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I. MODEL

We consider a two-dimensional system of isotropic Brownian particles that exhibit a self-propulsion speed v0 which is
directed along the orientation vector ei = (cos θi, sin θi) assigned to particle i ∈ 1, . . . , N . To describe the translational
and rotational motion of the individual colloidal particle we employ the overdamped Langevin dynamics:

γṙi = −
∑
j 6=i

∇iU(rij) + γv0ei +
√

2γkBTΛt
i,

θ̇i =
√

2DrΛ
r
i , (S1)

where γ is the damping coefficient due to the drag forces from the implicit solvent, kB is the Boltzmann constant,
and T is the bath temperature. Dr is the rotational diffusion coefficient. The quantities Λt

i and Λri are unit-variance
Gaussian noise terms with zero mean: 〈

Λt
i(t)
〉

= 0, 〈Λri (t)〉 = 0,〈
Λt
i(t)Λ

t
j(t
′)
〉

= I2δijδ(t− t′)〈
Λri (t)Λ

r
j(t
′)
〉

= δijδ(t− t′), (S2)

where I2 is the 2× 2 identity matrix. The angular brackets 〈· · · 〉 denote an average over different realizations of the
noise. The particles interact with a short-range repulsive Weeks-Chandler-Andersen (WCA) potential given by:

U(r) = 4ε

[(σ
r

)12
−
(σ

r

)6]
+ ε, r ≤ 21/6σ

= 0 r > 21/6σ (S3)

where r = |rij | is the distance between the centers of particle i and j, σ is the particle diameter pertaining to the
length scale in WCA potential, and ε is the strength of the particle interactions.

We set the system temperature kBT/ε = 1, following Ref. [1], and the damping coefficient γσ2/ε = 1 fixing the
translational diffusion coefficient to correspond to the free diffusion of particles given by the Stokes-Einstein relation
Dt = γ−1kBT . This sets our time scale as τ = γσ2/kBT . The rotational diffusion coefficient is set to Drτ = 3 and
we use a time step size dt = 10−5τ for numerically integrating the equations of motion. We define a non-dimensional
Péclet number Pe = v0τ/σ as the ratio of the persistence length of motion to the particle diameter and perform
simulations using the HOOMD-Blue [2, 3] package in the range 0 ≤ Pe ≤ 150. We used N = 72× 103 particles in an
approximately square 2D periodic simulation box with dimensions Lx, Ly ≈ 250σ for identifying the fluid-hexatic-solid
transitions and N = 2.8× 103 for calculating the elastic moduli. We used a regular hexagonally packed arrangement
of particles at the overall system density as our initial configuration and we collect snapshots for 200τ − 500τ at an
interval of τ for analysis after allowing the system to achieve a stationary state for about 200τ .

As mentioned in the main text, the state diagram shown in Fig. 1 was obtained by measuring the equation of state
(pressure-density curves), the density histograms, the decay of the orientational and positional correlation functions
to locate the boundaries as precisely as possible. Specifically, to locate the coexistence, we identified negative slope
regions in the pressure-density curves as well as double-peaked structure of the density histograms similar to the
analysis presented in Ref. [4] and Ref. [5]. We describe below the orientational and positional order parameters used
for identifying the hexatic and solid phases.
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II. ORIENTATIONAL AND POSITIONAL ORDER

We measure the local 6-fold orientational symmetry around particle i using the hexatic order parameter ψ6(ri)
given by:

ψ6(ri) =
1

Nb

∑
j∈Nb

exp(ι6θij), (S4)

where Nb denotes the number of nearest neighbors of particle i, identified using a Voronoi construction, and the bond
angle θij is measured as a deviation of the orientation of the vector rij from the reference global system orientation
measured from Ψ6(L) averaged over all the particles. We study the decay of the spatial orientational correlation
function g6(r) expressed as:

g6(r) = 〈ψ∗6(r′ + r)ψ6(r′)〉. (S5)

From the KTHNY theory, the equilibrium hexatic phase exhibits quasi long-range orientational order which decays
algebraically as g6(r) ∝ r−η6 with an exponent 0 ≤ η6 ≤ 1/4, and the liquid phase is characterized by an exponential
decay of g6(r). We use the same criteria to identify the liquid-hexatic phase transition boundary in Fig.1 in the main
text.
To investigate the decay of positional order, we measure the positional correlation function

gT (r) = 〈ψ∗T (r′ + r)ψT (r′)〉, (S6)

where ψT (ri) is the positional order parameter expressed as:

ψT (ri) = exp(ιk0 · ri). (S7)

Here k0 is the vector in reciprocal space denoting one of the first Bragg peaks in the 2D structure factor S(k). The

magnitude of this vector is equal to that of the reciprocal lattice vector i.e. k0 = (0, 4π/a
√

3) where a = (2/ρ
√

3)1/2σ
is the lattice spacing in a regular hexagonal packing at a number density ρ in a 2D geometry. According to the
KTHNY theory, the positional order of a two-dimensional solid decays algebraically as gT (r) ∝ r−ηT with an exponent
0 ≤ ηT ≤ 1/3. Upon melting, the decay of the positional correlations becomes exponential i.e. gT (r) ∝ exp(−r/ξT )
with a correlation length ξT , which decreases with decreasing density. For each case, we measure the positional
correlation functions gT (r) up to an interparticle separation of r = L/2 with L the box length. The measurements
are averaged over multiple configurations, at an interval of 0.5-1 τ to yield the curves shown in Fig. S1 and Fig. S2.
We show the gT (r) curves as a function of particle separation r in Fig. S1 and extract the correlation lengths ξT in
the case of an exponential decay or the exponent ηT in the case of an algebraic decay.

In Fig. S1, for Pe = 0 we can clearly identify the change from an exponential to algebraic decay upon changing the
density from 0.920 to 0.926. However, for Pe ≥ 7.2 the decay does not fit either an algebraic or an exponential decay
for the full range of particle separations. For small r, the decay is close to an exponential with a large correlation
length that may span the full simulation box for Pe ≥ 47.7. But for large r the decay is close to a polynomial decay.
Hence, in order to identify the hexatic-solid transition in this case, we locate the density at which the exponent ηT of
a polynomial fit to the tail of the correlation function becomes smaller than 1/3. For Pe = 0, we find that the decay
of gT (r) becomes algebraic with ηT ≈ 1/3 at ρσ2 = 0.926, marking the hexatic-solid phase transition. For Pe = 71.5
this transition is located near ρσ2 = 1.900.

In Fig. S3(a) and (b) we show typical particle configurations colored according to the angle of positional order
parameter ψT (ri). We can observe topological defects in the configurations for ρσ2 = 1.420 and 1.550 but not for
ρσ2 = 1.600 and 1.950 with N = 72× 103 particles.

A. System-size dependence

To check the finite-size effects on the decay of the positional order we also simulate a few cases with larger system
sizes up to N = 2262 × 103 particles. We show the positional correlation function gT (r) for these different system
sizes at Pe = 23.8 and 71.5 in Fig. S2. The values for the exponents ηT of the power-law decay fitted in the tail region
marked by the dashed lines for each case, are also listed in the figure. For N = 72 × 103 and both cases considered
here, we observe clearly that ηT < 1/3, which corresponds to a solid phase. However, for N ≥ 288 × 103, we find
that the exponent ηT > 1/3 increases with system size, indicating a faster decay for larger systems. Hence, all the
systems with N ≥ 288× 103 are identified as hexatic states, and the hexatic-solid transition shifts to higher densities
for a larger number of particles N . Despite these differences in the decay of the positional correlations, the observed
hexatic region devoid of any defects is robust for the investigated system sizes.
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FIG. S1. Positional correlation function gT (r) for 0 ≤ Pe ≤ 71.5 at the labeled densities. The values for the exponents ηT ,
obtained by fitting the gT (r) with an algebraic decay, are also displayed in the figure. The decay is exponential for a hexatic
state with a correlation length that increases with density, and the decay becomes quasi-long ranged for a crystalline state.
The dashed grey lines indicate algebraic decay with an exponent ηT = 1/3 and the dotted grey lines indicate exponential decay
with a correlation length 100σ.
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FIG. S2. Positional correlation function gT (r) for (left) Pe=23.8 and ρσ2 = 1.500, and (right) Pe=71.5 and ρσ2 = 1.950
for system sizes of N = 72 × 103 (blue) identified as a crystalline state in Fig. S1, N = 288 × 103 (orange), N = 550 × 103

(green) and N = 2262 × 103 (red). The values for the corresponding exponents ηT , obtained by fitting the gT (r) with an
algebraic decay, are displayed in the figure, showing that these state points correspond to a hexatic state for N ≥ 288 × 103.
The long-distance regime of the gT (r) is ignored in our fitting procedure. The grey dotted lines indicate an exponential decay
with a correlation length ξT = 100σ, and the grey dashed lines indicate a power-law decay with exponent ηT = 1/3.
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FIG. S3. Typical particle configurations in the high density region for Pe = 71.5 with the color scheme as follows: (a) and (b)
as arg(ψT ) after subtracting the mean orientation, as shown in the color wheel on the right where (a) is a magnification of (b),
(c) magnitude of displacement vectors |ui(∆t = 10τ)| in units of lattice spacing a as shown in the legend, (d) displacement
vectors ui(∆t = 10τ) as arrows with a normalizing scale factor, (e) magnified view of displacement vectors with background
colors indicating the orientation of the ui vector as shown in the color-wheel on the right. We observe topological defects in
the configurations for ρσ2 = 1.420 and 1.550 but not for ρσ2 = 1.600 and 1.950 with N = 72× 103 particles.



5

III. COOPERATIVE MOTION

We note that the solid-hexatic transition at high Pe cannot be driven by changes in the concentrations of the
topological defects as the defect-free solid melts into a hexatic phase devoid of any defects. Hence, we speculate that
the solid-hexatic transition may be driven by a growing length scale of regions of cooperative motion. To corroborate
this, we measure the particle displacement ui(∆t) = ri(t+ ∆t)− ri(t) of particle i ∈ 1, · · · , N for Pe = 71.5 and for
varying hexatic and solid states.

In Fig. S3, we show typical particle configurations of hexatic states at densities ρσ2 = 1.420, 1.550, and 1.600 and
a solid state at density ρσ2 = 1.950 for Pe = 71.5 and N = 72 × 103 particles. We display the defect particles in
black in Fig. S3 (a), (b), and (e) and in blue (5-fold disclination) and red (7-fold disclination) in Fig. S3 (c) and
(d). We observe topological defects in the configurations for ρσ2 = 1.420 and 1.550 but not for ρσ2 = 1.600 and
1.950, confirming that the hexatic-solid transition is not mediated by defects. In Fig. S3(a) and (b), the particles
are colored according to arg(ψT ) with ψT the local positional order parameter. Fig. S3(a) is a zoom-in of the area
displayed by the white box in Fig. S3(b). We clearly observe that the range of the positional order increases with
density. In Fig. S3(c), the particles are colored according to the magnitude of the displacement vectors |ui|. We
clearly observe that the average magnitude of displacements decreases with increasing density and that the size of
the regions with a similar |ui|, characterizing cooperative motion, increases. The growing length scale of regions of
cooperative motion with increasing density can also be appreciated from the displacement maps in Fig. S3(d) and (e),
which show the orientation of ui as arrows and colors, respectively. The size of regions with a homogeneous color,
denoting cooperative motion, increases with density and the system becomes more solid-like when the regions become
system-spanning.

Displacement maps for N = 2262× 103 particles

In addition, we also investigated the growing length scale of regions of cooperative motion for system sizes as large
as N = 2262× 103 particles. We show the positional correlation functions gT (r) over a density range of ρσ2 = 1.500
to 2.150 in Fig. S4 from simulations with N = 2262 × 103 particles for Pe=71.5. We collect particle configurations
at a frequency of 0.5τ for a duration of 100τ after an equilibration run of about 50τ . We used a time step of
dt = 5× 10−6τ and each simulation required about 14400 CPU hours on a 1.4GHz AMD processor using a modified
version of LAMMPS [6]. We fit the gT (r) with both an exponential decay as well as an algebraic decay, and present
the correlation length ξT and exponent ηT in the figure. Even for the highest density that we were able to simulate
within our computational resources, ρσ2 = 2.150, we did not observe a perfect algebraic decay with an exponent
ηT ≤ 1/3, and hence the system is identified as an hexatic state.

In Fig. S5, we show the displacement maps ui(∆t = 1τ) for system sizes as large as N = 2262 × 103 particles
using different representations. In Fig. S5(a), the particles are colored according to the direction of the displacements
ui(∆t = 1τ). The size of regions with a homogeneous color, denoting cooperative motion, increases with density. In
Fig. S5(b) and (c), we show the displacement vectors ui as arrows. Fig. S5(c) is a zoom-in of the system. In addition,
we color the defect particles as blue (5-fold disclination) and red (7-fold disclination) in Fig. S5(c). We clearly observe
that the regions of cooperative motion increase in size upon increasing the density.
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FIG. S4. Positional correlations gT (r) on a log− log scale for a system size of N = 2262 × 103 for Pe= 71.5. The values for
the correlation length ξT fitted in the region (1σ− 200σ) and exponents ηT of the power-law decay fitted in the tail region are
also quoted in the figure. The dotted lines indicate exponential fits and the dashed lines indicate power-law fits.
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FIG. S5. Displacement maps for Pe = 71.5 and densities as labeled in the figure. In (a) the color indicates the orientation of
the displacement vector ui(∆t = 1τ) as shown in the color-wheel on the right, showing an increase in the size of regions of
cooperative movement with increasing density. In (b) and (c) we show the displacement vectors ui(∆t = 1τ) as arrows scaled
by a normalizing factor. The bottom row is a magnification of the middle row.
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Finally, we compare solid states for Pe = 0 and Pe = 71.5 for a system size of N = 72 × 103 particles. We show
the magnitude of the displacement vector |ui(∆t = 10τ)| in Fig. S6(a) and (b), and the vector ui itself as arrows in
Fig. S6(b) over a time interval of ∆t = 10τ . We color the defect particles as blue (5-fold disclination) and red (7-fold
disclination). Fig. S6(b) is a zoom-in of the white box shown in Fig. S6(a). For the solid state at Pe = 0, the defect
configurations are mainly bound dislocation pairs, and the dynamics appears to be heterogeneous. For a defect-free
crystalline state at Pe = 71.5 and ρσ2 = 1.950, the dynamics is suppressed but more cooperatively. In addition, we
add supplementary movies to show the displacement fields in time at Pe = 0 for a solid state, and at Pe = 71.5 for
both a hexatic and a solid state.

FIG. S6. (a) Magnitude of the displacement field ui(∆t = 10τ) for the states marked as crystalline in Fig.1 in the main

text for Pe= 0.0 and 71.5. The color scale, in units of the lattice parameter a = (2/ρ
√

3)1/2σ, is shown on the right. (b) The
displacement vectors ui(∆t = 10τ) as arrows with lengths scaled by a normalizing factor and the defects colored as per the
convention defined in Fig.2 in the main text.

Movie 1a-1c show the displacement fields ui(∆t = 10τ) along with the defects (if present) for (1a) Pe=0.0 ρσ2 = 0.940
(solid state), (1b) Pe=71.5 ρσ2 = 1.550 (hexatic state) and (1c) Pe=71.5 ρσ2 = 1.950 (solid state).

Movie 2a-2b show the magnitude of positional order parameter ψT along with defects (if present) for (2a) Pe=0.0
ρσ2 = 0.940 (solid state) and (2b) Pe=71.5 ρσ2 = 1.950 (solid state).
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IV. ELASTIC MODULI

A. Stress tensor

In order to measure the bulk pressure P in our system consisting of N active Brownian particles, we employ
the expressions as introduced by Winkler et al.[7] for isotropic systems, but here we generalized these expressions
to anisotropic systems in 2D. Specifically, the pressure for isotropic active particles in a periodic box with lateral
dimensions Lx and Ly and 2D ‘volume’ V = LxLy is calculated using P = Tr(P) where the full stress tensor P is
given by:

Pαβ = P vir
αβ + δαβ(P id

αβ + P swim
αβ ). (S8)

Here P id is the ideal gas pressure given by P id = ρkBT with ρ = N/V the number density of the particles. The virial
contribution P vir is obtained using the standard virial expression

P vir
αβ = − 1

4V

〈
N∑
i

N∑
j 6=i

∂ri,βU(rij) · (ri,β − rj,β)

〉
. (S9)

The swim contribution P swim
αα due to the self-propulsion is given by:

P swim
αα =

γρv20
2Dr

− γv0
4V Dr

〈
N∑
i=1

N∑
j 6=i

rij,αei,α
rij

∂U(rij)

∂rij

〉
. (S10)

We note that the full stress tensor Pαβ fully captures the anisotropy in finite -strain simulations. An alternative
expression is also found in literature [8–10] which defines the swim stress tensor as the moment of swim force:

Pswim =
γv0
V

〈
N∑
i=1

re

〉
. (S11)

This expression is identical to Eq. S10 as shown in Ref. [7] for isotropic systems. We verified that both expressions
are identical by measuring explicitly the tensorial swim stress using both methods in finite -strain simulations.

B. Stiffness tensor and Lamé elastic coefficients

In the linear elastic theory of isotropic solids, the elastic moduli relate the stress response of a system to an applied
strain. In equilibrium, the elastic moduli are related to the free energy change due to such deformations [11]. Instead,
for non-equilibrium systems we directly assume Hooke’s law which linearly relates the mechanical stress Pαβ with the
applied strain εγδ through a symmetric stiffness tensor C given by:

C =

C11 C12 0 0
C22 0 0

0 0
C44

 =

λ+ 2µ λ 0 0
λ+ 2µ 0 0

0 0
µ


where λ and µ are the Lamé coefficients in equilibrium systems [11]. For conciseness, we follow the Voigt notation
above for indexing Cαβγδ with xx=1, yy=2, and xy=4. If a system is under a uniform isotropic pressure, the stiffness
tensor C can be rewritten in terms of an effective stiffness tensor B as [12, 13]:

Bαβγδ = Cαβγδ − P (δαγδβδ + δαδδβγ − δαβδγδ) (S12)

B11 = C11 − P, B22 = C22 − P,
B12 = C12 + P, B44 = C44 − P,

where P = (Pxx + Pyy)/2 is the uniform pressure. The bulk modulus E, the shear modulus G and the Young’s
modulus K are related to the Lamé coefficients in 2D as:

E = λ+ µ, G = µ, K =
4µ(λ+ µ)

λ+ 2µ
=

4EG

E +G
. (S13)
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Furthermore, from equilibrium statistical thermodynamics the isothermal compressibility κ = 1/E, where E is the
bulk modulus, is expressed as:

1

E
= κ = − 1

V

(
∂V

∂P

)
T

=
1

ρ

(
∂ρ

∂P

)
T

, (S14)

which can also be measured directly from the slope of P − ρ curves. Once the uniform pressure of the system and
the stiffness tensor (or the effective stiffness tensor B) are known, we obtain the elastic moduli from λ and µ using
Eq. S13. In our simulations we apply the method of box deformations to numerically evaluate the stiffness tensor for
a system of interacting particles in an NV T ensemble [13, 14].

We extract the four non-zero elements of the stiffness tensor C by performing three kinds of deformations of the
simulation box following Ref. [14]. In the first kind of deformation, the box is elongated or compressed along the
x-direction by a small factor εxx such that the particle coordinates in the x-direction become x′ = x(1 + εxx) and the
box length also becomes L′x = Lx(1 + εxx). Similarly, the box can be elongated or compressed along the y-direction
corresponding to imposing a small linear strain εyy. Both these deformations correspond to a change in the overall
density of the system but the magnitude is kept small in order to stay in the linear response regime. The third
deformation is of a shearing type in which we change the shape of the box by keeping the volume constant. The angle
between the x and y dimension box vectors is changed from π/2 to π/2− tan−1(εxy). The particle positions are then
transformed as (x, y)→ (x+ yεxy, y).
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Pe=7.2(b)

FIG. S7. (a) Diagonal Pxx(◦), Pyy(�) and (b) off-diagonal Pxy(4) components of the full pressure tensor (Eq. S8) obtained
in a deformed simulation box with N = 2.8 × 103 particles as a function of linear tensile and shearing strains, εxx and εxy,
respectively, for various state points ρσ2 as labeled in the legend for Pe = 7.2. The stress response is linear in this regime
of small strain magnitudes. We obtain the elements of the effective stiffness tensor B from the slope of a linear fit (solid and
dashed lines) to the data points (symbols). The errorbars in the measurements are smaller than the symbol sizes.

In our simulations, we start from a perfect hexagonal initial configuration with N = 2.8× 103 particles and deform
the box corresponding to the applied strain. We then measure the full stress tensor Pαβ after a sufficiently long
equilibration time that allows the system to reach a steady state. We perform the measurements by applying fixed
linear strain εxx ∈ [−0.01, 0.01] in intervals of 0.004. For an isotropic solid only the first two elements C11 and C12

are sufficient to obtain the Lamé coefficients λ and µ, which can be measured just by applying a longitudinal strain
εxx. However, for some cases we also measure the values of µ obtained by imposing a shearing strain εxy and confirm
that the two independent measurements agree. The effective stiffness tensor B is directly obtained from the slope of
a linear fit to the stress vs. strain curves, as shown for B11, B12 and B44 in Fig. S7, using

B11 =
∂Pxx
∂εxx

, B22 =
∂Pyy
∂εyy

, B12 =
∂Pyy
∂εxx

, B44 =
∂Pxy
∂εxy

,
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C. Bulk and Shear elastic moduli

In Fig. S8(a) and S8(b) we plot the bulk modulus E and the shear modulus G, respectively, as a function of density
for various Pe obtained using the method described above. For Pe = 0 (magnified in the inset) we find that there is
a distinct jump in both E and G, as indicated in the figure by a blue arrow, at a density of ρσ2 = 0.926. This jump
is indicative of the second order nature of the transition. Upon increasing Pe, we observe a similar jump appearing
in both E and G at higher densities marked by arrows in the figure. The bulk modulus E shows only a discontinuity
for higher Pe but the shear modulus G shows a sharp drop to very small values at this transition upon reducing the
density. Such a small value of the shear modulus G indicates that the system is not a solid anymore and undergoes
plastic deformation upon shearing. Furthermore, in the same plots we also indicate the densities where we observe
a finite number of defects in the simulations with N = 2.8 × 103 particles by a plus marker (+) as in the main text
Fig. 4(a). These points were determined by analyzing the sampled snapshots within our simulated time which show
a complete absence of defects at densities higher than the marked points (+).

For Pe = 0 the defects disappear at a density of ρσ2 = 0.950 which is much higher than the point ρσ2 = 0.926 at
which we observe the jump in the elastic moduli. For Pe ≥ 7.2 we find that the two transition points agree extremely
well. This indicates that for active cases the system becomes plastic as soon as a finite number of defects, mainly
dislocations, appear in the system. On the other hand, the elastic moduli of the active solid states as a function of
density collapse onto a single master curve independent of Pe. This remarkable result can be explained by the fact
that the swim contribution to the stress tensor is zero or negligible in the solid phase, and hence, the elastic constants
of active solids become equal to those of passive solids at the same density. The sole effect of activity is that the
stable solid regime shifts to higher densities with activity. A numerical fit of the form E,G ∝ exp(aρ3 + bρ2 + cρ+ d)
is shown as a black solid line in both Fig. S8(a) and Fig. S8(b), and agrees very well with the measurements.

V. RENORMALIZATION PROCEDURE FROM KTHNY THEORY

In equilibrium systems, the KTHNY theory suggests that the melting transition is accompanied by a lowering
of the Young’s modulus βK below a critical value of 16π. To correct for the interactions of defects present at a
finite temperature a renormalization group analysis is applied to obtain the renormalized value KR of the Young’s
modulus which can then be compared against the numerical value of 16π to identify the melting transition. The
theory describes the dislocation defects in 2D systems associated with a ‘core energy’ Ec [15, 16]. The probability of
finding a bound pair of such dislocation defects is given by [17, 18]:

pd = exp(−2βEc)Z(K)

= exp

(
− 2Ec
kBT

)
2π
√

3

βK/8π − 1
I0

(
βK

8π

)
exp

(
βK

8π

)
(S15)

where Z(K) is the internal partition function of a dislocation, and I0 is a modified Bessel function. The theory
suggests a continuous transition from the solid to the hexatic state for large core energies Ec ≥ 2.8kBT and a weakly
to strongly first-order transition as Ec approaches and becomes lower than a value of 2.8kBT [19]. Typically, for
systems with hard-core interactions the value of Ec near the solid-hexatic transition is ∼ 6kBT as found in Ref. [20]
for monolayers of hard spheres.

The renormalization group recursion relations for the Young’s modulus K are expressed as [15, 16, 18]:

∂

∂l

(
8π

βK(l)

)
= 24π2y2 exp

(
βK

8π

)[
0.5I0

(
βK

8π

)
− 0.25I1

(
βK

8π

)]
(S16)

∂y(l)

∂l
=

(
2− βK

8π

)
y + 2πy2 exp

(
βK

16π

)
I0

(
βK

8π

)
. (S17)

where the fugacity y of the dislocation-pair fluid is obtained from an estimate of the core energy Ec as:

y = exp

(
− Ec
kBT

)
. (S18)

The differential equations Eq. S16-S17 can be solved recursively for l = 0 . . .∞ by using the unrenormalized (‘bare’)
values K(0) = K and y(0) = exp(−Ec(K(0))) as the initial guesses for l = 0 and utilizing a trapezoidal (or higher
order scheme) for performing the integration. The renormalized values are obtained from the renormalization-flow
diagram of y-vs-1/K (Fig. 1 in Ref. [18]) for the separatrix and KR = K(∞) when y(∞) = 0. Exactly at the
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FIG. S8. (a) Bulk modulus E and (b) shear modulus G, obtained by explicitly straining the simulation box with N = 2.8×103

particles, as a function of density ρσ2 for various Pe as labeled in the legend. Both the bulk and the shear moduli collapse
onto a single master curve indicated by the black lines which are fits of the form E,G ∝ exp(aρ3 + bρ2 + cρ + d). Upon
lowering the density, the shear modulus G drops sharply to zero at the critical density where the defects start to appear for
the corresponding activity, and the bulk modulus E shows a transition to a lower stable curve. The transition points at which
the defect concentration becomes zero obtained from visual inspection in a system of N = 2.8× 103 particles are marked with
a plus (+).

transition, the renormalization-flow follows the separatrix and above (T > Tm) and below (T < Tm) the melting point
goes to the end points ∞ and 0, respectively.
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