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ABSTRACT
We study the inverse problem of tuning interaction parameters between charged colloidal particles interacting with a hard-core repulsive
Yukawa potential, so that they assemble into specified crystal structures. Here, we target the body-centered-cubic (bcc) structure which
is only stable in a small region in the phase diagram of charged colloids and is, therefore, challenging to find. In order to achieve this
goal, we use the statistical fluctuations in the bond orientational order parameters to tune the interaction parameters for the bcc struc-
ture, while initializing the system in the fluid phase, using the Statistical Physics-inspired Inverse Design algorithm. We also find that this
optimization algorithm correctly senses the fluid-solid phase boundaries for charged colloids. Finally, we repeat the procedure employing
the covariance matrix adaptation-evolution strategy, a cutting edge optimization technique, and compare the relative efficacy of the two
methods.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5111492., s

I. INTRODUCTION

In the past few years, several inverse methods have emerged
that design optimal interactions in such a way that the system
spontaneously assembles into a targeted structure.1–4 These meth-
ods have received considerable attention in materials science5–7

and have been successively used to find crystal structures for
photonic band-gap applications,8 to predict crystals9 and protein
structures,10,11 materials with optimal mechanical and transport
properties,12 and for optimizing the interactions for self assem-
bly.13–17 Although many of the methods developed are either
based on black-box techniques, in which the algorithm tunes
the interaction parameters without taking the statistical nature of
the system into account, or are designed ad hoc for a particu-
lar class of systems, systematic approaches based on a statistical

mechanical formulation, which are general, and allow for applica-
tion tailored to specific systems of interest, have also been inves-
tigated. Recently, several methods have been proposed which take
into account the statistical nature of the system in updating the
interparticle interaction parameters.18–20 Lindquist et al.18 proposed
a relative entropy based inverse design approach which tunes the
interparticle interaction parameters for the self assembly of crys-
tal structures by exploiting the statistical nature of the system.
Later, Adorf et al.20 modified this method by carrying out relative
entropy minimization directly in Fourier space to target complex
crystal structures. These methods have been successfully employed
to design isotropic potentials to assemble a wide range of crystal
structures.

In the present work, we investigate the efficacy of one
such method, the Statistical Physics-inspired Inverse Design
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(SP-ID) method developed by Miskin et al.21 This method con-
siders statistical fluctuations present in the microscopic config-
urations of the system for tuning the interactions between the
particles. Apart from tuning the interparticle interaction param-
eters, system parameters such as temperature and pressure can
also be tuned using this method. In order to design these
interactions, we have used a quality function based on bond
order parameters (BOP)22,23 to rank the generated configura-
tions. The same task can be faced employing numerous opti-
mization techniques like relative entropy based inverse design,18–20

(adaptive) simulated annealing,24–26 particle swarm optimization,27

and several genetic algorithms.28 To evaluate the effectiveness
of the SP-ID algorithm, we compare it with the Covariance
Matrix Adaption-Evolutionary Strategy (CMA-ES),29–31 which we
regard as a state-of-the-art optimization technique for evolutionary
computation.

We have chosen a system of colloidal particles as the model
for which we wish to design the interactions in order to tar-
get a specific crystal structure. The interparticle potential of col-
loids offers a wide variety of functional forms. It can contain a
hard-core term, a dipole-dipole term, a charge dispersion term, a
screened-Coulomb (Yukawa) term, and a short-ranged attractive
depletion term. More specific designed colloidal particles such as
patchy colloids and DNA-functionalized colloids offer even greater
diversity of interactions. For all of these, the interaction parame-
ters can be tuned. In the case of Yukawa interactions, the Debye
screening length can be adjusted by changing the salt concentra-
tion, and the contact value can be tuned by altering the surface
charge of the particles. Previous studies have employed what may
be termed a forward method in which, starting from the micro-
scopic interaction parameters and specified thermodynamic param-
eters such as temperature and density, one computes the equilib-
rium properties and finds the stable phase of the system.32–34 In
the present work, our purpose is to employ an inverse method,
where the target structure and equilibrium properties are the input
from which we wish to design the interparticle interactions for
which the particles spontaneously self-assemble into the target
structure.

In this study, we considered a charged colloidal system in
which particles interact with a hard-core repulsive Yukawa poten-
tial. The complete phase diagram of hard-core Yukawa particles
is known from earlier studies.32–34 Because of the purely repul-
sive nature of the potential, this system displays only a fluid phase
which can freeze into a face-centered-cubic (fcc) or a body-centered-
cubic (bcc) crystal phases. The phase diagram of hard-core Yukawa
particles shows two triple points where fcc, bcc, and fluid phases
coexist. The bcc phase is only stable in a very small region in the
phase diagram and, for this reason, constitutes a reasonable test
case for the reverse-engineering process. In this work, we search
for optimal interparticle interactions which favor the crystalliza-
tion of the bcc structure. Here, we show three different cases,
in which we, respectively, tune one, two, and three parameters.
In all cases, we show that both SP-ID and CMA-ES adjust the
interparticle interactions that lead to the targeted bcc structure
formation.

This paper is organized as follows: In Sec. II, we define
the model system studied in this paper and the correspond-
ing phase diagram and bond order parameters to identify the

different phases. In Sec. III, we define the inverse design methods
and the form of the quality function used in this study. Results
for tuning the interactions to target the bcc structure for all three
cases are discussed in Sec. IV. Finally, we summarize our results in
Sec. V.

II. MODEL AND SIMULATION METHODS
A. Interaction potential

We consider a hard-core repulsive Yukawa system which rep-
resents a standard model for charged colloids. The form of the
potential is given by

βU(r) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

β𝜖 exp[−κσ(r/σ−1)]
r/σ for r > σ

∞ for r ≤ σ
, (1)

where β𝜖 is the contact value of the pair potential expressed in
units of kBT = 1/β, kB is the Boltzmann constant, κ is the inverse
of the Debye screening length, and σ is the hard-core diameter.
In Fig. 1, we show the phase diagram for such a system with
β𝜖 = 8 in the (1/κσ, η) representation and the (1/κσ, βPσ3) plane.34

The phase diagram exhibits a stable fluid, bcc, and fcc region, as
well as two triple points at which the three phases coexist. Note
that we always use scaled variables, a reduced temperature kBT/𝜖,
reduced pressure βPσ3, and inverse screening length 1/κσ, each of
which can be treated as tuning parameter for obtaining the desired
behavior.

B. Bond order parameters (BOP)
Every optimization algorithm, including SP-ID and CMA-ES,

works on the basis of minimizing a user-defined fitness function.
Here, we have used the averaged bond order parameters q̄l and w̄l
(l = 6). The first is computed as follows:22,23

q̄(i)l = [
4π

2l + 1

l

∑
m=−l
∣q̄(i)lm ∣

2
]

1/2

, (2)

where

FIG. 1. Phase diagram of a system in which the particles interact via a hard-core
repulsive Yukawa pair potential with β𝜖 = 8 in (a) the (1/κσ, βPσ3) plane and (b)
the (1/κσ, η) representation. The phase diagram displays a stable fluid, bcc, and
fcc phase.
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FIG. 2. Scatter plot of the averaged bond order parameters q̄6 vs w̄6 for the fluid,
bcc, and fcc phase of a system of Yukawa particles with contact value β𝜖 = 8 at
the high-density triple point. Each point corresponds to a single particle. In total,
2000 points were chosen randomly from each structure.

q̄(i)lm =
1

Ñb(i)

Ñb(i)

∑
j=0

q( j)lm ,

q(i)lm =
1

Nb(i)

Nb(i)

∑
j=1

Ylm(θ(rij),ϕ(rij)).

Here, Nb(i) is the number of neighbors of particle i, Ñb(i) is the
number of neighbors including particle i itself, Y lm(θ(rij), ϕ(rij))
denotes the spherical harmonics with rij the distance vector from
particle i to particle j. The second bond order parameter we used is
defined as

w̄
(i)
l =

∑
m1+m2+m3

(
l l l
m1 m2 m3

)q̄(i)lm1
q̄(i)lm2

q̄(i)lm3

(
l
∑

m=−l
∣q̄(i)lm ∣)

3/2
.

In order to calculate the radius of the first coordination shell
for each particle, we employ the solid angle based nearest-neighbor
(SANN) algorithm,35 where a nearest neighbor of a particle is iden-
tified by attributing a solid angle to each possible neighbor such that
the sum of solid angles equals at least 4π.

In Fig. 2, we show the scatter plots of q̄6 vs w̄6 for the fluid,
bcc, and fcc phases of a system of Yukawa particles with β𝜖 = 8 at
the high-density triple point conditions. We find distinct clouds of
points corresponding to the fluid, bcc, and fcc phases, and hence, q̄6
and w̄6 can be used to distinguish the three phases.

III. INVERSE DESIGN METHODS
A. Statistical physics-inspired inverse design method

In the SP-ID method, microscopic parameters such as the
interparticle pair potential parameters are tuned by exploiting sta-
tistical fluctuations in such a way that the system will evolve to
those states which correspond to the targeted macroscopic response

of that system.21 In this method, the time evolution of the prob-
ability distribution of finding the system in configuration x is
written as

ρ̇(x∣λi) = ρ(x∣λi)[ f (x) − ⟨ f (x)⟩], (3)

where ρ denotes the probability of finding a system in some con-
figuration, λ′i s are the adjustable parameters, and f (x) is a quality
function which gives a weight/fitness value to each configuration
based on a targeted macroscopic property. Time t is an artificial
time that indexes the optimization steps, and ⟨ f (x)⟩ is the ensemble
average over all the configurations for a given parameter set. With
straightforward manipulation, the above equation can be recast as
equations of motion for λi,21

λ̇i(t) = ⟨∂λi log(ρ)∂λj log(ρ)⟩−1
⟨[ f (x) − ⟨ f (x)⟩]∂λj log(ρ)⟩, (4)

where ⟨⋯⟩ denotes an ensemble average at a given set of values of λi.
To integrate Eq. (4), we have used a modified Euler method with a
fixed time step of 4.0.

We have built our quality function f (x) in the following way:

f (x) = ∫ dx′Θ(g(x′) ≥ g(x))ρ(x′∣λ), (5)

where Θ(a ≥ b) is the Heaviside function, equal to 1 whenever the
inequality in the argument is fulfilled and zero otherwise, and g(x)
denotes the fitness function,

g(x) = (q̄6(x) − q̄
target
6 )

2 + (w̄6(x) − w̄
target
6 )

2, (6)

with q̄6(x) = ∑N
i q̄(i)6 /N and w̄6(x) = ∑N

i w̄
(i)
6 /N the averages

of the bond order parameters over all the particles in the system,
and q̄target6 and w̄

target
6 are the corresponding quantities in the tar-

get structure (bcc). Here, the integral over x′ represents a sum over
a series of n different configurations as obtained from a simula-
tion for a fixed set of parameters (κσ, βPσ3, β𝜖). The quality func-
tion f (x) will have higher values for those configurations whose q̄6
and w̄6 values are closer to the target values. More precisely, f (x)
equals the probability of having a lower value of g(x) than any
other configuration drawn randomly from the equilibrium distri-
bution. To target the bcc structure, we have chosen q̄target6 = 0.395
and w̄

target
6 = 0.011 830 (average values of q̄6, w̄6 for the bcc struc-

ture obtained from the scatter plot shown in Fig. 2). For a perfect
bcc structure, these values are q̄6 = 0.5107 and w̄6 = 0.013 161,
but here we have targeted the bond order parameter values for a
finite-temperature bcc structure. The choice of the fitness function
depends on what the user is interested in, and might include other
quantities, like the lattice spacing, radial distribution function, pack-
ing fraction, etc., and may further be fine tuned by weighing the dif-
ferent terms [e.g., the terms depending on q̄6 and w̄6 in the definition
of g(x)].

B. Covariance matrix adaptation-evolutionary
strategy

In order to implement CMA-ES, we draw n samples from
a multivariate Gaussian distribution for each generation whose
dimension D corresponds to the number of parameters we wish to
tune. Subsequently, we evaluate the fitness function g(x) on the gen-
erated samples, and we pick the best k samples. Using the following
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equations, we estimate the multivariate Gaussian distribution with
mean μ⃗ (a D-dimensional vector) and Σ = σ2C the covariance matrix
of the Gaussian distribution for the next generation using

μi′ = μi +∑
x
w(x)(λi(x) − μi),

qi′ = (1 − c1)qi + c2
√
Σ−1ij(μj′ − μj),

pi′ = (1 − c3)pi + c4(μi′ − μi),

Cij
′
= (1 − c5 − c6)Cij

+ c5∑
x
w(x)(

λi(x) − μi
σ

λj(x) − μj
σ

− Cij) + c6pi′pj′

σ′ = σ exp [c7(
∥ qi′ ∥

⟨∥ N(0, I) ∥⟩
− 1)],

(7)

where {x} denotes the n samples consisting of multiple config-
urations calculated for n different parameter sets (κσ, βPσ3, β𝜖)
[denoted by λi(x) above] in CMA-ES, w(x) is the normalized dis-
tribution of weights based on the fitness of the samples, and ci’s
are free parameters. We choose w(x) ∝ log(k + 1) − log(i), where
i is the rank index of sample x [i = 1 for the configuration with
the smallest g(x) value] for the best k samples, and set w(x) = 0 for
the rest. q⃗ and p⃗ are additional D-dimensional vectors which deter-
mine, respectively, the changes in amplitude and directionality of the
covariance matrix, and finally, ⟨∥N(0, I)∥⟩ is the average length of a
vector drawn from a multivariate Gaussian distribution centered in
the origin and where the covariance matrix is the identity matrix. In
the present work, we use n = 10 and k = 5. For the first generation, we
initialize q⃗ and p⃗ as null vectors. Moreover, since we do not assume
any a priori correlation between the different tuning parameters,
the initial form of the covariance matrix Σ is diagonal. Finally, all
the free parameters of the CMA-ES are selected following the recipe
in Ref. 31.

Note that there is a substantial difference in the use of the
fitness function between the two methods. In SP-ID, we rank dif-
ferent configurations, so q̄6(x) and w̄6(x) are bond order parame-
ters computed in a single configuration. The SP-ID method is thus
based on the statistical fluctuations in the bond order parameters
(Fig. 2) in a simulation at a single set of interaction parameters in
order to optimize these values for the desired bcc structure. When
using the CMA-ES, we rank samples, so q̄6(x) and w̄6(x) are com-
puted as ensemble averages of these bond order parameters over
multiple configurations for distinct sets of parameters. The CMA-
ES method is thus based on a ranking of the different samples as
obtained for different interaction parameter sets in order to optimize
the parameter values.

C. Simulation details
In order to evaluate the ensemble averages and to generate dis-

tinct configurations for the SP-ID method, we perform constant
pressure and constant temperature (NPT) Monte Carlo (MC) simu-
lations on systems consisting of N = 250 hard-core repulsive Yukawa
particles. We initialize the simulations by placing the particles ran-
domly in a cubic simulation box. We equilibrate the system up to
105 MC cycles. One Monte Carlo cycle corresponds to N particle
moves and one volume move. The particle and volume moves are
adjusted in such a way that 45% of the particle moves and 20% of

the volume moves are accepted. We save 103 uncorrelated samples
and evaluate the ensemble averages in Eq. (4). These uncorrelated
samples are used to calculate the new parameters. Once the param-
eters have been changed, we repeat the whole procedure starting
the simulation from the last configuration generated with the pre-
vious parameters. We repeat this process until the target structure is
reached.

In the CMA-ES algorithm, we evaluate the ensemble averages
by performing simulations at different parameter sets at each gener-
ation. At every next generation, we take the last configuration of the
fittest sample as the starting point for all the new samples.

IV. RESULTS
A. Tuning parameters with the SP-ID method

We start from the case in which we tune only one interparticle
interaction parameter, the inverse Debye screening length 1/κσ of
the interaction potential [Eq. (1)] to target the bcc structure. At this
stage, reduced pressure βPσ3 and the contact value β𝜖 are kept con-
stant at βPσ3 = 33 and β𝜖 = 8. The initial value of 1/κσ is 0.4, to make
sure the system starts from a fluid configuration. Given the form dis-
cussed in Sec. III, the quality function gives higher weights to those
configurations whose q̄6 and w̄6 values are closer to the target val-
ues. The probability of finding the system in some configuration x,
in the NPT ensemble is given by, ρ(x|λi)∝ exp(−βH(x)). When only
one parameter is tuned (1D case), the equation of motion [Eq. (4)]
becomes

d
dt
(κσ) = −Cov[

∂(βH)
∂(κσ)

,
∂(βH)
∂(κσ)

]

−1

Cov[
∂(βH)
∂(κσ)

, f ], (8)

where H = U + PV is the Hamiltonian of the system.
By solving Eq. (8), a new value of 1/κσ is obtained and the algo-

rithm keeps on optimizing this interaction parameter until the goal
is reached, i.e., q̄6 = q̄

target
6 and w̄6 = w̄

target
6 . The path of the parame-

ters is shown in Figs. 3(a) and 3(b) in the (1/κσ, βPσ3) and (1/κσ, η)
planes. In both, the optimizer correctly tunes 1/κσ to reach the bcc
structure which can also be verified by examining the evolution of
the average q̄6 and w̄6 values as the simulation proceeds. In Figs. 4(a)
and 4(b), we plot the average q̄6 and w̄6 values as a function of the
simulation time. At the very beginning of the simulation, q̄6 and w̄6
values show that the system is in the fluid phase, and as the algo-
rithm optimizes the interactions, there is a sharp transition in both
of these values, which exactly happens at the fluid-bcc phase bound-
ary. Once the system reaches the bcc phase, it remains in the bcc
phase. We also find that as the system reaches the phase bound-
aries, there is a sudden change in the slope of the parameter’s tra-
jectory as shown in Fig. 3(c). In other words, the optimizer [Eq. (4)]
correctly recognizes the phase boundaries present in the phase
diagram.

We now analyze the case in which we tune two parameters
simultaneously (2D case), one interparticle interaction parameter,
the inverse Debye screening length 1/κσ, and one system parameter,
reduced pressure βPσ3, while β𝜖 = 8 is kept constant. Note that we
use σ and kBT as our unit of length and energy, respectively, which
we keep fixed, and hence, β𝜖 and βPσ3 can be varied independently
from each other. Here, we initialize the system again in the fluid
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FIG. 3. Evolution of the parameters in (a) the (1/κσ, βPσ3) plane and (b) the (1/κσ, η) plane when the system is initialized in the fluid phase at reduced pressure βPσ3 = 33,
inverse Debye screening length 1/κσ = 0.4, and contact value β𝜖 = 8. βPσ3 and β𝜖 are kept fixed, and only 1/κσ is tuned. (c) shows an enlarged view of the data near the
fluid-bcc coexistence region.

FIG. 4. Evolution of ⟨q̄6⟩ and ⟨w̄6⟩ as a function of simulation time during the optimization using the SP-ID algorithm for (a) and (b) the 1D, (c) and (d) the 2D, and (e) and
(f) for the 3D case, respectively. The system is initialized in the fluid phase at reduced pressure βPσ3 = 33, inverse screening length 1/κσ = 0.4, and contact value β𝜖 = 8.
For the 3D case, blue and red colored symbols represent the ⟨q̄6⟩ and ⟨w̄6⟩ values when the system is initialized at (i) 1/κσ = 0.4, βPσ3 = 33, and β𝜖 = 8, while indigo and
magenta colored symbols represent bond order parameter values for the case (ii) 1/κσ = 0.4, βPσ3 = 25, and β𝜖 = 6. The simulation time indicates the number of simulations
performed at distinct sets of interaction parameters.

phase at 1/κσ = 0.4 and βPσ3 = 33. The equations of motion [Eq. (4)]
for the two parameters become

d
dt

⎡
⎢
⎢
⎢
⎢
⎣

βPσ3

κσ

⎤
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cov[ ∂(βH)
∂(βPσ3)

, ∂(βH)
∂(βPσ3)

] Cov[ ∂(βH)
∂(βPσ3)

, ∂(βH)
∂(κσ) ]

Cov[ ∂(βH)
∂(βPσ3)

, ∂(βH)
∂(κσ) ] Cov[∂(βH)

∂(κσ) , ∂(βH)
∂(κσ) ]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−1

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cov[ ∂(βH)
∂(βPσ3)

, f ]

Cov[∂(βH)
∂(κσ) , f ]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

In Figs. 5(a) and 5(b), we show the path of the parameters in the
(1/κσ, βPσ3) and (1/κσ, η) planes. As the simulation time proceeds,
SP-ID successfully optimizes both the interaction parameters in such
a way that the final structure formed is the bcc crystal. The form of

the quality function is the same as we have used for the one param-
eter case. Variations of q̄6 and w̄6 values also verify the formation of
the bcc structure from the fluid phase [Figs. 4(c) and 4(d)]. We find
from Fig. 4(c) that the optimizer recognizes the phase boundaries
very well as also found for the one parameter case.

Finally, we investigate the case in which we tune three param-
eters simultaneously (3D case), two interparticle interaction param-
eters, the inverse Debye screening length 1/κσ and the contact value
β𝜖, and one system parameter, reduced pressure βPσ3. We perform
two independent simulations by initializing the system at two dif-
ferent state points in the fluid phase at (i) 1/κσ = 0.4, βPσ3 = 33,
and β𝜖 = 8; (ii) 1/κσ = 0.4, βPσ3 = 25, and β𝜖 = 6 and optimize all
three parameters, κσ, βPσ3, and β𝜖 for the bcc phase. The equations
of motion [Eq. (4)] when three parameters are tuned become

d
dt

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

βPσ3

κσ

β𝜖

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cov[ ∂(βH)
∂(βPσ3)

, ∂(βH)
∂(βPσ3)

] Cov[ ∂(βH)
∂(βPσ3)

, ∂(βH)
∂(κσ) ] Cov[ ∂(βH)

∂(βPσ3)
, ∂(βH)
∂(β𝜖) ]

Cov[∂(βH)
∂(κσ) , ∂(βH)

∂(βPσ3)
] Cov[∂(βH)

∂(κσ) , ∂(βH)
∂(κσ) ] Cov[∂(βH)

∂(κσ) , ∂(βH)
∂(β𝜖) ]

Cov[∂(βH)
∂(β𝜖) , ∂(βH)

∂(βPσ3)
] Cov[∂(βH)

∂(β𝜖) , ∂(βH)
∂(κσ) ] Cov[∂(βH)

∂(β𝜖) , ∂(βH)
∂(β𝜖) ]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cov[ ∂(βH)
∂(βPσ3)

, f ]

Cov[∂(βH)
∂(κσ) , f ]

Cov[∂(βH)
∂(β𝜖) , f ]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

J. Chem. Phys. 151, 084109 (2019); doi: 10.1063/1.5111492 151, 084109-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Evolution of the parameters in
(a) the (1/κσ, βPσ3) plane and (b) the
(1/κσ, η) plane when the system is initial-
ized in the fluid phase at reduced pres-
sure βPσ3 = 33, inverse Debye screen-
ing length 1/κσ = 0.4, and contact value
β𝜖 = 8. β𝜖 is kept fixed, and two parame-
ters 1/κσ and βPσ3 are tuned. (c) shows
an enlarged view of the data near the
fluid-bcc coexistence region.

FIG. 6. Evolution of [(a)] 1/κσ, [(b)] βPσ3,
and [(c)] β𝜖 as a function of simulation
time when the system is initialized in the
fluid phase at (i) βPσ3 = 33, 1/κσ = 0.4
and β𝜖 = 8 (indigo colored circles), and
(ii) βPσ3 = 25, 1/κσ = 0.4, and β𝜖 = 6
(red colored diamonds). Three parame-
ters are tuned to target the bcc structure,
namely βPσ3, 1/κσ, and β𝜖.

In Fig. 6, we plot the path of the tuned parameter trajectories
as a function of simulation time when the system is initialized in the
fluid phase and the desired goal is to reach the targeted bcc structure.
Initially, all three parameter values decrease while the system is in the
fluid phase and once it crosses the phase boundary between the fluid
and bcc phase, they start to saturate. As the simulation time pro-
ceeds, the optimizer successfully optimizes the parameters in such a
way that the final structure becomes the bcc phase. Here we also use
the same form of the quality function as we have used earlier for the
one and two parameter cases.

To confirm that the final structure is bcc, we also plot the evolu-
tion of ⟨q̄6⟩ and ⟨w̄6⟩ as a function of the simulation time in Figs. 4(e)
and 4(f), which indeed confirms that the simulation reaches the opti-
mal bond order parameter values for the bcc phase. Finally, one may
enquire what will happen if the targeted structure does not exist in
the phase diagram. We find in test runs that at higher temperature
β𝜖 = 2, SP-ID fails to target the bcc structure. This can be seen from
the variation of ⟨w̄6⟩ and average fitness function ⟨g(x)⟩ as a func-
tion of the simulation time. To better distinguish different structures
quantitatively, one may have to increase the contribution of ⟨w̄6⟩ in
the fitness function by a constant factor such that both ⟨q̄6⟩ and ⟨w̄6⟩

contribute equally to the fitness function.

B. Tuning parameters with the CMA-ES method
We now employ the CMA-ES algorithm to analyze all the cases

already studied using the SP-ID method, i.e., the tuning of one, two
and three parameters, highlighting the differences between the two
inverse design optimizers. We use the parameters corresponding to
the initial state point employed in the SP-ID algorithm as the initial
mean vectors of the multivariate Gaussian distribution in the CMA-
ES algorithm. In addition, we start the CMA-ES algorithm with a
diagonal covariance matrix with a standard deviation of 10% around
its mean value for each parameter. Finally, the initial values of each
component of the vectors q⃗ and p⃗ are set to zero.

In Fig. 7, we show the results for the one parameter case. The
points displayed in Fig. 7(a) represent the mean value of the Gaus-
sian distribution in each generation. At the beginning, the algo-
rithm tries to decrease the fitness function value by decreasing the
inverse Debye screening length 1/κσ. Since all the steps point in the
same direction, the variance of the Gaussian distribution increases
[Fig. 7(b)] and the mean value overtakes the bcc region, ending
up in the fcc phase. After this, the algorithm recognizes the right
direction, and the subsequent update is in the opposite direction,
i.e., the inverse Debye screening length increases. At the same time,
the covariance starts to shrink and the mean value of the Gaus-
sian distribution is found in the bcc region for the first time at the
6th generation. From this generation onwards, the updates are in
random directions inside the bcc region, leading to a further expo-
nential decrease of the covariance of the Gaussian distribution. At
the 12th generation, all the 10 simulations have a kσ value for which
the structure corresponds to the stable bcc phase.

FIG. 7. (a) Evolution of the mean value of the Gaussian distribution for 1/κσ in
the (1/κσ, βPσ3) plane when the system is initialized in the fluid phase at reduced
pressure βPσ3 = 33, inverse Debye screening length 1/κσ = 0.4, and contact value
β𝜖 = 8. The parameters β𝜖 and βPσ3 = 33 are kept fixed, and 1/κσ is tuned using
the CMA-ES method. (b) The variance of the Gaussian distribution for 1/κσ at each
generation.
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FIG. 8. Evolution of the mean value of the multivariate Gaussian distribution for
1/κσ and βPσ3 in the (1/κσ, βPσ3) plane when the system is initialized in the fluid
phase at reduced pressure βPσ3 = 33, inverse Debye screening length 1/κσ = 0.4,
and contact value β𝜖 = 8. The parameter β𝜖 is kept fixed, and 1/κσ and βPσ3 are
tuned using the CMA-ES method.

The cases in which we tune two or three parameters do not
present significantly different behavior of the CMA-ES algorithm
with respect to the one parameter case. In the two parameter case,
μ⃗ enters the bcc region for the first time at the 10th generation, while
at the 18th generation all the samples have entered the bcc region,
showing how CMA-ES is adversely affected by the dimensionality of
the parameter space. The results for the 2D case are shown in Fig. 8.
We note that the risk of overshooting is lower when more param-
eters are varied at the same time, since they all contribute to the
increase or decrease of the quality function, and the updates of the
mean values of the multivariate Gaussian distribution may therefore
not always be in the same direction. This prevents the covariance
matrix from growing too fast as already shown. Finally, the results
for both the investigated 3D cases are shown in Fig. 9. To confirm
that the final structure is bcc, we plot the evolution of ⟨q̄6⟩ and ⟨w̄6⟩

as a function of the simulation time in Fig. 10.
These analyses provide benchmarks for how fast the CMS-ES

algorithm converges in finding the target structure, as compared to
the SP-ID algorithm. Since each generation of the CMA-ES requires
n times (10 in this work), the computational effort of SP-ID, a com-
parison of run lengths in the two methods reveals that their efficien-
cies are very similar. However, in SP-ID, one has information on

FIG. 10. Evolution of (a) ⟨q̄6⟩ and (b) ⟨w̄6⟩ of the sample with the highest value of
the fitness at each generation during the 3D optimization with the CMA-ES method
for both the investigated cases. We observe a jump of q̄6 and w̄6 when, for the
first time, at least one of the generated samples is in the bcc region, even if the
mean value of the multivariate Gaussian distribution at the same generation does
not lie in the same region.

when the phase boundary is crossed. In CMA-ES, the size of the steps
from one generation to the other varies, depending on the current
form of the covariance matrix. This makes the algorithm explore the
landscape in an optimal way, sacrificing information about the phase
boundaries. Thus, we conclude that SP-ID and CMA-ES are com-
parable in their performance, but SP-ID has an edge in retrieving
information on the phase boundaries. Tuning the free parameters
of CMA-ES (ci) one can force the algorithm to perform small steps
and gain the same information regarding the phase boundaries, but
this would result in a huge rise of the computational effort required,
which would make CMA-ES an algorithm of poor efficiency and
use. Finally, it should be noted that in CMA-ES all the simulations
belonging to the same generation can be run simultaneously, which

FIG. 9. Evolution of the mean value of the multivariate Gaussian distribution for (a) inverse Debye screening length 1/κσ, (b) reduced pressure βPσ3, and (c) contact value
β𝜖 when the system is initialized in the fluid phase at (i) βPσ3 = 33, 1/κσ = 0.4, and β𝜖 = 8 (indigo colored circles), and (ii) βPσ3 = 25, 1/κσ = 0.4, and β𝜖 = 6 (red colored
diamonds). Three parameters are tuned to target the bcc structure, namely βPσ3, 1/κσ, and β𝜖 using the CMA-ES method.
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can be a great advantage, depending on the computational resources
of the user.

V. CONCLUSIONS
We studied the inverse problem of tuning interaction param-

eters between charged colloids interacting via a hard-core repulsive
Yukawa potential, so that they self-assemble into a targeted crystal
structure. We targeted the bcc structure which occupies a narrow
region in the phase diagram of the above system and is therefore
challenging to find. We showed a comparison between two differ-
ent optimization algorithms in order to achieve our goal: Statisti-
cal Physics-inspired Inverse Design (SP-ID) and Covariance Matrix
Adaption-Evolutionary Strategy (CMA-ES). The first makes use of
the statistical fluctuations in the bond order parameters to itera-
tively change the interaction parameters of the system. In addition
to effectively tuning the interaction parameters for obtaining the tar-
get structure, the SP-ID method correctly identifies the fluid-solid
phase boundaries present in the phase diagram. The CMA-ES algo-
rithm generates samples from a multivariate Gaussian distribution
at each generation and evaluates the fitness of these samples in order
to evolve the interaction parameters of the distribution. The num-
ber of generations needed to reach the goal is on average lower
in the case of the CMA-ES, and the steps in parameter space are
usually larger. This advantage is offset by the need to simulate mul-
tiple samples, and we find that the computational effort required
in the two methods is comparable. On the other hand, because of
the larger step sizes of the parameters, probing phase equilibrium
with CMA-ES can be less straightforward than with SP-ID. Most
importantly, we showed that both of these inverse methods lead to
the targeted bcc structure by tuning the interactions between the
particles. Thus, our results demonstrate both methods to be effec-
tive search algorithms that may be employed in other design tasks.
Although the quality function used here is strictly structural, one
may in principle also include quantifiers of dynamics, which may be
useful in optimizing the kinetic self-assembly pathways, for exam-
ple, to account for and exclude glassy dynamics, as well as other
kinetic factors of self assembly. Finally, we stress how exploiting
thermal fluctuations of a statistical system results in a more effective
search in the fitness function space. In the future, it would be use-
ful and fascinating to compare SP-ID to other related inverse design
methods.18–20
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