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I. COMPUTATIONAL METHODS

We model the experimental mixture of host and guest fd-viruses as a binary mixture of

hard spherocylinders. We perform Monte Carlo simulations on a binary mixture of Nh =

3072 host rods of length Lh and diameter d and Ng = 6 guest rods of length Lg and diameter

d. We use a high-density ABC crystal state as our initial configuration, and we expand the

system via Monte Carlo (MC) simulations in the NPT ensemble to a low-density smectic

state at pressure βPv0 ≈ 6.39 with a smectic layer spacing λ ∼ 1.1Lh. We keep the

number of particles, Ng and Nh, the pressure P , and the temperature T fixed in the NPT

MC simulation, whereas the system volume V and the particle configurations (positions and

orientations) are evolved via random variations that are either accepted or rejected according

to the acceptance rules that enforce the correct statistical physics [1].

After equilibration of the system, we perform production runs in the NV T ensemble, i.e.

the number of particles N , volume V , and hence the density ρ = N/V are kept fixed, and

we track the positions of 3000 host particles and 6 guest particles to measure their diffusive

properties. In general, MC simulations are not guaranteed to yield realistic particle trajec-

tories, and do not provide a physical time scale. However, for sufficiently small maximum

displacements NV T -MC simulations with simple translational and rotational moves produce

trajectories that follow the correct Brownian dynamics. In the case of anisotropic particles,

the maximum displacements have to be tuned according to the self-diffusion properties of

each particle in order to enforce the correct anisotropy of the dynamics. More specifically, for

rod-like particles, the ratio between the maximum displacements parallel and perpendicular

to the particle axis δ‖/δ⊥ has to be equal to the ratio between the parallel and perpendicular

diffusion coefficients at infinite dilution D0,‖/D0,⊥ [2].

In this Letter, we study the dynamic behavior of guest rods in a host smectic environment

parallel to the nematic director n̂. However, reaching the long-term diffusive regime of highly

anisotropic particles in a smectic phase is a highly non-trivial computational effort. In order

to reach and explore the long-term regime of the longitudinal dynamics of guest particles in a

reasonable computational time, we increase the ratio between the parallel and perpendicular

maximum displacements to speed up the parallel diffusion relative to the perpendicular one.

Here, we assume that the parallel and perpendicular dynamics can be decoupled, i.e. that

the perpendicular diffusive behavior has a negligible effect on the parallel diffusion. In

2



FIG. S1. Parallel MSDs (along the long rod axis) in the smectic-A phase from basic MC simulations

(in purple) after rescaling onto the MSDs from DMC simulations (in blue) for size ratios r = 0.56

(a), 0.92 (b), 1.53 (c), and 1.99 (d).

particular, we set δ⊥ = 0.08d and δ‖ = 5δ⊥ = 0.4d, and we find that for these values of the

maximum displacements, MC simulations consisting of ∼ 1.5 · 108 MC cycles are sufficient

to reach and adequately sample the long-term diffusive behavior. In particular, we save

the positions of the tracked host and guest particles every 103 MC steps, hence producing

trajectories of Nt ∼ 1.5 · 105 points.

We measure the MSD at discrete times t ∈ [1, Nt] usingNg trajectories zi = [zi,1, zi,2, . . . , zi,Nt ]

as

MSD(t) =
1

Ng

Ng∑
i=1

1

(Nt − t)

Nt−t∑
j=1

(
zi,(j+t) − zi,j

)2
. (1)

In order to determine the long-term diffusion coefficient D‖, we consider a wide collection

of time windows {[t0, t1]} in the long-time diffusion limit of the MSD. In each time window,
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we perform a fit of the MSD with γ = 1, and measure the reduced χ2. Subsequently, we

average the values of D of all time windows for which χ2 is smaller than a certain threshold

value. The statistical error on D is determined as the standard error on the average, and is

of about the symbol size or smaller as indicated in Fig. 2 of the letter.

To test the validity of our assumption on the decouping of the parallel and perpendicular

dynamics, we compare the MSDs from our MC simulations and the ones from simulations

performed using the Dynamic Monte Carlo (DMC) method introduced by Patti and Cuetos

[3]. In the DMC method, the maximum displacements of both translational and rotational

motions are carefully tuned according to the diffusive properties of the particles at infinite

dilution, resulting in reliable Brownian dynamics with respect to a physical unit of time

τ = µσ3/kBT , where µ is the solvent viscosity, σ the characteristic unit of length in the

system and T the solvent temperature. We note that in the case of a binary mixture (as

our guest/host particles mixture) a specific treatment is required as discussed in Ref. [4].

For every length of our guest particle that we consider, we perform an additional simulation

with the more accurate but slow DMC method. Subsequently, we map the short-time MSDs

from our basic MC simulations onto the ones from DMC simulations by rescaling the unit of

time. If this mapping is accurate, the dynamics using the basic MC simulations is sufficiently

reliable, and the rescaling of time onto the physical time unit τ can be used to compare the

dynamical properties with experiments. In Fig. S01 we show typical examples of such a

rescaling for varying size ratios r = (Lg + d)/λ of the guest rods with λ the smectic layer

spacing confirming the good mapping between the two approaches.

II. COMPUTATIONAL AND EXPERIMENTAL TIMES

In Fig. 1b of the Letter, we compare typical longitudinal trajectories of host and guest

particles from simulations and experiments on the same time scale. However, matching the

experimental and computational time scales is non-trivial, and deserves some discussion.

In the Section above we already showed that the mapping of the MSDs obtained from

basic MC simulations onto DMC simulations provides a physical time unit τ = µσ3/kBT ,

where µ is the solvent viscosity, σ the unit of length, and T the solvent temperature. In the

experiments of Ref. [5], the particles are dispersed in water at room temperature, for which

µ = 10−3 Pa · s and kBT = 4.11 · 10−21 J. In our simulations, we use the particle diameter
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d as our unit of length, and hence in the experimental system σ corresponds to the effective

diameter deff ∼ 20 nm of the fd viruses, where we have taken into account the electrostatic

repulsion between the charged viruses [6]. This results in a conversion factor τ ≈ 2 · 10−6 s.

To test this conversion factor, we perform DMC simulations of single particles and mea-

sure their infinite dilution diffusion coefficient Dsim
0 = 1.16 · 10−2d2/τ . Theoretically, the

diffusion coefficient Dth
0 of long rods (L/d≫ 1) at infinite dilution is known and is expressed

as [2]:

Dth
0 =

kBT

3πµL
ln

(
L

d

)
. (2)

This yields for rods with an aspect ratio of L/d ∼ 40, a diffusion coefficient Dth
0 = 2.3 µm2/s,

which is in quantitative agreement with Dexp
0 ≈ 2µm2/s experimentally measured in very

dilute filamentous virus suspensions. Considering that d = 20 nm, with τ = 2 · 10−6 s, we

obtain Dsim
0 = 2.3 µm2/s = Dth

0 ≈ Dexp
0 , confirming the value of our conversion factor.

III. CAGING TIMES

As discussed in the Letter, the typical longitudinal MSD of a rod-like particle in a smectic

environment is characterised by a cage-trapping plateau in between the short- and long-time

diffusion regimes. We measure the extent of the caging effect upon varying the size ratio

r of the guest particle with respect to the smectic layer spacing. Given the MSD across

the three timescales for a given particle length, we perform three separate fits of the short-

, intermediate-, and long-time regimes of the MSD. At short and long times, we fit the

MSD with the theoretical expression for diffusive dynamics, MSD(t) = 2Dt, whereas at

intermediate time we fit it with the expression for subdiffusive dynamics, MSD(t) = 2Dtγ

with γ < 1. From the interception points between the fits at short and intermediate times,

and the fits at intermediate and long times, we estimate the typical caging time δt, as shown

in Fig. S02.

In Fig. S03 we report the caging time δt as a function of size ratio r. It clearly shows

the opposite trend as the diffusion coefficients shown in the inset of Fig. 3 of the Letter,

confirming the relationship between the shrinking of the caging plateau and the speeding

up of the dynamics.
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FIG. S2. MSD (in black) of guest rods with a size ratio (Lg + d)/λ = 0.73 in a host smectic

environment with a smectic layer spacing λ with fits (in purple) of the short-, intermediate-, and

long-time diffusion regimes. From the intercepts of the fits, we identify the time regimes in which

the dynamics switches between short-time diffusion to an intermediate-time caged sub-diffusion

with a caging time δt, to a long-time diffusion.

FIG. S3. Caging times δt as a function of the size ratio r = (Lg + d)/λ of the guest particles. The

dashed line is a guide to the eye.
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IV. ADSORPTION TO THE INTERFACE OF THE SMECTIC LAYERS

Most of the smectic potentials presented in the Letter have a characteristic shape with

two minima, implying that guest particles have two equilibrium positions (regime II). In

particular, as shown in the Letter, these minima correspond to positions in which either one

of the particle ends is adhered to the interface of a smectic layer.

FIG. S4. Sketches (top) and snapshots from actual simulations (bottom) of a guest particle of

length Lg = 1.5Lh (corrisponding to a size ratio r ∼ 1.36) and its neighbour host particles (whose

centre of mass is contained in a cylinder of diameter 3D and height 3λ around the guest particle).

When the guest particle adheres to an interface between layers (a and c) the voids created in the

adjacent layer are wide enough for host particles to occupy it and to hinder the diffusion of the

guest particle. Vice versa, when the particle sits in the center of a smectic layer (b), it creates

two voids which are too small to be populated by host particles and hence the guest particle can

diffuse away freely.

Fig. 4a-f of the main text shows that the two minima zmin
1 and zmin

2 of the effective

potentials are separated by two potential barriers located at z = nλ (barrier A) and z =

(n + 1/2)λ (barrier B). Monomers and “odd” multimers with r ∼ (2n + 1) feel exclusively

the barriers at z = nλ, and dimers and “even” multimers with r ∼ (2n+ 2) experience only

the barriers at z = (n+ 1/2)λ. As shown in Fig. S5a, guest particles in regime I experience

exclusively the same barrier as the preceding multimer, whereas in regime III they only feel

the same barrier as the successive multimer. In regime II, the dynamics of the guest rods

is affected by both barriers and switches from a “monomer”-like to a “dimer”-like behavior

upon changing r. Interestingly, in Fig. S5b we find that the sum of the barriers, accounting

for the total smectic caging felt by the guest particle, is minimal for r ∼ n+ 0.25, for which
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FIG. S5. (a) Height and (b) sum of the two potential energy barriers as a function of the size ratio

r for guest rods in a host smectic phase. The background is colored according to the three diffusive

regimes. Dashed lines are guides to the eye.

the fastest dynamics is observed, and maximal for r ∼ n+ 0.75, when the slowest dynamics

is achieved, confirming that the dynamic behavior of guest rods in a host smectic phase can

be rationalized in terms of the caging due to the lamellar environment
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