwise method is very similar in spirit, but
instead of adding noise to one of the inputs, it replaces all its val-
ues with its mean over the whole dataset. Also in this case, the most
relevant input variables are identified as the ones whose replacement
causes the largest increase in the MSE.

In both cases, a quantitative measure of the relative importance,
RI, of the kth input can be obtained as

AE;

Ry = —/———,
Z}i:l AEJ'

(8)
where AEj is the variation in the MSE caused by the change applied
to the kth input and the sum in the denominator runs over all the
input variables.

3. Clustering

In order to cluster together similar environments in the low-
dimensional subspace found by the encoder, we use Gaussian mix-
ture models (GMMs) as implemented in scikit-learn. "

GMM is a probabilistic model that assumes that the observed
data are generated from a mixture of a finite number of Gaus-
sian distributions with unknown parameters. Such parameters are
optimized iteratively with the expectation-maximization (EM) algo-
rithm® in order to create a probability density function that agrees
well with the distribution of the data. The number of Gaussian com-
ponents in the mixture, Ng, is usually found by minimizing the
Bayesian information criterion (BIC),” which measures how well
a GMM fits the observed data while penalizing models with many
parameters to prevent overfitting. The output of a trained GMM is a
list of probabilities, pj;, corresponding to the posterior probabilities
of the ith observation to arise from the jth component in the mixture
model.

The simplest form of clustering that can be applied consists
in considering each mixture component as generating a separate
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cluster and assigning each observation to the component with the
highest posterior probability. However, while this procedure works
perfectly for clusters that are really generated from a mixture of sep-
arate multivariate normal distributions, the clusters that underline
our data are very often far from being Gaussian-distributed in space.
As a consequence, a single cluster in the data may be detected as
two or more mixture components (if its distribution is indeed better
approximated by a mixture of Gaussians than by a single Gaus-
sian function), meaning that the number of clusters in the data may
in general be different from the number of components found by
minimizing the BIC.

To overcome this problem, we use the method proposed by
Baudry et al.”’ The idea is to first use the BIC in order to find a GMM
with Ng components that fits the data well. Then, a sequence of can-
didate clusterings with K = Ng, Ng — 1, ..., 1 clusters is formed by
successively merging a pair of components. At each step, the two
mixture components to be merged are chosen so as to minimize the
entropy of the resulting clustering, defined as

N K
Sk = =2 2 piIn(py), ©)

i=1 j=1

where N is the number of observations and K is the number of
clusters. Finally, the optimal number of clusters is found by look-
ing for the existence of an elbow in the entropy Sk as a function of
K. Again, we detect the elbow with the L-method of Salvador and
Chan.”

This procedure autonomously finds the number of clusters
underlying the data, corresponding to the distinct particle envi-
ronments present in the system under analysis. Moreover, note
that this is a soft clustering technique, meaning that each parti-
cle is not simply assigned to a cluster corresponding to a specific
local environment, but rather it has a certain probability of belong-
ing to any of the identified clusters. As a result, particles whose
environment is not well defined, such as can occur at interfaces,
will have similar probabilities of belonging to different clusters. In
the following, we will refer to these probabilities as membership
probabilities.

I1l. RESULTS AND DISCUSSION

In this section, we show how our method performs on snap-
shots of a wide range of colloidal systems obtained via computer
simulations. We first present in detail the whole procedure for the
analysis of a “test” example for which we compare the results with a
more standard, system-specific, methodology. A shorter, more con-
cise, discussion is dedicated to the results obtained for the other sys-
tems analyzed, including systems with grain boundaries, anisotropic
hard cubes, and binary mixtures.

A. Single-component hard spheres

As a first test case, we examine a snapshot from a Monte Carlo
(MC) simulation of single-component hard spheres of diameter o,
which is shown in Fig. 2(a). The simulation was performed in the
canonical ensemble (constant number of particles N, volume V, and
temperature T'), which was initialized as a metastable coexistence
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FIG. 2. Analysis of a snapshot from a MC simulation of hard spheres showing a coexistence between fluid, FCC, and HCP crystals. (a) Snapshot under analysis. (b) Rescaled
MSE of the autoencoder as a function of the number of bottleneck nodes. Solid lines show the presence of an elbow at ¢ = 2. (c) BIC as a function of the number of components
in the GMM. The minimum is highlighted in red. Dashed lines are only a guide for the eyes. (d) Entropy of the clustering as a function of the number of clusters. Solid lines
show the presence of an elbow at K = 3. (e) Projection of the vectors Q(i) onto the 2-dimensional space found by the encoder. Colors represent the distinct environments
identified by the clustering. (f) Classification of the snapshot in panel (a). The RGB color of each particle is a linear combination of the colors of the three phases (see legend)
with the associated membership probabilities as coefficients.
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between the fluid, hexagonal close-packed (HCP), and face-centered
cubic (FCC) phases. The system contained N = 1536 particles and
was at a number density po® = 1.01.

1. Analysis

Starting from the raw coordinates of each particle i in the sys-
tem, we build the vectors Q(i) in Eq. 4 and use them as an input for
the autoencoder. To find the optimal dimensionality of the bottle-
neck layer, ¢, we evaluate the reconstruction MSE of the autoencoder
for c € [1, 8]. A plot of the rescaled MSE as a function of ¢ is shown in
Fig. 2(b). Solid lines, obtained with the L-method, clearly show the
presence of an elbow at ¢ = 2, indicating that a two-dimensional pro-
jection of the original input vectors is sufficient to preserve the rele-
vant information. The projection learned by the encoder is depicted
in Fig. 2(e), where each point corresponds to a particle in the system.
Note that the way we color the points in Fig. 2(e) will be explained
later.

We then apply GMM in this two-dimensional space in order to
identify the relevant clusters, i.e., the distinct particle environments.
Following the method of Baudry et al., we first optimize the number
of Gaussian components in the mixture model, Ng, by minimizing
the BIC. The BIC as a function of N¢ is shown in Fig. 2(c) and has
a minimum for N = 4. Then, the optimal number of clusters, K, is
found by successively merging a pair of components and looking for
the existence of an elbow in the clustering entropy as a function of
K [see Fig. 2(d)]. The elbow is detected at K = 3, meaning that the
unsupervised learning identifies three relevant environments. Note
that we know beforehand the three phases present in the system
(FCC, HCP, and fluid) so that we can easily associate each cluster
with the correct phase. An idea of the partitioning of space per-
formed by the clustering is given in Fig. 2(e), where the color of
each point is determined by the cluster with the highest membership
probability. As discussed in Sec. IT B 3, however, some points might
have a nonvanishing probability of belonging to more than one clus-
ter. In order to fully account for such additional information, in the
snapshot in Fig. 2(f), the RGB color of the particles is obtained as a
linear combination of the colors of the three clusters, with the asso-
ciated membership probabilities as coefficients. As a result, particles
with an environment falling at the boundary between two clusters,
hence having two nonvanishing membership probabilities of similar
magnitude, appear with a different color from those in the legend.
This behavior is clearly observed for some of the particles at the
crystal-fluid interfaces.

In the following, we compare the results obtained with a
more standard methodology specifically tuned for distinguishing the
phases in this system.

2. Comparison

A common method to classify different phases on a single-
particle basis consists in finding one (or more) pair(s) of BOPs,
(q1,qr), whose distributions in the phases of interest are consid-
erably different, so that it is possible to define separate regions in
the g;-gr-plane corresponding to different particle environments.
The pair of BOPs to consider strongly depends on the environ-
ments one wishes to distinguish, and it is usually found by trial and
error.

ARTICLE scitation.org/journalljcp

For the FCC, HCP, and fluid phases, g4 and gs are the most
common choice.'' Figure 3 shows the probability distribution of g4
[3(a)] and ge [3(b)] for the three hard-sphere phases, obtained from
separate MC simulations in the canonical ensemble. Simulations
of the two crystal phases were performed at a number density just
above the coexistence region, p03 = 1.05, while for the fluid phase we
used the coexistence density, po® = 0.94.

The distributions of g4 in the two crystals are well separated,
while the g4 distribution of the fluid phase strongly overlaps the one
of the HCP crystal. On the other hand, the gs distributions show
a large separation between the fluid and the crystal phases but a
small overlap between the two crystals. Alone, none of the BOPs
considered completely separates the three phases. However, a sep-
aration can be found in the g4-gs-plane. A comparison of the phases
in the g4-gs-plane is shown in Fig. 4. In this plane, one can easily
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FIG. 3. (a) Probability distribution of g4 for the fluid (oo™ = 0.94), FCC (pa® = 1.05),
and HCP (pa® = 1.05) hard-sphere phases. (b) Probability distribution of g for the
same phases.
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FIG. 4. Comparison between the g4-gs-plane for the fluid (po® = 0.94), FCC
(po® = 1.05), and HCP (po® = 1.05) hard-sphere phases. Each point correspond
to a particular particle. 20000 points from each phase were chosen randomly.
Orange solid lines show a possible linear separation of the three phases in this
plane.

identify three linearly separated regions associated with the three
phases. A possible choice of such a separation is represented by the
solid lines in Fig. 4. Based on this definition, the particles in Fig. 2(a)
can be classified according to the region in which their BOPs fall.
The results of this classification are presented in Fig. 5, and they
are in excellent agreement with the ones obtained via unsupervised
learning [see Fig. 2(f) for comparison]. As can be seen by comparing
Figs. 2(f) and 5, the only differences between the two classifications
are at the interfaces and are generally particles for which the unsu-
pervised learning algorithm gave at least two comparable member-
ship probabilities (e.g., identified large probabilities of being in both
fluid and FCC).

Note that the method presented above requires, in general,
prior knowledge of the phases to be expected in the system under
analysis. Moreover, additional simulations of such phases must be
performed in order to (i) identify the relevant BOPs and (ii) define
separations between the distinct particle environments. Both tasks,
(i) and (ii), are autonomously performed by our unsupervised-
learning method based only on the vectors of BOPs evaluated from
the snapshot under study.

B Fcc M HCP | fluid

FIG. 5. Classification of the snapshot in Fig. 2 based on g4 and ge.
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Regarding the identification of the relevant BOPs, i.e., task (i),
in Sec. III A 3, we present how such information can be extracted
from the trained autoencoder.

3. Learning from the autoencoder

As discussed in Sec. I B 2, several methods to assess the rel-
ative importance of input variables in neural network models are
available. Here, we employ the input perturbation and the improved
stepwise methods in order to understand which BOPs were con-
sidered to be the most relevant by the autoencoder for the system
in Fig. 2. The relative importance of the BOPs evaluated with these
methods is shown in Fig. 6.

Only a small subset of three BOPs is found to be relevant
and, as expected, gs (RI ~ 78%) and g4 (RI ~ 3%) are part of it.
Interestingly however, gs, which to our knowledge has never been
used in the literature, appears to be more important (RI ~ 19%)
than g4. To understand why this is, we evaluated the gs distribu-
tions in the FCC, HCP, and fluid hard-sphere phases from sev-
eral snapshots (see Fig. 7). Such distributions are very similar to
those obtained for ge, in the sense that they show a clear separation
between the fluid and the crystal phases and only a small overlap
between the two crystals. If we now go back to the snapshot shown
in Fig. 2(f), which is roughly half fluid and half crystal, then it is
easy to understand why g4 has a lower relative importance than g
and gs.

Note that the RI in Fig. 6 only indicates which are the BOPs with
the largest variations in the system, without giving information on
their possible correlations. As a consequence, the number of relevant
BOPs is in general larger than the dimensionality of the bottleneck
layer because the encoder is able to find and remove such (possibly
nonlinear) correlations.

1.0
3 Improved stepwise
I Input perturbation (50%)
@@ Input perturbation (10%)
0.8 1 .
(V]
[}
c
£
5 0.6
Q.
£
[
2 0.4
-t
o
[J]
o
0.2 1
0.0 , T T . :

q1 Q2 as Qa gs *[3 g7 Qs
BOPs

FIG. 6. Relative importance of the BOPs for the system in Fig. 2 assessed with
the input perturbation and the improved stepwise methods. The input perturbation
method is applied with two different amounts of white noise: 10% and 50% of the
input, respectively.
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FIG. 7. Probability distribution of gs for the fluid (po® = 0.94), FCC (po® = 1.05),
and HCP (po® = 1.05) hard-sphere phases.

B. Grain boundaries

We now consider a snapshot of a system with FCC crystalline
domains separated by grain boundaries, depicted in Fig. 8(a). The
system contains N = 83481 particles interacting via the purely
repulsive Weeks-Chandler-Andersen (WCA) potential,

BUwca(r) = {3/38[(5)12 - (%)6 + i],

<l/6
s (10)

>

Ql~x Qlx

with ¢ as the particle diameter, Se = 40 as the energy scale, and
B = 1/kgT, where kg is the Boltzmann constant and T is the tem-
perature. More details about the simulation can be found in Ref. 6.
The results of the unsupervised learning algorithm are sum-
marized in Fig. 8. Specifically, Fig. 8(b) shows the two-dimensional
projection of the vectors Q(i) found by the encoder and the results
of the clustering performed in this space. Our method identifies two
distinct particle environments, corresponding to particles within the
grain boundaries and within the FCC crystalline domains. Note that

ARTICLE scitation.org/journalljcp

the particles in the grain boundaries appear disordered and fluidlike.
This identification is used to color the particles in Fig. 8(a). The most
relevant BOPs in this system according to the autoencoder analy-
sis are gs (RI ~ 78%) and gs (RI ~ 19%), which are indeed those
whose distributions show the largest separation between the fluid
and crystal phases.

C. Hard cubes

The systems examined so far were all characterized by isotropic
interactions between their constituents. As a further test of the per-
formance and generality of our method, we now consider a snap-
shot of a system of hard cubes with edge length ¢ [see Fig. 9(a)],
obtained from an event-driven molecular dynamics (EDMD) sim-
ulation in the canonical ensemble.”’ The simulation was performed
with N = 64000 particles starting from a simple cubic (SC) crys-
tal configuration at a number density in the fluid-crystal coexistence
region, po” = 0.475. More details on the simulation can be found in
Ref. 43.

The two-dimensional projection of the vectors Q(i) found by
the encoder and the results of the clustering performed in this space
are shown in Fig. 9(b), while the final classification is presented in
Fig. 9(a). In agreement with the standard order parameters used in
Ref. 43, the unsupervised learning method identifies two distinct
particle environments, corresponding to the fluid and SC crystal
phases. From the autoencoder analysis, we found that the most rel-
evant BOPs for this system are g¢ (RI ~ 48%), s (RI ~ 36%) and g3
(RI ~ 16%).

D. Binary mixture

After having considered single-component systems with both
isotropic and anisotropic interactions, we now examine a binary
mixture of large (L) and small (S) spheres of diameters o1 and
s, respectively, with a size ratio os/o; = 0.78 and a stoichiome-
try Ni/N = 2. The particles in this system interact via the WCA
potential, Uqy(r), between speciesa =L, Sand y = L, S,

4l (Z)? - (Z2) 4 L], L <2's
ﬁUay(")_{o) [( ) ( ) 4] 1 5 91/6° (11)
Oay

T
0.2
Fluid
| [ FCC
0 =
o
>
.02 -
0.4+
1

FIG. 8. Analysis of a snapshot of a sys-
tem with grain boundaries. (a) Classifi-
cation of the snapshot under analysis.
The RGB color of each particle is a
linear combination of the colors of the
two phases identified with the associ-
7 ated membership probabilities as coeffi-
cients. (b) Projection of the vectors Q(i)
onto the 2-dimensional space found by
i the encoder. Colors represent the distinct
environments identified by the clustering.
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FIG. 9. Analysis of a snapshot of hard
cubes showing a coexistence between
the fluid and the SC crystal phases.
(a) Classification of the snapshot under
analysis. The RGB color of each particle
is a linear combination of the colors of
the two phases identified with the asso-
ciated membership probabilities as coef-
ficients. (b) Projection of the vectors Q(i)
onto the 2-dimensional space found by
the encoder. Colors represent the distinct

where 04y = (04 + 0y)/2 and fe is the energy scale. The snapshot
considered here, depicted in Fig. 10(a), was obtained from a MC
simulation in the isothermal-isobaric ensemble (constant number of
particles N, pressure P, and temperature T) with N = 8073 particles,
Be=>5,and BPo; = 24.2, and shows a coexistence between the MgCu,
Laves phase and the fluid phase. More details about the simulation
can be found in Ref. 44.

Recall that, since we are dealing with a binary mixture, we
describe the local environment of each particle i in the system with
a 16-dimensional vector of BOPs, Q(i) = ({,(i)},{g,’ (i) }), where
the first set of 8 BOPs, {g;(i)} with I =1, ..., 8, is evaluated consid-
ering all the nearest neighbors of particle i, while the second set of 8
BOPs, {g,°(i) }, is evaluated considering only the nearest neighbors
of the same species (s = L or s = §) as particle i.

The results of the unsupervised learning classification are
summarized in Fig. 10. Specifically, Fig. 10(b) shows the two-
dimensional projection of the vectors Q(i) found by the encoder and
the results of the clustering performed in this space. Our method
identifies three distinct particle environments, corresponding to the

S M large MgCu,
small MgCuz
fluid

(a)

environments identified by the clustering.

large (L) and small (S) particles in the MgCu, Laves phase and the
particles in the fluid phase. Note that since large and small particles
in the fluid phase appear equally disordered, the algorithm groups
them together in the same cluster. This identification is used to color
the particles in Fig. 10(a).

The relative importance of the BOPs obtained from the autoen-
coder analysis is shown in Fig. 11. Interestingly, the BOPs evaluated
considering all the nearest neighbors of the particles are not found to
be relevant for this system, with the only exception of g¢ (RI ~ 2%).
The largest variations in the environments are instead found in three
of the BOPs evaluated considering only the nearest neighbors of the
same species as the reference particle, specifically g5 (RI ~ 70%),
35 (RI ~ 15%), and g5 (RI ~ 11%).

E. Nucleation and crystal growth

Finally, we examine the nucleation and crystal growth of a
single-component system of particles with diameter o, interacting
via the WCA potential [Eq. (10)]. Note that the nucleation and phase

0.1 T T T T T
0 — -
0.1 -
02 Fluid _
o large MgCu,
small MgCu,
03 1 1 1
-0 0.2 0.4 0.6
Y
(b)

FIG. 10. Analysis of a snapshot of a binary mixture showing a coexistence between the fluid phase and the MgCu, Laves phase. (a) Classification of the snapshot under
analysis. The RGB color of each particle is a linear combination of the colors of the three local environments identified with the associated membership probabilities as
coefficients. Fluidlike particles are displayed at 1/4 of their actual size. (b) Projection of the vectors Q(i) onto the 2-dimensional space found by the encoder. Colors represent

the distinct environments identified by the clustering.
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behavior of this system have been extensively studied in Ref. 45. We started our structural analysis by considering all snapshots

Here, we performed a MC simulation in the isothermal-isobaric together. For all particles, we evaluated the vectors Q(i), which we
ensemble with N = 2048 particles, e = 40 and SPo” = 30. Six snap- used as the input of the unsupervised learning algorithm. Perform-
shots from this simulation, showing the transition from the fluid to ing a single analysis for all the snapshots in Fig. 12 guarantees
the crystal phase, are depicted in Fig. 12. that (i) sufficient examples of the two environments, i.e., fluid and

M crystal  fluid

FIG. 12. Classification of snapshots of a MC simulation with N = 2048 particles interacting via the WCA potential, showing a transition from the fluid to the crystal phase. The
RGB color of each particle is a linear combination of the colors of the two phases identified with the associated membership probabilities as coefficients. Fluidlike particles
are displayed at 1/4 of their actual size.
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FIG. 13. Projection of the vectors Q(i) evaluated from the six snapshots in Fig. 12
onto the 2-dimensional space found by the encoder. Colors represent the distinct
environments identified by the clustering.

crystalline, are included in the analysis and (ii) the same cluster-
ing is applied to each snapshot, allowing a quantitative comparison
between them.

The two-dimensional projection found by the encoder and
the results of the clustering performed in this space are shown in
Fig. 13. This identification is used to color the particles in Fig. 12.
As expected, the unsupervised learning method identifies two dis-
tinct particle environments, corresponding to the fluid and crys-
tal phases. In order to quantitatively compare the results with the
standard classification method presented in Sec. 111 A 2, we evalu-
ated the fraction of crystalline particles identified in the six snap-
shots. Note that, since we employ a soft clustering technique, this
requires first to assign each particle to the cluster (crystal or fluid)
with the largest membership probability. The results obtained with
the two methods are presented in Table I and are in excellent
agreement.

One of the reasons behind performing a single analysis for the
six snapshots in Fig. 12 was to include sufficient examples of both
the fluid and crystalline environments. Our unsupervised learning

ARTICLE scitation.org/journalljcp

TABLE I. Comparison between the fractions of crystalline particles identified in the six
snapshots in Fig. 12 with our unsupervised algorithm and with the standard method
presented in Sec. Il A 2.

Snapshot
Method @ b @ @ (e ®
Unsupervised (%) 2 12 21 30 64 98
Standard (%) 2 13 23 31 67 98

method consists of a two-step analysis: first, the autoencoder finds
a low-dimensional projection encoding the features with the largest
variations within the input data, and then, the clustering algorithm
identifies distinct environments based on the density distribution of
the data in this low-dimensional space. In the method presented in
Sec. IIT A 2, instead, a separation between the distinct phases is cho-
sen based on the corresponding distributions of the relevant BOPs
obtained from separate simulations. By including sufficient exam-
ples of both phases in the input dataset, the results of the unsuper-
vised classification tend to (or at least are very similar to) those of
the method in Sec. III A 2, as demonstrated by the excellent agree-
ment we found. However, what “sufficient” means strongly depends
on the system under study.

To obtain a better estimate of what “sufficient” means for this
system, we performed a separate analysis of each of the snapshots
in Fig. 12. For snapshots (b), (c), (d), and (e), we found very simi-
lar results to the previous analysis, while, as expected, for snapshots
(a) and (f), where only a very small fraction of particles is in one
of the phases, we found a different classification. As an example,
we report in Fig. 14 the results obtained for snapshot (a). Specifi-
cally, in Fig. 14(b), we show the two-dimensional projection found
by the encoder and the results of the clustering performed in this
space. Note that this projection is different from the one presented
in Fig. 13 as the autoencoder is trained on a different data set with
different characteristics. Additionally, in Fig. 14(a), particles are col-
ored according to this classification. Again, the unsupervised learn-
ing identified two distinct environments, which we associate with
crystalline and fluidlike particles. However, the amount of crystalline
order is much larger compared to the previous classification: about

FIG. 14. Separate analysis of the snap-
shot in Fig. 12(a). (a) Classification of
the snapshot under analysis. The RGB
color of each particle is a linear combina-
tion of the colors of the two environments
o identified with the associated member-
ship probabilities as coefficients. Fluid-
like particles are displayed at 1/4 of their
actual size. (b) Projection of the vec-
tors Q(i) onto the 2-dimensional space
found by the encoder. Colors represent
the distinct environments identified by

0.4 . .
Fluid
o Crystal
0.3F
N

> 0.2+
0.1

L |
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(a)

01 02 the clustering.

(b)

J. Chem. Phys. 151, 154901 (2019); doi: 10.1063/1.5118867
Published under license by AIP Publishing

151, 154901-11


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

20% of the particles are classified as crystalline (in the previous anal-
ysis, it was only 2%). Interestingly, if we look closer at the snapshot
in Fig. 14(a), we find that the particles recognized as crystalline
have indeed a higher local order than in a standard disordered fluid,
meaning that the unsupervised learning classification is still reason-
able. This has been seen before in nucleation studies. For instance,
in Ref. 46, where hard-sphere nucleation was studied at a pressure of
BP0’ = 17, slightly different tuning of the order parameter resulted
in significantly different results for the size of the largest crystalline
cluster in the system (from ~30 to 100). Nonetheless, the different
order parameters all predicted essentially the same nucleation rate.

IV. CONCLUSIONS

In summary, we have introduced a simple, fast, and easy to
implement unsupervised learning algorithm for recognizing local
structural motifs in colloidal systems. This algorithm makes use of
standard BOPs to describe local environments, an autoencoder for
dimensionality reduction, and GMM:s for clustering the results. We
have applied it to a wide variety of systems, ranging from simple
isotropically interacting systems (hard spheres, WCA particles) to
binary mixtures, and even anisotropic hard cubes. In all cases, the
algorithm performed very well, and we were able to identify local
environments to a similar precision as “standard”—manually tuned
and system-specific—order parameters.

Moreover, we exploited the analytical mapping defined by the
autoencoder to extract extra information on the systems analyzed.
Specifically, in all cases, we could identify the relevant symmetries
underlying the main differences among the distinct particle envi-
ronments found in the system. Interestingly, in the binary system
we studied, this analysis revealed that the same species BOPs were
the most important for distinguishing the different particle environ-
ments. Finally, in the last example on nucleation and crystal growth,
we also explored the possible difficulties one can encounter when
only a very small fraction of particles is in one specific environment,
and we showed how including more snapshots, which covered a
more balanced distribution of local environments, could benefit the
results of the analysis in such cases.
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