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Role of topological defects in the two-stage melting and elastic behavior of active Brownian particles
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We find that crystalline states of repulsive active Brownian particles at high activity melt into a hexatic
phase, but this transition is not driven by an unbinding of bound dislocation pairs as suggested by the
Kosterlitz-Thouless-Halperin-Nelson-Young theory. Upon reducing the density, the crystalline state melts into
a high-density hexatic state devoid of any defects. Decreasing the density further, the dislocations proliferate
and introduce plasticity in the system, nevertheless maintaining the hexatic state, but eventually melting into a
fluid state. Remarkably, the elastic constants of active solids are equal to those of their passive counterparts, as
the swim contribution to the stress tensor is negligible in the solid state. The sole effect of activity is that the
stable solid regime shifts to higher densities. Furthermore, discontinuities in the elastic constants as a function
of density correspond to changes in the defect concentrations rather than to the solid-hexatic transition.
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I. INTRODUCTION

According to the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) theory, a two-dimensional solid of passive
particles melts via a continuous transition into an intermediate
hexatic state of quasi-long-range bond orientational order and
melts subsequently via a second continuous transition into
a fluid state [1-3]. These transitions are triggered by the
unbinding of topological defects, which are particles with
a nonconforming number of neighbors with respect to that
of the crystal lattice. The coordination number is 6 for an
ideal triangular lattice. Hence, particles with a number of
neighbors N, that deviates from 6 are classified as defects.
One can distinguish defects that either exist freely as fivefold
and sevenfold disclinations or cluster into dislocations (5-7
pairs), dislocation pairs (5-7-5-7 quartets), or higher-order
clusters. The debate on the melting behavior of an equilibrium
system of hard disks as well as short-range repulsive disks
was only settled a few years ago, in both simulations [4-8]
and experiments [9], showing a two-stage melting scenario
that deviates from the KTHNY scenario of a continuous solid-
hexatic transition driven by an unbinding of dislocation pairs
and a first-order hexatic-fluid transition due to a proliferation
of grain boundaries.

Remarkably, nonequilibrium systems of self-propelled par-
ticles [10—13], which constantly convert energy from the envi-
ronment into persistent motion, have recently also been shown
to follow such a two-stage melting behaviour [14,15]. It was
found that the first-order nature of the liquid-hexatic transition
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persists up to a small degree of activity. The transition then be-
comes continuous until it reappears as a coexistence of dilute
and dense states at high activity [14,15]. The solid state was
found to melt into a hexatic state via a continuous transition.
In this work we further explore this hexatic-solid transition
with respect to the role of topological defects discussed in the
KTHNY theory and investigate whether the melting is driven
by transitions in defect concentrations.

We numerically simulate a system of N active Brownian
particles exhibiting overdamped Langevin dynamics

yki ==Y ViU(rij)+ yvoei + /2y ksT A},
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where vpe; is the self-propulsion speed, y is the damping
coefficient, kp is the Boltzmann constant, and 7 is the temper-
ature of the solvent. The particle orientation ¢; = (cos 8, sin6)
undergoes free rotational diffusion 6; = 4/2D, A}, where D, is
the rotational diffusion coefficient. The quantities A} and A}
are unit-variance Gaussian noise terms with zero mean. The
particles interact with a pairwise repulsive Weeks-Chandler-
Andersen potential U (r) = 4¢[(2)'? — (2£)%] + ¢ with a cut-
off at r. = 2/%¢, and we set kgT /e = 1. We first determine
the phase boundaries by measuring the equation of state
(pressure-density curves), density histograms, and the decay
of the orientational and positional correlation functions. We
present the state diagram in Fig. 1 in the activity-density (Pe-
p) representation, where the Péclet number is defined by Pe =
voT /o as the ratio of the persistence length of self-propelled
motion to the particle diameter and t the timescale of ther-
mal diffusion. The state diagram shows that the continuous
hexatic-solid transition persists upon introducing activity, but
shifts to higher densities due to the softness of the interaction
potential. We hereby assume that the solid state transforms
into a hexatic phase when the positional correlations decay
with a power-law exponent nr < 1/3 as described by the
equilibrium KTHNY theory.

Published by the American Physical Society


https://orcid.org/0000-0002-2169-0851
https://orcid.org/0000-0002-9166-6478
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.012013&domain=pdf&date_stamp=2020-01-14
https://doi.org/10.1103/PhysRevResearch.2.012013
https://creativecommons.org/licenses/by/4.0/

SIDDHARTH PALIWAL AND MARJOLEIN DIJKSTRA

PHYSICAL REVIEW RESEARCH 2, 012013(R) (2020)

144 - . . A
Fluid-Hexatic
72 4 A A
48 - o o 00 O mAAAAA‘_'HCXﬂ'ﬁ-C A
L 244 o 0 Cooo AA’AAKKZ—AAAA o O
& 1 Fluid SoE5EES Mgﬁm’/
5 12 © - Z2.4 -~ o 00om M A O -
|72+ cooms A B000 o
® 4.8 (Imm%Md:l\}ZDD 00 0164 oowm sasoo o o| O
A~ 944 cwnvmoon ooooooo Yy O
1.6 4 commoo 0 oo 0.8 qa= 88 ens
0.8 wemnon & o9l 0.0 mssmpang g g
0.0 {e:anooo ¢ ooo oo 090 092 094 096 o
0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
po’

FIG. 1. State diagram in the Pe-po? representation exhibiting

fluid (circles, red area), fluid-hexatic coexistence (diamonds, yellow
area), hexatic (triangles, green area), and crystal (squares, blue area)
states. The symbols denote state points used in the simulations, the
background colors denote the boundaries of the labeled regions,
and the black dashed line indicates the densities beyond which
the concentration of topological defects vanishes in simulations of
N =72 x 103 particles. The inset is a magnification of the low-Pe
regime.
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II. TOPOLOGICAL DEFECTS

We identify the topological defects by performing a
Voronoi construction and calculating the number of neighbors
N, for each particle. We classify them as N,-fold defects
and account for fivefold and sevenfold defects. In Fig. 2 we
show typical configurations, highlighting these defects in the
fluid, hexatic, and crystalline states at Pe = 0, 4.8, and 71.5.
At low activity Pe = 4.8, defect configurations are observed
similar to those for the passive hard-disk systems [6]. A
finite number fraction of dislocation pairs can be identified
in the solid state which can exist due to thermal fluctuations
without disturbing the positional order. In the hexatic state,
the presence of unpaired dislocation defects causes the posi-
tional order to decay exponentially, but the orientational order
decays algebraically. Finally, the fluid state comprises many
defect clusters and fivefold and sevenfold disclinations, both
destroying the local bond orientational order. However, the
hexatic states at Pe = 71.5 are significantly different in defect
configurations. The low-density hexatic state at po? = 1.420
shows a high number fraction of dislocations with almost
no dislocation pairs, whereas the high-density hexatic state
(po? = 1.600) at the same Pe shows a complete absence of
any defects.
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FIG. 2. Typical sections of active Brownian particle configurations (800 x 80c) for Pe = 0.0, 4.8, and 71.5 at labeled states, showing
fivefold (blue) and sevenfold (red) defects, other defects (black), and particles with N, = 6 (gray). Some vacancies are indicated by arrows
in the hexatic and solid states. The configurations at Pe = 4.8 are similar to the corresponding passive states. For Pe = 71.5 we find that
with increasing density the hexatic states show a decrease in the number fraction of defects, with a complete absence of defects at a density
pa? > 1.560. The positional correlations become quasi-long-range around a density po? ~ 1.900 for Pe = 71.5 as shown in Fig. 1. The insets
in the top right and bottom right corners show the same configurations as the main panels but colored according to the hexatic and positional
order parameters ¢ and {7, respectively, following the color mapping shown at the top.
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FIG. 3. (a) Number fraction of specific defects as a function
of density po? for various Pe. The background colors mark the
boundaries as indicated in the state diagram (Fig. 1) and the region
devoid of any defects is crosshatched. The symbols on the axis
indicate the densities where the defects become absent (x) and the
hexatic-solid transition densities (). (b) Difference in the number
fraction of unpaired dislocations and bound dislocation pairs (Npair —
Nguart)/N (squares) and difference in the number fraction of unpaired
dislocations and free disclinations (Npair — Niree)/N (circles) as a
function of po? for various Pe as labeled in the legend.

We further quantify this observation by measuring the
number fractions of the different types of defects, which are
plotted in Fig. 3(a) as a function of density for various Pe.
We clearly observe that the overall number fraction of defects
Niotal /N increases upon decreasing the density for all Pe. At
low Pe < 2.4, we find that the solid phase contains mainly
bound dislocation pairs, which move freely in the solid phase.
The number fraction of bound dislocation pairs Ngyar/N
increases slightly upon approaching the hexatic-solid tran-
sition, whereas the number fraction of dislocations Npair/N
increases more rapidly. At the hexatic-solid transition Ngyart /N
is still higher than Ny /N, but at lower density this scenario
is reversed. The high fraction of Np,/N implies that the
quasi-long-range positional order of the system is destroyed,
suggesting that the solid-hexatic transition is induced by the
unbinding of dislocation pairs. Upon reducing the density
further, we find that the fraction Ng../N of fivefold and sev-
enfold defects also starts to increase due to the unbinding of
dislocations into disclinations and the bond orientational order
decays exponentially in the stable liquid phase. To summarize,
we find that the two-step melting scenario consisting of a

solid-hexatic transition driven by the unbinding of dislocation
pairs and a hexatic-fluid transition caused by defect clusters
as observed for the two-dimensional (2D) passive systems of
short-range repulsive particles persists at low activity.

For higher activity Pe > 7.2, the behavior of dislocations
is different from that for passive systems as shown in Fig. 2.
For Pe > 7.2 the system seems to support a higher fraction of
dislocations as compared to dislocation pairs for all densities,
as observed in Fig. 3(a), where Nyuar never exceeds Ny, This
observation is more clearly visible in Fig. 3(b), where we plot
the differences (Npair — Nquart)/N and (Npair — Niree)/N. We
find that for Pe < 2.4 and for high densities (Npair — Nguart)/N
is negative whereas for Pe > 7.2 this difference is always pos-
itive, thereby demonstrating that a higher fraction of isolated
dislocations over bound ones is favored at higher activity.

In Figs. 3(a) and 3(b) we also mark the hexatic-solid
transition densities as identified from the spatial decay of
positional correlations [16]. These densities agree closely with
the minimum in (Npair — Nguart)/N which corresponds to a
reversal in the trend of defect concentrations and confirms
our previous observation that for Pe < 2.4 the hexatic-solid
transition is driven by the unbinding of dislocation pairs. The
difference (Npair — Niee)/N, however, is always positive for
all densities and shows similar trends for all values of Pe
considered.

In Fig. 3(a) we also locate the densities above which we
find a complete absence of defects in the system for all values
of Pe, marked by a cross on the x axis and the corresponding
density range by crosshatching. As we increase the activity,
this point crosses over from the dense crystal state to the
hexatic state. For Pe = 23.8, 47.7, and 71.5 we clearly see
that a large region corresponding to the dense hexatic states
is free from any kind of topological defects in contrast to
the low-activity systems. This dense hexatic region, devoid
of any defects, still has an exponentially decaying positional
order as indicated by the background colors corresponding to
the state diagram (Fig. 1). The activity-induced fluctuations
decorrelate the particle positions at long range and are re-
sponsible for a faster decay of positional order in this density
regime. The solid-hexatic transition in active systems is thus
driven by a striking nonequilibrium feature. We now test the
correspondence of changes in defect concentrations and the
elastic response of the system with respect to the predictions
of the KTHNY theory.

III. ELASTIC MODULI

The KTHNY theory for the melting of 2D equilibrium
solids is based on the linear elastic properties of a continuum.
Although the equilibrium theory relies on the elastic deforma-
tion energies to resolve the transition to a fluid state with a
vanishing shear and renormalized Young’s modulus, we can
extend the notion of mechanical stress, which is well defined
for an isotropic active fluid, to describe the elastic behavior in
terms of the response to an externally imposed linear strain
on the simulation box. In our simulations, we start from a
perfect hexagonal initial configuration with N = 2.8 x 10°
particles and measure the full stress tensor P,g, comprising
the ideal, virial, and swim components [17], in the deformed
box due to a fixed small linear strain €., € [—0.01, 0.01].
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FIG. 4. (a) Young’s modulus K as a function of density po?
collapses onto a single master curve K oc exp(ap® + bp> +cp +d)
for 0.0 < Pe < 71.5. The plus (4) markers denote the discontinuous
jump in K for the corresponding activity, cross (x) markers show
the densities where the defects disappear for a large system size of
N =72 x 103 particles, and star (x) markers denote the transition
densities from the decay of v, all offset vertically for clarity.
(b) Bare Young’s modulus K (open circles) obtained directly from
the Lamé coefficients and the corresponding renormalized values Kz
(triangles) for Pe = 0.0, 0.8, 1.6, and 2.4. The vertical lines mark
the hexatic-solid transitions identified from the decay of v, for
N = 72 x 10 particles.

We calculate the Lamé elastic coefficients A and u from the
effective stiffness tensor B obtained from the slope of a linear
fit to the stress versus strain curves [18-20] (see Ref. [16] for
details).

In Fig. 4(a) we plot the Young’s modulus K = 4u(A +
w)/ (X 4+ 2p) obtained for 0.0 < Pe < 71.5 and identify the
densities where K shows a discontinuous transition. Interest-
ingly, we observe that K collapses onto a single master curve
for all Pe. This remarkable result can be explained from the
fact that the swim contribution P$¥™ to the stress tensor [16]
is negligible in the solid, and hence the elastic moduli for
active solids equal the ones of their passive counterparts at the
same densities. Activity only shifts the stability region of the
solid to higher densities. Additionally, in the bottom part of
the figure we mark the densities where the defects disappear
for larger systems of N = 72 x 10° particles as a cross and
the hexatic-solid transition densities obtained from the decay
of positional correlations as a star, similar to the ones marked
in Fig. 3. We find that in the passive case the discontinuity
in K agrees well with the hexatic-solid transition. However,

for Pe > 7.2 the discontinuity in K agrees well with the
(dis)appearance of defects.

In equilibrium systems, the KTHNY theory suggests a
critical value of 167 for the renormalized Young’s modulus
BKro?, below which the solid is unstable to shear. The renor-
malization procedure corrects for the interactions of defects at
finite temperature. We apply the renormalization procedure to
the elastic constants up to Pe < 2.4 for which there is a finite
fraction of defects at the hexatic-solid transition.

To evaluate the renormalized Young’s modulus we first
explicitly measure the probability of dislocation pairs p, in
simulations and calculate the core energy E,. of defects using
pa = exp(—2BE.)Z(K), where Z(K) is the internal partition
function of a dislocation [21,22]. In equilibrium, due to ther-
mal fluctuations there is a finite probability for the formation
of dislocation pairs and the dislocation energy E. near the
melting transition is small but finite. As we increase the ac-
tivity the concentration of dislocation defects near the melting
transition decreases (see Fig. 3). This observation hints that
the energy needed to create a dislocation pair becomes higher
as we increase activity. Conversely, we can interpret that the
unbinding energy decreases with increasing activity, which
eases the dissociation of dislocation pairs into dislocations.
We then apply the recursion relations of the KTHNY theory
[21,22] to obtain the renormalized Young’s modulus Kp,
shown in Fig. 4(b) as a function of density for Pe = 0, 0.8, 1.6,
and 2.4. In the same plot we also show the bare values K as in
Fig. 4(a). For Pe = 0, we find that the renormalized K differs
significantly from the bare value. The density at which Ky
drops to zero agrees well with our estimate of the hexatic-solid
transition. However, as we increase the activity up to Pe = 2.4
we find that this is no longer valid. Hence, even for a small
Pe we can already see that the predictions of KTHNY theory
based on the elastic constants deviate significantly from the
transitions as obtained from the positional correlations of the
particles. At higher activity there is a complete absence of
defects at the hexatic-solid transition point and the transition
is entirely driven by activity.

IV. CONCLUSION

We found that at high activity the solid-hexatic transition of
2D active Brownian particles cannot be mediated by topolog-
ical defects as both the solid and hexatic states are devoid of
any defects in contrast to passive systems. We speculate that
the solid-hexatic transition may be driven by a growing length
scale of regions of cooperative motion. To provide support of
a growing length scale, we measure the particle displacement
u;(Ar) = r;i(t + At) — r;(¢) for each particle and show in [16]
that the regions of cooperative motion increase in size with
increasing density. Interestingly, we also observed that the
elastic constants of active solids are equal to those of the
passive counterparts, as the swim contribution to the stress
tensor is negligible in the solid state. The activity only shifts
the stability regime of the solid state to higher densities.
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