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ABSTRACT
We investigate the effect of hydrodynamic interactions (HIs) on the crystal nucleation of hard-sphere colloids for varying supersaturations.
We use molecular dynamics and stochastic rotation dynamics techniques to account for the HIs. For high supersaturation values, we perform
brute force simulations and compute the nucleation rate, obtaining good agreement with previous studies where HIs were neglected. In order
to access low supersaturation values, we use a seeding approach method and perform simulations with and without HIs. We compute the
nucleation rates for the two cases and surprisingly find good agreement between them. The nucleation rate in both cases follows the trend
of the previous numerical results, thereby corroborating the discrepancy between experiments and simulations. Furthermore, we investigate
the amount of fivefold symmetric clusters (FSCs) in a supersaturated fluid under different physical conditions, following the idea that FSCs
compete against nucleation. To this end, we explore the role of the softness of the pair interactions, different solvent viscosities, and different
sedimentation rates in simulations that include HIs. We do not find significant variations in the amount of FSCs, which might reflect the
irrelevance of these three features on the nucleation process.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5137815., s

I. INTRODUCTION

Homogeneous crystal nucleation of colloidal hard spheres has
been the subject of many studies in the past 70 years. The first
simulations were performed in the 1950s,1,2 while the first exper-
imental results were obtained in the 1980s.3,4 The considerable
body of work performed so far indicates the relevance of the topic
both in fundamental physics and other disciplines.5–10 Despite this,
the mechanism by which a supersaturated fluid of colloidal hard
spheres transforms into a crystal is still unclear. Several scenar-
ios such as a one-step, two-step, devitrification, or spinodal-like
process have been proposed,11–15 but consensus has not yet been
reached.

A simple theoretical framework for nucleation is known as
the classical nucleation theory (CNT).11,16,17 This theory describes
homogeneous nucleation as a single-step process, where a crystal
nucleus forms out of the metastable fluid and its probability to
grow depends only on its size. However, recent investigations show
that crystallization may also occur in two steps.12–14 First, thermal

fluctuations in the fluid cause the formation of preordered regions,
known as precursors, and second, the precursors promote the for-
mation of the actual crystal nucleus. The nature of the order in
these precursors is still debated. Part of the scientific commu-
nity believes that density fluctuations in the supersaturated fluid
lead to local denser amorphous regions.18,19 Others, instead, believe
that bond-orientational order fluctuations lead to the formation of
orientationally ordered structures.15,20–22

Another controversial topic concerns the rate of crystal nucle-
ation. Several studies performed with different approaches and from
different perspectives have tried to bridge the 20 orders of mag-
nitude difference on the nucleation rate between experiments and
simulations.23–27 Despite the effort, it is still unclear why sim-
ulations display a much lower nucleation rate as compared to
the experimental results. Several hypotheses have been proposed,
but none of them conclusively prove what causes such a huge
discrepancy.

For instance, in experiments, sterically stabilized polymethyl
methacrylate (PMMA) particles in low polar solvent are considered
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to interact like hard spheres. The effect of residual charges or steric
stabilizers on colloidal surfaces might, however, render their inter-
action slightly softer.28 Therefore, it has been questioned whether
the softness of the interaction potentially might be the missing
ingredient in numerical models to recover the experimental nucle-
ation rates. A numerical investigation initiated by Kawasaki and
Tanaka29 and followed by Filion et al.30 and Richard and Speck,31,32

has looked into this issue by simulating nearly hard particles inter-
acting through the Weeks–Chandler–Andersen (WCA) potential.33

The nucleation rate of this softer system is in good agreement
with the earlier numerical results for hard spheres,25,27 thus prov-
ing that introducing a small amount of softness does not influence
the nucleation rate.

Another ingredient that is usually missing in simulation models
concerns hydrodynamic interactions (HIs) among colloids. HIs do
not affect the thermodynamic properties of the system, yet they have
an influence on the particle dynamics and, hence, they might affect
the nucleation process. HIs cannot be simplified to pairwise interac-
tions due to their many-body character, hence their implementation
requires the use of specific computationally expensive algorithms.
Radu and Schilling34 have included far-field HIs in their model sys-
tem and have investigated the nucleation rate of hard spheres at dif-
ferent solvent viscosities. They remarkably find that a higher solvent
viscosity leads to a higher nucleation rate; moreover, they predict
larger effects for lower supersaturation. However, in their imple-
mentation, the near-field hydrodynamic interactions are neglected,
and their work is limited to high supersaturation values where the
fluid is characterized by a volume fraction of ϕ > 0.537. The latter
is due to limitations in computational time, which prevents one to
directly probe the role of solvent viscosity at lower supersaturation
where the numerical and experimental results start to deviate. Dif-
ferently, Roehm et al.35 found that HIs slow down the crystal growth
in a system of soft colloids by using both Langevin dynamics and the
fluctuating lattice Boltzmann method in order to include HIs in their
model system.

Gravity also plays a non-negligible role in experiments. The
solvent mixture is density matched to colloids in order to mini-
mize the effect of gravity. Despite this, it is difficult to obtain an
exact density matching, and some gravitational effects will remain
present. Reference 36 showed that the literature on the experimen-
tal nucleation rates can be separated into two branches of slow and
quick nucleation, corresponding to weak and strong sedimentation
regimes, respectively. The hypothesis that gravity might enhance the
nucleation rate has inspired both simulations and experiments to
quantitatively measure this effect by intentionally introducing small
gravitational effects in the system. Experiments by Ketzetzi et al.37

display a strong enhancement of the nucleation rate due to grav-
ity. The results also indicate that such enhancement is caused by
collective hydrodynamic effects during sedimentation rather than
by changes in the local volume fraction. The numerical study by
Russo et al.,38 where HIs are neglected, also shows higher nucleation
rates under sedimentation. The enhancement is attributed here to
the formation of an inhomogeneous density profile, where crystal
nuclei are more likely to form in the fluid at a local volume fraction
of ϕ ∼ 0.56.

Another research branch has recently focused on analyzing
the local structure of supersaturated fluids and, particularly, on
the detection of fivefold symmetric clusters (FSCs). This interest

originates from previous studies which highlight that fivefold sym-
metric clusters can suppress crystallization in supercooled fluids,
eventually leading to vitrification.39,40 In analogy with hard spheres
at high supersaturation, the presence of fivefold local arrangements
might inhibit the nucleation process.

A recent numerical study has shed light on the mechanism by
which these clusters compete with nucleation.41 They implemented
a model system where the amount of pentagonal bipyramids can be
tuned and showed that the presence of such clusters has an influence
on both the thermodynamic and kinetic aspects of nucleation. In
particular, the authors found that the fluid–solid coexistence bound-
aries shift toward lower volume fractions (thermodynamic aspect)
and that the nucleation rate increases (kinetic aspect) by decreas-
ing the amount of pentagonal bipyramids. This study has revealed
the nucleation process from a different perspective and suggests an
alternative approach to the problem. However, this investigation is
not concerned with understanding which physical conditions pro-
mote or suppress the formation of fivefold symmetric clusters in the
fluid.

A recent study by Wood et al.36 made progress in this direc-
tion. It showed that the amount of defective icosahedral clusters
decreases considerably by increasing gravity. With these prelimi-
nary but encouraging results, they also studied the nucleation rate of
the fluid under the effect of gravity by using the simulation model41

described above. The amount of fivefold clusters measured in the
sedimenting fluid in experiments has been mapped to the amount
of clusters in the simulated fluid. This study predicted a nucleation
rate of five orders of magnitude larger than the nucleation rate of a
gravity-free fluid.36 This is in agreement with expectations set by the
fivefold picture, but unfortunately the enhancement is not enough
to explain the high nucleation rates in experiments in the weak
sedimentation regime.36

In the present work, we study crystal nucleation of nearly hard
spheres with different numerical methods, all including (far-field
and near-field) HIs in our model system. In Sec. III, we compute the
nucleation rate by direct observation of crystal nuclei forming out
of a homogeneous supersaturated fluid. As the required computa-
tional time increases rapidly upon lowering the supersaturation, this
investigation is limited to high supersaturation. To overcome this
problem and have access to lower supersaturation, we use a seeding
approach method42,43 in Sec. IV. Here, we compare the nucleation
rate obtained in a model system which includes HIs, to one where
HIs are neglected. Finally, in Sec. V, we further investigate different
physical conditions that may affect the local structure of the fluid
phase, particularly, the presence of fivefold symmetric clusters. In
particular, we retrace the hypothesis mentioned above and investi-
gate the role of softness of the particle interactions, different solvent
viscosities, and gravitational effects, in the local structure of a low
supersaturated fluid phase.

II. MODEL AND METHODS
A. The model system

We consider a system of N colloidal spheres with a diameter
σ in a volume V, interacting via the Weeks–Chandler–Andersen
(WCA) pair potential.33 Two colloids at a relative center-to-center
distance r experience a repulsion of the form
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βU(r) =
⎧⎪⎪⎨⎪⎪⎩

4βε[( σr )
12 − ( σr )

6 + 1
4 ] r ≤ 21/6σ,

0 r > 21/6σ,
(1)

where ε is the energy scale and β = 1/kBT with kB being the Boltz-
mann constant and T being the temperature. If not stated otherwise,
we consider a repulsion strength of βε = 40. The freezing density
of this system is known from the literature, ρfσ3 = 0.712,30 with
ρ = N/V being the density. In order to map this system onto
hard spheres, we equate the freezing volume fraction of hard
spheres ϕHSf = 0.492 to the freezing volume fraction of our system
ϕf = πρfσ3

eff/6, with σeff being the effective diameter of the colloids,
and find σeff = 1.097σ. Hence, we define the volume fraction as
ϕ = πρσ3

eff/6, which directly compares with the volume fraction of
hard spheres.

We perform simulations in the canonical ensemble using
the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)44,45 software, by using molecular dynamics (MD) in
combination with the stochastic rotation dynamics (SRD) tech-
nique. The hydrodynamic effects are rendered by the presence
of point particles, which we call SRD particles. They represent a
coarse-graining of the solvent molecules over space and time. Phys-
ical properties of the solvent are extracted from space and time
averages.46

The SRD algorithm consists of two steps, the streaming and the
collision step. During the streaming step, SRD particles behave like
an ideal gas among themselves, but they exchange momentum with
the colloids via hard collisions. A colloid and an SRD particle col-
lide at a relative distance r′ = 0.465σ, which is slightly smaller than
the colloid radius of 0.5σ. This guarantees that the SRD particles are
isotropically distributed around the colloid surface, in order to pre-
vent spurious depletion effects between the colloids.47 In fact, two
colloids at a relative distance 2r′ = 0.93σ experience a repulsion of
βU(2r′) ≃ 175, which makes the occurrence of two colloids at a dis-
tance r < 0.93σ extremely unlikely. We employ the slip boundary
condition on the colloid surface.

Every time interval Δtc = 4τMD, where τMD is the molecular
dynamics integration time step, SRD particles exchange momentum
among themselves via the stochastic rotation dynamics algorithm,
and their velocities are rescaled in order to keep the temperature
fixed in the system. We implement the Galilean-invariant thermo-
stat of Hecht et al.48 Colloidal particles are, therefore, thermalized
by collisions with SRD particles, which act as a thermal bath.

The SRD fluid is characterized by a mean free path λ = 0.023σ
and a number density γ = 5/a3

0, where a0 ≃ 0.23σ is the SRD
grid cell. We compute the solvent shear viscosity η by using the
expression reported in Refs. 48–50 and obtain η = mf [γa3

0 − 1
+ exp(−γa3

0)]/(18Δtca0)+ kBTγΔtc(γa3
0 + 2)/[4(γa3

0 − 1)] = 3.51η0,
where η0 =

√
MckBT/σ2 is expressed in colloid mass units Mc and

mf is the mass of an SRD particle.
We note that the SRD fluid is more compressible than a molec-

ular solvent. However, with a proper separation of time scales
between that of the solvent and that of the colloids, the solvent can
be viewed as effectively incompressible; if the diffusivity of the SRD
fluid particles is much larger than that of the colloids, the density
variations are relatively small. This was also confirmed in the work
of Theers et al.51 for actively moving colloids known as squirmers.
In their Appendix C, Theers et al. showed that for sufficiently low

activity of the squirmers (low pumping number), the SRD density
variations are small.

In Sec. V, we investigate whether the variation of some system
properties has any influence on the local structure of the fluid, in
particular, on the formation or suppression of fivefold symmetric
clusters (FSCs). In order to do so, we vary some of the parameter val-
ues described above. We explore the effect of softness of the colloid
interactions by varying the temperature βε = 40, 10, and 5, which
in turn changes the size of the effective colloid diameter. In order
to map the softer system onto the hard-sphere system, we compute
the effective diameter by performing free energy calculations and
computing the freezing density. For βε = 10 and βε = 5, we obtain
σeff = 1.072σ and σeff = 1.056σ, respectively. We compare our values
with the literature and find good agreement with those in the work
of Ahmed and Sadus,52 which found σeff = 1.073σ and σeff = 1.055σ
for βε = 10 and βε = 5, respectively. Further details on free energy
calculations are provided in Sec. II B.

We investigate the role of solvent viscosity by varying the
number density of SRD particles in the range 5 ≤ γa3

0 ≤ 200,
corresponding to a solvent viscosity of 3 ≲ η/η0 ≲ 165.

Finally, we investigate the system in a gravitational field. To
do so, we impose an external force Fcol on each colloid, point-
ing to the negative z-direction. We also reproduce the effect of
back-flow in the solvent by imposing a force f srd on each SRD
particle, which points to the positive direction of z. The force act-
ing on N colloids N × Fcol is balanced by the force acting on Nf
SRD particles Nf × f srd, leading to conservation of the center of
mass velocity, which was initially imposed to be zero. We perform
simulations at Péclet number Pe = 0, 0.5, 1.0, 1.5, and 2.0, where
Pe = vσeff/2D0 is the ratio of advection over diffusion. Here, v and
D0 are, respectively, the terminal velocity and diffusion coefficient
of the colloidal particles in the limit of very low volume fraction
(ϕ ∼ 0.001). In all simulations, we use periodic boundary conditions
in all three directions (x, y, and z), and the system size ranges from
4000 to 7000 colloidal particles, with an order of 2 × 106 solvent
particles.

B. Free energy calculations
The fluid and fcc coexistence densities of the WCA systems

are calculated by determining the free energies of both phases, in
combination with a common-tangent construction. The Helmholtz
free energy per particle f = F/N, as a function of density ρ is
calculated using thermodynamic integration of the equations of
state,53

βf (ρ) = βf (ρ0) + ∫
ρ

ρ0

dρ′
βP(ρ′)
ρ′ 2 , (2)

where ρ = N/V is the density with N being the number of particles
and V being the volume of the system, f (ρ0) denotes the Helmholtz
free energy per particle for the reference density ρ0, β = 1/kBT is the
inverse temperature, and P is the pressure. The equations of state for
both phases are calculated using MC simulations in the NPT ensem-
ble using N = 1372 particles. Concerning the fluid phase, we use the
ideal gas as a reference state.

Differently, for the fcc crystal, we employ the Frenkel–Ladd
method to calculate the Helmholtz free energy at a reference den-
sity ρ0 using MC simulations in the NVT ensemble.54 We repeat the
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process for N = 256, 500, 864, and 1372 in order to take into account
finite-size effects and extrapolate to an infinite system.55 The ref-
erence densities employed for βε = 40, 10, and 5 are, respectively,
ρ0σ3 = 0.81, 0.85, and 0.89.

Subsequently, the fcc–fluid coexistence densities for different
temperatures βε are calculated by employing a common-tangent
construction on the fluid and fcc free energy density curves in the
βf – 1

ρ plane.

C. Local structure analyses
In order to distinguish a crystal structure from the amorphous

fluid on a single particle level, we use the bond-orientational order
parameter.56,57 This algorithm detects whether particle i belongs to
a crystal or fluid environment based on the arrangement of its clos-
est neighbors Nb(i). The algorithm associates with each particle i a
complex vector qlm(i) defined as

qlm(i) =
1

Nb(i)

Nb(i)

∑
j=1

Ylm(rij), (3)

where l is a free integer parameter, m is an integer defined in the
range −l ≤ m ≤ l, and Y lm(rij) are the spherical harmonics. The sum
runs over the nearest Nb(i) neighbors of particle i and the vector rij
connects particle i to particle j. We compute the scalar product of
qlm of neighboring particles i and j,

Sl(i, j) =
∑l

m=−l qlm(i)q∗lm(j)
(∑l

m=−l ∣qlm(i)∣2)
1/2(∑l

m=−l ∣qlm(j)∣2)
1/2

, (4)

where the symbol ∗ indicates the complex conjugate. We define i
and j connected if Sl(i, j) > d, where d is a threshold parameter.
Finally, particle i belongs to a crystal environment if it has a num-
ber of connections nc larger than a threshold nc ≥ c. If this is the
case, we label it solid-like, otherwise liquid-like. As a result, we are
able to identify all the solid-like particles and perform a cluster anal-
ysis which assigns all the solid-like connected particles to a single
cluster. Therefore, each solid-like particle belongs only to one clus-
ter. Nearly hard-sphere particles form a crystal nucleus character-
ized by random hexagonal order and 12 nearest neighbors; there-
fore, we choose l = 6 and Nb(i) = 12. The thresholds d = 0.7 and
c = 7 are optimized for the detection of solid-like particles in this
system.27,30

We analyze the amount of fivefold symmetric clusters in the
supersaturated fluid via the topological cluster classification (TCC)
algorithm.58 One parameter involved in the definition of a bond
is f c, which is set to 0.82, in line with the analyses performed by
Wood et al.36

III. BRUTE FORCE SIMULATIONS
This simulation method enables us to calculate the nucleation

rate of nearly hard-sphere colloids by directly observing the nucle-
ation events originating from a supersaturated fluid. We perform
MD + SRD simulations in order to account for HIs in our model.
We simulate a system composed of N = 4000 colloids interacting
with a WCA potential with βε = 40 in different box volumes V, cho-
sen such that the volume fraction of interest is acquired. We set the

number density of SRD particles γa3
0 = 5 and the integration

time step τMD = 4.5 × 10−4σ
√
Mc/(kBT), with SRD collision time

Δtc = 4τMD. These parameters are chosen such that the SRD fluid
displays the properties of a viscous solvent in the Stokes limit, while
maintaining a feasible computational time. We verify that SRD par-
ticles reproduce the dynamics of a solvent by computing the Schmidt
number Sc, which compares the rate of diffusive momentum trans-
fer relative to the rate of diffusive mass transfer in the solvent, and
which is much greater than 1 for liquid-like systems. In our system,
we have Sc ≃ 6, which confirms a liquid-like dynamics. By using the
aforementioned parameters, we obtain a colloid dynamics charac-
terized by a self-diffusion constant D0 = 0.0573σ

√
kBT/Mc, which

we measure from the mean squared displacement of a particle in a
very dilute system (ϕ ≃ 0.001). From the self-diffusion constant, we
derive the Brownian time τB = σ2/D0, which we use as the unit of
time in this section. We generate an equilibrated initial configura-
tion and ensure that the fraction of crystalline particles is below 1%
at time t = 0 of the simulation run. During the simulation run, we
monitor the crystallinity fraction ξ of the system, which is defined
as the ratio of crystalline particles over the total number of particles.
We define the nucleation time τn as the time that elapses until we
obtain ξ = 0.10. Hence, the nucleation rate reads

κ = 1
⟨τn⟩V

, (5)

where ⟨τn⟩ is the nucleation time averaged over several simula-
tion runs. We show the crystallinity fraction ξ as a function of the

FIG. 1. (a) Fraction of crystalline particles as a function of time for different densi-
ties ρ∗ = ρσ3, represented here by different colors. The curves of the same color
are independent realizations performed at the same density. (b) Snapshots of the
system taken after the nucleation event. (Left) Configuration of the system with
ρσ3 = 0.781 53, showing a fluid–crystal coexistence. The particles that belong to
a crystal domain are colored red, and those belonging to a fluid phase are colored
cyan and reduced in size to enhance the visualization. (Right) Configuration of the
system with ρσ3 = 0.792 28, showing a full crystallization.
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rescaled time t/τB in Fig. 1(a), where different colors indicate differ-
ent fluid densities, while trajectories with the same color represent
independent runs at the same density.

The sharpness of the transition from the fluid to the crystal
phase guarantees that our criterion to define the nucleation time
is reasonable. In fact, the largest source of error comes from the
spread in nucleation times across different simulation runs, rather
than the choice of the threshold. Note that the crystallinity frac-
tion ξ reaches very high values (ξ > 0.8) in many simulation runs,
but also saturates around ξ ≃ 0.5 in some other cases, where we
observe a coexistence between the fluid and the crystal. As all the
simulated densities, except for ρσ3 = 0.792 28, fall in the fluid–solid
coexistence region of the phase diagram, but closer to the melting
density ρMσ3 = 0.78430 than the freezing density ρFσ3 = 0.712,30 we
indeed expect high values for the crystallinity fraction ξ > 0.9. We
believe that the systems are kinetically trapped for the states charac-
terized by a lower ξ. This, however, does not influence our results on
τn, which is determined by the time that the system reaches a crys-
tallinity fraction ξ = 0.10. We display two configurations, well equi-
librated after the nucleation event, in Fig. 1(b). The left panel shows
a snapshot of the system with a density of ρσ3 = 0.781 53, where the
fluid coexists with the crystal phase and displays a crystallinity frac-
tion of ξ = 0.50. We represent the crystalline and fluid particles in
red and cyan, respectively. The fluid particles are reduced in size to
enhance the visualization. In the right panel of Fig. 1(b), the system
has a density of ρσ3 = 0.792 28 and has (almost) fully crystallized
(ξ = 0.95).

In Table I, we report the results of the average nucleation time
⟨τn⟩/τB and the nucleation rate κσ5

eff/D0, together with the density of
the fluid ρσ3, the number of simulations performed for each density
ntr , and the number of observed nucleation events ne. In case there
are less nucleation events than trials, we calculate the nucleation rate
from Eq. (5) by considering a larger volume of the simulation box
given by V′ = Vntr/ne.

In Fig. 2, we show the nucleation rate κσ5
eff/D0 as a function of

the mapped volume fraction ϕ. Our results are represented by red
squares, while the previous numerical and experimental results are
shown in blue and green symbols, respectively.

We observe that our data points are in very good agree-
ment with the literature, which we expected at these high pack-
ing fractions. Therefore, we conclude that HIs do not affect the
nucleation rate at high supersaturations. Yet, we need to access
lower fluid supersaturations in order to understand whether HIs
play a role in the enhancement of the nucleation rate, as observed

TABLE I. Nucleation rates κσ5/D0 of nearly hard spheres obtained from brute force
simulations which include HIs. We perform nt r simulations for each fluid density
ρσ3 and report the number of simulations that have nucleated ne and the average
nucleation time ⟨τn⟩/τ.

ρσ3 ntr ne ⟨τn⟩/τB κσ5
eff/D0

0.792 28 5 5 22.6 1.38× 10−5

0.785 07 5 5 185 1.68× 10−6

0.781 53 10 10 190 1.64× 10−6

0.777 00 20 10 1130 1.38× 10−7

FIG. 2. Nucleation rate κσ5
eff/D0 as a function of the mapped volume fraction ϕ.

Green symbols represent the experimental results, blue symbols are the numerical
results obtained without accounting for HIs, and red squares represent our results,
obtained with brute force simulations including HIs.

experimentally. In fact, the previous numerical results, obtained
without HIs, differ from the experimental results by approximately
two orders of magnitudes at a volume fraction of ϕ ≃ 0.535, and
the difference becomes even larger for lower volume fractions, in
the range of weak supersaturation, as illustrated in Fig. 2. How-
ever, directly computing the nucleation rate in the region of weak
supersaturation becomes impractical via brute force simulations.
For instance, the experimental nucleation rate at ϕ = 0.53 is at
least one order of magnitude smaller as compared to the nucle-
ation rate at ϕ = 0.535. We obtain the results at ϕ = 0.537 in
a simulation time of about 2 months, thereby confirming that
this method becomes inadequate at such low volume fractions. In
Sec. IV, we overcome this problem by employing another simulation
method.

IV. THE SEEDING APPROACH
In Sec. III, we provided the results on the nucleation rate of

nearly hard spheres with HIs by performing brute force simula-
tions. However, the use of this numerical approach at low supersat-
uration is hindered by the enormous computational time required
to observe a nucleation event to occur. Several biasing techniques
have been used to access volume fractions lower than 0.535, like
umbrella sampling and forward flux sampling.27,30,31 Recently, a
new simulation technique has provided quite accurate results on
both the thermodynamic and kinetic aspects of nucleation. This
technique is known as the seeding approach,42,43 and it has been
applied to study the nucleation barrier of nearly hard spheres with
βε = 40.32

In this section, we aim to understand the relevance of HIs on
the nucleation process of a colloidal fluid at low supersaturation. To
do so, we employ a seeding approach method and implement both
the MD and the MD + SRD techniques to neglect or account for HIs
in the model system, respectively. We compute the nucleation rate
for different nucleus sizes and compare the results obtained with the
two simulation schemes.

The seeding approach is based on the classical nucleation the-
ory and involves seeding the supersaturated fluid with a crystalline
nucleus, and determining the thermodynamic conditions at which
the nucleus is critical, i.e., it has equal probability to shrink or grow.
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We perform simulations in the NVT ensemble, with βε = 40 for
different densities. For each size of the nucleus, we determine the
density at which the nucleus is critical and we refer to it as the critical
density ρc.

In order to determine the critical density, we compute the prob-
ability of melting Pm(ρ) determined by the fraction of trajectories
that display a complete melt of the nucleus, leading to n < 10. In
Fig. 3(a), we show ten independent trajectories of a nucleus of size n
as a function of time. We obtained these realizations by performing
simulations with HIs. The committor probability Pc(ρ) = 1 − Pm(ρ)
reflects the probability that the seed grows out and induces a fluid–
solid phase transition in the system at fixed density ρ. We report the
committor probability as a function of the density of the system in
Fig. 3(b), displayed here with dots. We obtain these results for a seed
of size ⟨n⟩ = 430 ± 40, in a system composed by N = 7000 particles
and account for HIs. The seed is initially composed of ⟨n⟩ = 430 ± 40
particles, where the angular brackets indicate an average of the
nucleus size performed over the first time interval t/τMD = 5 × 104

at the critical density ρc. We fit the function Pc(ρ) = 1/2[1 + erf(a(ρ
− ρc))] on the numerical data, where a and ρc are fitting parameters.
The fit is shown with a solid line, and it directly provides the criti-
cal density ρcσ3 = 0.751 for this seed size, which corresponds to the
density where Pc = 1/2.

FIG. 3. The seeding approach. (a) Time evolution of a crystalline seed of 430
particles at temperature kBT = 0.025 ε and critical density ρcσ3 = 0.751 for 10
independent trajectories, using MD simulations with HIs. The total number of parti-
cles is 7000. (b) The committor probability as a function of density for a seed of 430
particles in a system of 7000 particles. The solid line represents the fit performed to
obtain the critical density ρc at PB = 1/2. (c) Critical density as a function of system
size for different seeds, as obtained from MD simulations without HIs in the NVT
ensemble. The solid line indicates the linear fit performed on the dataset to extrap-
olate the critical density to the thermodynamic limit at ⟨n⟩/N = 0. (d) Seed size
as a function of the critical volume fraction ϕc = πρcσ3

eff/6. Data obtained from
NpT simulations are not affected by finite-size effects, while data obtained from
NVT simulations show a higher critical volume fraction. The black dots represent
the values of the critical volume fraction obtained from the finite-size scaling study,
reported in (c). The dashed black and dashed-dotted green lines are interpolations
of the results reported in Refs. 31 and 32.

As mentioned earlier, we perform simulations in the NVT
ensemble for which it is possible to implement HIs. In this ensem-
ble, however, the stability of the seed is influenced by finite-size
effects.32 In fact, given a seed of size n, the critical density found
with a system of N particles is higher as compared to the critical
density we would obtain with an infinitely large system, which cor-
responds to the thermodynamic limit. This effect is due to the pro-
gressive depletion of colloidal particles in the supersaturated fluid
phase which surround the nucleus, while the latter is increasing in
size. As we increase the total system size N, this effect becomes
less relevant and we detect a lower critical density. In Fig. 3(c), we
report the results on the finite-size scaling, which are performed
without including HIs, due to the huge computational cost that
the MD + SRD method requires for large system sizes. We show
the critical density ρc as a function of the system size ⟨n⟩/N for
four seed sizes ⟨n⟩ = 216, 430, 503, and 640, here represented by
points in different colors. We observe that ρc increases linearly
with the inverse system size; therefore, we perform a linear fit to
extrapolate the critical density ρextrc in the thermodynamic limit at
⟨n⟩/N = 0.

In Fig. 3(d), we show the seed size ⟨n⟩ and its corresponding
critical volume fraction ϕc = πρcσ3

eff/6, for simulations performed
in different ensembles. The red points represent the results obtained
from MD simulations in the NpT ensemble. In this ensemble, the
growth of the seed is not affected by the system size, since the pres-
sure of the fluid is constant over time. These points are in good
agreement with the results obtained in Refs. 31 and 32, where they
use both the seeding approach and forward flux sampling methods.
For ease of comparison, we report here an interpolation of their
results with dashed black and dashed-dotted green lines for the seed-
ing and forward flux sampling methods, respectively. The orange
and blue points are obtained from simulations on a finite system in
the NVT ensemble, where hydrodynamic interactions are included
and neglected, respectively. The system size varies in the range
0.053 < ⟨n⟩/N < 0.094. In both cases, finite-size effects are present
and determine a higher critical volume fraction as compared to NpT
simulations.

Interestingly, we observe that the simulations in the NVT
ensemble provide slightly different critical volume fractions for the
two cases of including and neglecting HIs. This difference is not
significantly large, although simulations with HIs provide systemat-
ically smaller ϕc for all the seed sizes. We expect that in the case that
HIs would affect the nucleation rate, they would only influence the
kinetic aspect of the nucleation process and not the thermodynamic
properties. With this regard, we believe that MD + SRD provides
lower ϕc since finite-size effects are less important in MD + SRD than
in MD simulations. In fact, finite-size effects are not only caused by
a progressive depletion of colloidal particles in the supersaturated
fluid phase which surrounds the growing nucleus, but also by a drop
in pressure when the fluid starts to crystallize. The augmented num-
ber of particles in the MD + SRD as compared to MD simulations,
determined by the explicit presence of SRD point particles in the first
method, might reduce the pressure drop and thereby the finite-size
effects, thus providing slightly smaller values of ϕc.

Finally, we display the extrapolated critical volume fractions in
the thermodynamic limit with black points, which are obtained from
the finite-size scaling study of Fig. 3(c). The trend is nicely matching
with the results obtained in the NpT ensemble.
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The seeding approach, in combination with the classical nucle-
ation theory, enables us to compute also the nucleation rate of the
system, which is defined as43

J =
√
∣Δμ∣/(6πkBT⟨n⟩)f +ρextrc exp(−ΔG/kBT), (6)

where Δμ is the chemical potential difference between the fluid
and the solid phases at the same temperature and pressure,
ΔG = |Δμ|⟨n⟩/2 is the height of the free energy barrier, and
f + = ⟨(n(t)− ⟨n⟩)2⟩/(2t) is the attachment rate,6 calculated at the crit-
ical density. We calculate the chemical potential of the fluid and solid
phases by performing thermodynamic integration of the respective
equations of state. The chemical potential of the fluid phase is eval-
uated at the extrapolated critical densities ρextrc for both cases of
HIs and no HIs. This is in line with our assumption that the ther-
modynamic properties of the system should be independent of its
kinetic features, hence we expect that the extrapolated critical den-
sity should be the same for simulations that exclude and include HIs.
The values of ρextrc and Δμ are reported in Table II.

In order to compare the dynamical properties of the system for
the two cases of HIs included and excluded, we rescale the attach-
ment rate and the nucleation rate by the short-time self-diffusion
constant D0. We estimate D0 in MD + SRD simulations by per-
forming a linear fit to the mean squared displacement of the colloid
particle. We obtain D0 = 0.0573 ± 3 × 10−4σ

√
kBT/Mc. Follow-

ing Ref. 31, we compute D0 in MD simulations via the expres-
sion D0 = 3

√
kBT/(πMc)/(8ρσ2

eff), which is obtained from the
Chapman–Enskog kinetic theory of gases.59 The values of f +σ2

eff/D0
and Jσ5

eff/D0 are reported in Table II.
Finally, we plot the values of the nucleation rate obtained with

the seeding method as a function of the system volume fraction in
Fig. 4, where we also add the previous literature results for compar-
ison. We observe that the seeding method enables us to investigate
the nucleation process at very low supersaturation values of the fluid,
as we provide the results down to the volume fraction of ϕ = 0.514
for a seed size of ⟨n⟩ ≃ 630. The red diamonds and circles repre-
sent the results we obtain with simulations that neglect and include

TABLE II. Values of the variables that lead to the computation of the nucleation rate,
which are obtained from MD (no HIs) and MD + SRD (HIs) simulations. From the left,
we report the seed size ⟨n⟩, the extrapolated critical density ρextr

c σ3, the chemical
potential difference β|Δμ| between the fluid and the solid states at the same tempera-
ture and pressure, the attachment rate f +σ2

eff/D0, and the nucleation rate Jσ5
eff/D0.

We use the values of ρextr
c σ3 and β|Δμ| to calculate the nucleation rate in both cases

of “no HIs” and “HIs”.

⟨n⟩ ρextrc σ3 β|Δμ| f +σ2
eff/D0 Jσ5

eff/D0

No HIs 216 ± 27 0.7579 0.3741 1096 3× 10−17

430 ± 26 0.7477 0.2820 3601 1× 10−25

503 ± 41 0.7464 0.2708 3582 5× 10−29

640 ± 17 0.7443 0.2527 2648 9× 10−35

HIs 213 ± 21 1033 5× 10−17

430 ± 40 Same as Same as 2389 6× 10−26

506 ± 58 no HIs no HIs 2921 3× 10−29

618 ± 50 1576 9× 10−34

FIG. 4. Nucleation rate Jσ5
eff/D0 as a function of the volume fraction ϕ of the sys-

tem. The red diamonds and circles represent the results we obtain from the seed-
ing method by neglecting and including HIs, respectively. We report our results
from brute force simulations with HIs with red squares, the previous numerical
results without HIs with blue symbols and the previous experimental results with
green symbols.

HIs in the model, respectively. We see that the two simulation meth-
ods provide similar results for all the seed sizes. We also notice
that the results corresponding to a seed size of ⟨n⟩ ≃ 215, at a vol-
ume fraction ϕ = 0.524, fall in a range of volume fractions which
was already investigated by other simulation methods, thus directly
enabling a comparison with the literature. Our results of the nucle-
ation rate are in very good agreement with the ones obtained via
forward flux sampling27 on hard spheres, thus showing that the seed-
ing approach correctly reproduces the previous results. From this
investigation, we conclude that the hydrodynamic interactions do
not play a significant role in the kinetic aspects of the nucleation
process.

V. THE STRUCTURE OF THE FLUID
Previous studies showed that the exact local structure of the

metastable supersaturated fluid phase, e.g., the presence of FSCs,
may affect the nucleation rate of nearly hard-sphere particles.36,41

This section is dedicated to the analyses of the FSCs in a supersat-
urated fluid under different physical conditions. In particular, we
compute the fraction of defective icosahedral clusters χ, which is
defined by the number fraction of particles that belong to a defec-
tive icosahedral cluster. We compare the values of χ obtained in a
fluid of particles characterized by varying softness of the pair inter-
action, embedded in various solvent viscosities and affected by a
gravitational field at different Péclet numbers. We investigate the
fluid at volume fractions ϕ = 0.50, 0.515, 0.53, and 0.544 and ver-
ify that the fraction of crystalline particles is below 1% in all the
cases.

A. The role of softer potentials
The softness of a pair interaction is related to the ease by which

two particles approach each other closer than their cutoff radius.
This feature is reflected by the slope of the interaction potential. The
steeper the potential, the harder the pair interaction. In the left panel
of Fig. 5(a), we show the interaction potential βU as a function of
distance r/σ, for βε = 5, 10, and 40. We observe that the softness of
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FIG. 5. (a) (Left) Pair potential βU as a function of the distance r /σ, for different softness βε. (Right) Fraction of defective icosahedra χ as a function of the volume fraction
ϕ, for different softness βε. (b) (Left) Self-diffusion constant D∗ = D

√

Mc/kBTσ as a function of the solvent viscosity η∗ = ησ2
/

√

MckBT. The squares represent the

short-time diffusion constant D∗0 = D0
√

Mc/kBTσ, while the circles represent the long-time diffusion constant D∗L = DL
√

Mc/kBTσ, measured on a fluid at a volume
fraction ϕ = 0.50. (Right) Fraction of defective icosahedra χ as a function of the volume fraction ϕ, for different solvent viscosities η∗. (c) (Left) Average terminal velocity v
normalized by the Stokes velocity v0 as a function of the hydrodynamic volume fraction ϕh. The dots represent our numerical results, shown with different colors for different
Péclet numbers Pe = vσeff/2D0. The dotted and dashed-dotted lines correspond to two versions of the semiempirical Richardson–Zaki law60 v/v0 = (1 − ϕ)a, with a = 4.7 and
a = 6.55, respectively. The solid line is a theoretical prediction by Hayakawa and Ichiki.61 The inset shows the reduced Stokes velocity v∗0 = v0

√

Mc/kBT as a function of
the reduced drag force F∗ = Fσ/kBT applied on the colloid. Different colors correspond to different Pe and the solid line is a linear fit to the data points. (Right) Fraction of
defective icosahedra as a function of ϕ for different values of Pe.

the potential increases by lowering the repulsion strength βε; there-
fore, we use these values of βε to investigate the role of softness in
the local structure of the fluid.

In Sec. II, we describe how we prevent the occurrence of spuri-
ous depletion effects by choosing the colloid–SRD collision distance
r′ = 0.465σ slightly smaller than the colloid radius 0.5σ. For βε = 5
and 10, the repulsion strength perceived by two colloids at a relative
distance of 2r′ = 0.93σ is equal to βU(2r′) ≃ 22 and 44, respectively.
These repulsion strengths are large enough to ensure that two col-
loids will not approach each other at distances closer than 2r′. In
order to verify this statement, we show in Fig. 6 the radial distribu-
tion function g(r) of a fluid at a volume fraction of ϕ = 0.515, for
different softness.

We rescale the relative distance r by the effective diameter σeff
of the particle. Note that σeff depends on the softness of the poten-
tial, since we map the freezing volume fraction of each system to
the freezing volume fraction of hard spheres, as described in Sec. II.

By rescaling the relative distance in this manner, the position of
the peaks of the radial distribution functions superimpose on each
other. The height of the first peak is slightly larger for harder poten-
tials. This reflects that the distribution increases more steeply for
harder potentials at a distance of r/σ ≃ 1. Since the height of the
first peak for βε = 5 and 10 is marginally smaller as compared to
βε = 40, we are confident that spurious depletion effects are not
present in our model systems, as they would cause a considerable
enhancement of the first peak.47 Moreover, the inset shows a zoom
in of the g(r) as a function of the distance r, here rescaled by the
bare unit of length σ. In this representation, we can clearly see that
g(r) = 0 for r < 0.96σ for all the softness values considered here, thus
demonstrating that two particles never approach each other closer
than 2r′.

The right panel of Fig. 5(a) shows the fraction of defective
icosahedra clusters χ as a function of the volume fraction ϕ for dif-
ferent softness, as obtained from MD + SRD simulations. For all
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FIG. 6. Radial distribution function g(r) of the fluid at ϕ = 0.515 for different soft-
ness βε = 5, 10, and 40. The distance r is rescaled by the effective diameter σeff,
collapsing all curves on top of each other. The inset shows a zoom in of the g(r)
as a function of reduced distance r /σ. The function is zero for 2r′ < 0.96σ for all
the softness.

the softness values, we observe that χ increases with increasing the
supersaturation of the fluid, as already reported in the literature.36,41

Different softness values are represented here by different colors.
We observe that χ does not show a monotonic trend by varying
βε at fixed ϕ since χ slightly increases as passing from βε = 40 to
βε = 10 and slightly decreases as passing from βε = 10 to βε = 5.
Moreover, the values of χ at fixed ϕ are consistent within the error
bars, especially at lower supersaturation (ϕ ≲ 0.52).

The arguments above bring us to conclude that the softness of
the interaction potential does not affect the local structure of the
fluid within the range of volume fraction investigated in this work.
Consequently, this result supports the hypothesis that softness, as
represented here, might not influence the rate of nucleation in hard
and nearly hard spheres.

B. The role of solvent viscosity
In this section, we simulate four different solvent viscosities

η∗ = η/η0 = 3.5, 40.8, 82.2, and 165.2. To do so, we increase the
number density of SRD particles 5 ≤ γa3

0 ≤ 200. We note that by
increasing the viscosity of the system, the simulation time consid-
erably increases due to two independent phenomena. The first one
is related to the computational time per time step, which scales lin-
early with the number of SRD particles. The second one is related to
a slowing down of the colloidal particle dynamics, which is caused
by a higher friction.

The latter phenomenon is visible in Fig. 7, where we show the
self-intermediate scattering function Fs(q, t) as a function of rescaled
time t/τMD, for different solvent viscosities and fixed volume fraction
ϕ = 0.515. This function is defined as Fs(q, t) = 1/N∑N

j=1⟨exp{iq
⋅ [rj(0) − rj(t)]}⟩, where q is the wave vector for which we use
q = |q| = 2π/σ, and rj is the position vector of particle j. This func-
tion describes the positional correlation of a particle with itself over
time. It displays high correlation values for short time scales, and
a subsequent decay for longer time scales. This decay expresses the
progressive decorrelation of the configurations with respect to the
initial one, as time elapses.

We define the relaxation time τr as the time interval where
Fs(q, τr) = 1/e. In Fig. 7, we represent the value of 1/e with a black

FIG. 7. Self-intermediate scattering function Fs(q, t) as a function of reduced
time t/τMD for different solvent viscosities η∗ = ησ2

/

√

MckBT, here repre-
sented in different colors. The black lines indicate the value 1/e, which intercepts
the functions at the relaxation time τr , indicated on the x axis by the dotted
lines.

line which intercepts each curve at the relaxation time. We indicate
τr on the x axis by dotted lines in order to guide the eye. The slowing
down of the particle dynamics is evident from the increase of τr as
we enhance the solvent viscosity. For instance, the relaxation time
of the red curve is 8.4 times larger than the relaxation time of the
green curve. As we further increase the viscosity, the relaxation time
becomes 16.2 and 31.2 times larger for the blue and violet curves,
respectively.

As is clear from Fig. 7, an increase in viscosity leads to a shift,
but crucially not to a qualitative change in the shape of the self-
intermediate scattering function. We note that this is a consequence
(i) of having sufficiently resolved near-field HIs, which scale linearly
with the viscosity, and (ii) of having a sufficiently large separation
of time scales between the relaxation of colloidal and fluid veloc-
ities,47 ensuring that on time scales on which the colloids change
their configurations, they feel purely viscous effects from the fluid,
not influenced by the very short-time ballistic motion of the fluid
particles. Note that the shift is proportional to the viscosity for
the three highest viscosities in Fig. 7, indicating full separation of
time scales. From the lowest viscosity of 3.5 to the next, the shift
is almost (but not exactly) proportional to the viscosity, indicat-
ing that for the lowest viscosity the time scales are almost (but not
quite fully) separated. For each viscosity, we output nearly uncor-
related configurations every multiple of the respective relaxation
time such that we perform FSCs analyses on equivalent sets of
configurations.

The left panel of Fig. 5(b) shows the colloidal self-diffusion
constant as a function of the solvent viscosity. We measure the
diffusion constant by performing a linear fit of the mean squared
displacement of a particle. The squares represent the short-time dif-
fusion constant D0, measured in a very dilute system of ϕ ≃ 0.008,
while the circles represent the long-time diffusion constant DL of
a dense fluid at ϕ = 0.50. In both cases, D scales as 1/η, here visi-
ble from the linear scaling in the logarithmic representation of the
x and y axes (with a very small deviation for the lowest viscos-
ity, for reasons as discussed above). These results indicate that the
hydrodynamics of the system is correctly captured by this simulation
method.
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In the right panel of Fig. 5(b), we present the results on the
FSCs analysis. We show the number fraction of defective icosahe-
dral clusters χ as a function of volume fraction ϕ for different solvent
viscosities. In analogy with the results obtained for different soft-
ness of the interaction potential, we observe that χ increases with
increasing supersaturation of the fluid, for all the simulated solvent
viscosities. Moreover, on a general level, we observe that there is
no noticeable effect of the solvent viscosity on the configurational
properties of the colloidal fluid. In fact, for each volume fraction, the
measurements of χ might slightly vary for different solvent viscosi-
ties, but they are consistent with each other within the error bars.
For instance, a small difference is found at the highest volume frac-
tion ϕ = 0.544, since χ decreases by 8% by increasing the solvent
viscosity from η/η0 = 3.5 to η/η0 = 165. As we lower the supersatura-
tion of the fluid, the value of χ decreases with increasing the solvent
viscosity for ϕ = 0.530 and 0.515, where we measure a difference of
6% and 5%, respectively. On the contrary, χ is larger at η/η0 = 165
rather than at η/η0 = 3.5 for ϕ = 0.50. On the basis of considerations
reported in Ref. 36 and explained more deeply in Sec. V C, these
differences are too small to cause a sensitive enhancement of the
nucleation rate of hard spheres, especially at low supersaturations.
Moreover, the opposite trend shown for ϕ = 0.50 further proves
that the solvent viscosity does not affect the local structure of the
fluid.

C. The role of gravity
In Fig. 5(c), we present the results obtained for a supersatu-

rated fluid subject to gravity. The left panel shows the average ter-
minal velocity v of the system, normalized by the Stokes velocity v0,
as a function of the hydrodynamic volume fraction ϕh. The latter
quantity is defined by ϕh = 4πρr3

h/3, with the hydrodynamic radius
equal to rh = 0.363σ. We calculated the hydrodynamic radius via the
following equation:

rh =
ζSζE(ηk + 2η)

6πη(ηk + η)(ζS + ζE)
, (7)

where ζS is the Stokes friction and ζE the Enskog friction,47 η is the
shear viscosity, and ηk is its kinetic contribution.47,62 Note that the
hydrodynamic radius is somewhat smaller than the colloid–SRD col-
lision radius r′ = 0.465σ, introduced earlier. This is due to an overall
smaller friction acting on the colloidal surface which, in turn, affects
the strength of the hydrodynamic interactions. We map the hydro-
dynamics of our model system onto an equivalent physical system
by displaying the terminal velocity as a function of the hydrody-
namic volume fraction ϕh. In fact, the latter quantity encodes the
information of the hydrodynamic radius and therefore enables us
to quantitatively compare our results with the literature. The val-
ues of v/v0, shown with dots, are in good agreement with both the
experimental63 and the numerical64 results, the latter performed in
the same range of parameters. We observe that collective hydro-
dynamic effects slow down the settling velocity of the system as
the volume fraction is increased. Moreover, the reduction is inde-
pendent of the Péclet number Pe = vσeff/2D0, here represented by
different colors, in agreement with Ref. 64. The dotted and dashed-
dotted lines are two versions of the semi-empirical Richardson–Zaki
law60 (1 − ϕ)a with a = 4.7 and a = 6.55, respectively. The solid line

is a theoretical derivation which takes higher-order hydrodynamic
interactions into account.61 The inset displays the reduced Stokes
velocity v∗0 = v0

√
Mc/kBT as a function of the reduced external force

F∗ = Fσ/kBT acting on the colloids. The data points perfectly follow
a linear trend, shown with a solid black line, which demonstrates
that we reproduce a fluid dynamics in the Stokes regime. Moreover,
the slope of the linear fit gives an estimate of the diffusion constant
D0 = 0.0587 ± 6 × 10−4 σ

√
kBT/Mc, which results in good agree-

ment with the one measured from the mean squared displacement
D0 = 0.0573 ± 3 × 10−4 σ

√
kBT/Mc in the absence of gravity.

In the right panel of Fig. 5(c), we report the fraction of defec-
tive icosahedra χ as a function of the volume fraction ϕ, for different
values of Pe. We observe that χ increases as we increase the supersat-
uration of the fluid. This trend is in qualitative agreement with the
recent experimental results on the same topic.36 We also find that the
amount of χ is rather independent of Pe. In fact, for a fixed volume
fraction, the number fraction of defective icosahedra does not sig-
nificantly change within our error bars. For instance, we obtain that
the amount of defective icosahedra at Pe = 2 differs by 3% from the
value obtained in the absence of gravity, whereas the relative error of
the measurements is about 10%. However, the irrelevance of gravita-
tional effects on the amount of FSCs is surprisingly in contrast with
the experimental results mentioned above, where they find a reduc-
tion of defective icosahedra between 34% and 24% in the range of
0.50 < ϕ < 0.544, for Pe = 1.5 as compared to the density matched
case.

The cause of this divergence between experiments and simula-
tions is not clear yet. For what concerns our numerical results, we
are confident that the SRD method accurately captures the hydrody-
namics of the system. In fact, we demonstrate this by nicely repro-
ducing the decay of the terminal velocity of the system as a function
of the volume fraction. Yet, we note that the hydrodynamic radius
is slightly smaller than the radius of the colloid. This implies that
the magnitude of hydrodynamic interactions, which scales linearly
with the hydrodynamic radius, is somewhat smaller in our model
system as compared to an actual system. Despite this, we believe
that the weakening of hydrodynamic interactions is not so relevant
to justify the discrepancy between simulations and experiments. A
more rigorous matching between the experimental and simulation
results would require further quantitative analyses on the differences
inherently present in these two systems. We leave this additional
investigation for future research, as we believe it is out of the scope
of the current work.

VI. CONCLUSIONS
We performed MD + SRD simulations of nearly hard spheres

in order to investigate whether hydrodynamic interactions may
enhance the crystal nucleation rate, and may bridge the long-
standing discrepancy between the numerical and experimental
results. To do so, we addressed the problem from different angles
and employed several simulation methods. In all the cases inves-
tigated, we found that HIs do not influence the crystal nucle-
ation rate either directly or indirectly, thereby leaving the problem
unresolved.

In the first part of this work, we computed the nucleation
rate in a wide range of fluid volume fractions by means of two
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simulation methods. At high supersaturations, we employed brute
force MD + SRD simulations to directly observe the spontaneously
forming crystal nuclei. We computed the nucleation rate and
showed that our results agree well with the previously reported val-
ues, thereby validating the use of this simulation technique in this
context.

At low fluid supersaturations, we employed the seeding
approach method and performed MD simulations with and with-
out HIs. We compared the nucleation rates obtained in these two
cases and found a remarkably good agreement between them. There-
fore, the presence of hydrodynamic interactions in the system does
not influence the crystal nucleation rate, in direct contrast with
what is hypothesized in previous studies that did not account for
HIs.27,29–32,36,43 The obtained nucleation rates follow the trend of ear-
lier numerical results, thus leaving open the issue of the discrepancy
between experiments and simulations.6,23–27,29,30,36

Thus, our result that the presence of hydrodynamic interactions
does not influence the crystal nucleation rate is in contrast to the
work of Radu and Schilling34 that demonstrated that the nucleation
rate is enhanced at high viscosities. The difference is caused by the
way the hydrodynamic interactions are implemented.65

First, the interactions between the colloids and the SRD par-
ticles are assumed to be ideal in Refs. 34 and 65, whereas in our
case, we implemented excluded volume interactions between the
colloids and the SRD particles. The near-field hydrodynamics, which
can only be captured by taking into account the excluded volume
between the colloids and the SRD fluid, is hence not resolved in
Refs. 34 and 65. To be more specific, this means that the lubrica-
tion forces which scale linearly with viscosity, the near-field hydro-
dynamic fluid flow field around the surface of the colloids, and
the Brownian motion due to the collisions between the colloids
and the SRD particles are not captured in the work of Radu and
Schilling.34,65 We expect the lubrication forces to be dominant
at the high packing fractions that are required to study crystal
nucleation.

Second, the mass of the colloids M is set equal to the mass of
the SRD particles m, i.e., M = m in Refs. 34 and 65, whereas in the
present work, we made sure that the colloid mass M is much larger
than the mass of the SRD particles, i.e., M ≫ m. Hence, there is
no clear separation of time scales between the motion of the col-
loids and the motion of the fluid in Refs. 34 and 65, and the colloids
behave more like another solvent particle than a suspended colloidal
particle.

Third, in the study of Refs. 34 and 65, the viscosity is altered
by changing the SRD collision interval, whereas in our case, the vis-
cosity is tuned by changing the number density of SRD particles so
that the kinematic viscosity (viscosity divided by the solvent number
density) is kept constant. As the kinematic viscosity increases largely
in Refs. 34 and 65 with viscosity, the diffusion coefficient of the col-
loids scales non-linearly upon changing viscosity, indicating that the
hydrodynamics is not fully captured by this method. Moreover, at
low viscosity, the collision time is smaller than the collision time of
the SRD particles, and thus, the motion of the colloids is not fully
controlled by the solvent viscosity, but rather by inertia or ballistic
effects.

In the second part of this work, inspired by the hypothesis
that FSCs might compete against nucleation already at lower fluid
supersaturation than the glass transition, we further investigated

the properties of the system from this perspective. We simulated
a supersaturated fluid of nearly hard spheres with HIs in a vol-
ume fraction range of 0.50 < ϕ < 0.544 and computed the frac-
tion of defective icosahedra χ in the system under different physical
conditions.

First, we studied the role of the pair interaction softness by sim-
ulating three different temperatures βε = 40, 10, and 5. We compared
the values of χ in the three cases and found good agreement among
them, especially at lower supersaturation values. With this regard,
we conclude that the interaction softness does not influence the local
structure of the fluid, especially the fraction of FSCs.

Second, we explored different values of the solvent viscosity,
which was varied in the range of 3 < η/η0 < 165. Because of the
clear separation of time scales for relaxation of the colloidal and
fluid velocities, the colloidal dynamics was found to slow down lin-
early with increasing viscosity, as expected. We found that χ slightly
decreases with increasing solvent viscosity at high supersaturation,
although the decrement is very small (∼6% for ϕ = 0.530) and should
definitely not lead to a significant difference in the nucleation rate.
In fact, in a recent study36 on the same topic, it was shown that a
difference of χ of about 30% is still not sufficient to recover the exper-
imental nucleation rates. At low supersaturations, we found hardly
any effect of viscosity on χ, and hence, the discrepancy between
experiments and simulations remains unexplained.

Finally, we studied the system under gravity, for values of
Pe < 2. Similarly to what we obtained by varying other system prop-
erties, the local structure of the fluid is insensitive to different sed-
imentation rates. This result is surprising as it shows a net contrast
with the recent work of Wood et al.,36 where a settling fluid at Pe
= 1.5 displays 30% less defective icosahedra as compared to the
non-settling fluid.

To conclude, we consistently find a substantial irrelevance of
the hydrodynamic interactions on the nucleation rate and the local
structure of the supersaturated fluid. Despite the fact that our find-
ings do not explain the enduring discrepancy between experiments
and simulations on the nucleation rate, they have disproved the
hypothesis, coming from previous numerical studies, that HIs are
the missing ingredient to recover the experimental nucleation rates.
Perhaps HIs are important, but then in combination with another
physical mechanism not explored in our work. Furthermore, we
opened new interesting research directions to be investigated, e.g.,
a joint experimental and numerical study on the properties of the
fluid under gravity.

After our submission, we became aware of another recent sim-
ulation study66 that investigated the effect of hydrodynamic inter-
actions by implementing the Fluid Particle Dynamics method on
the kinetics of nucleation and growth of nearly hard spheres. This
study shows agreement with our findings that hydrodynamic inter-
actions do not seem to affect the nucleation rates when scaled by the
long-time diffusion coefficient of the colloids.
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