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ABSTRACT: Colloidal crystals with a diamond and pyrochlore
structure display wide photonic band gaps at low refractive
index contrasts. However, these low-coordinated and open
structures are notoriously difficult to self-assemble from
colloids interacting with simple pair interactions. To circum-
vent these problems, one can self-assemble both structures in a
closely packed MgCu2 Laves phase from a binary mixture of
colloidal spheres and then selectively remove one of the
sublattices. Although Laves phases have been proven to be
stable in a binary hard-sphere system, they have never been
observed to spontaneously crystallize in such a fluid mixture in
simulations nor in experiments of micron-sized hard spheres
due to slow dynamics. Here we demonstrate, using computer
simulations, that softness in the interparticle potential suppresses the degree of 5-fold symmetry in the binary fluid phase and
enhances crystallization of Laves phases in nearly hard spheres.
KEYWORDS: colloidal particles, Laves phases, Monte Carlo methods, glass transition, 5-fold symmetry, photonic crystals

Photonic crystals (PCs) are periodic dielectric structures
that possess a photonic band gap that forbids the
propagation of light at certain frequency ranges. The

ability to control the flow of light is attractive for numerous
applications, ranging from lossless dielectric mirrors, bending
of light around sharp corners in optical waveguides, and
telecommunications, to optical transistors in optical com-
puters. A highly promising route to fabricate photonic crystals
is via self-assembly of optical wavelength sized colloidal
building blocks. PCs that display a wide omnidirectional
photonic band gap at low refractive index contrasts are related
to the family of either the diamond or the pyrochlore structure.
However, these low-coordinated crystals are notoriously
difficult to self-assemble from colloids with simple isotropic
pair interactions.
One strategy to form open lattices is by employing long-

range Coulomb interactions with a range that exceeds multiple
times the particle size.1,2 The range of the screened Coulomb
interaction is set by the Debye screening length of the solvent,
like water or other polar solvents, which is why this approach
will fail for particle sizes that are required for opening up a
photonic band gap in the visible region.
To circumvent these problems associated with the self-

assembly of low-coordinated crystal structures, one can also

employ a different route in which both the diamond and
pyrochlore structure are self-assembled in a single close-packed
MgCu2 crystal structure from a binary colloidal dispersion. By
selectively removing one of the species, one can obtain either
the diamond (Mg, large spheres) or the pyrochlore (Cu, small
spheres) structure. MgCu2 is one of the three binary LS2 crystal
structures (L = large species, S = small species), also known as
Laves phases (LPs), as first found in intermetallic compounds.
The three main structural prototypes of the LPs are the
hexagonal MgZn2, cubic MgCu2, and hexagonal MgNi2
structures, which can be distinguished by the stacking of the
large-sphere dimers in the crystal structures (Figure 1).
Experimentally, LPs have been observed in binary nanoparticle
suspensions3,4 and in sub-micron-sized spheres interacting via
soft repulsive potentials.5−10
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Although free-energy calculations in Monte Carlo (MC)
simulations have demonstrated that the LPs are thermody-
namically stable for a binary hard-sphere (BHS) mixture with a
diameter ratio of 0.76 ≤ q = σS/σL ≤ 0.84,11 LPs have never
been observed to spontaneously crystallize in such a binary
fluid mixture in computer simulations (after the submission of
the paper, a preprint was submitted in which the spontaneous
formation of LPs was reported in simulations, but this
proceeds via spinodal decomposition).12 There are numerous
possible reasons. First of all, it may be possible that the LPs are
not stable in such a hard-sphere mixture and should be
replaced by a crystal structure that has been ignored so far in
phase diagram calculations.11 Second, the freezing transition of
the LPs in a BHS fluid is located at very high densities.
Nucleation can thus only occur when the system is sufficiently
dense. At these high concentrations, nucleation is severely
hampered by slow dynamics. Binary mixtures with a diameter
ratio of q ≈ 0.8, identical to the range where the LPs are stable,
are known to be excellent glass formers.13 This, in conjunction
with the above factor, makes the self-assembly of LPs in BHS
mixtures an extremely rare event. Furthermore, due to small
free-energy differences, the three LPs are strongly competing
during the crystallization process, leading to numerous stacking
faults in the final crystal structure.14−17

The suppression of crystallization due to glassy behavior is
often rationalized by the prevalence of icosahedral clusters of
spheres whose short-range 5-fold symmetry is incompatible
with the long-range translational order as exhibited by
crystals.18 The icosahedral order arises when one maximizes
the density, using the convex hull, of a packing of 12 identical
spheres in contact with a central sphere of the same size. The
densest packing is obtained by arranging the outer spheres on
the vertices of an icosahedron, rather than by using 13-sphere
subunits of face-centered cubic and hexagonal close-packed
bulk crystals.
Here we demonstrate that spontaneous crystallization of the

LPs is strongly suppressed by the presence of 5-fold symmetry
structures in a binary fluid of hard spheres. Interestingly, we
show that softness of the interaction potential reduces the
degree of 5-fold symmetry in the binary fluid phase. We
systematically study the role of softness in the interaction
potential on the structure, phase behavior, and nucleation of

the LPs. By carefully tuning the particle softness, we observe
for the first time spontaneous nucleation of the LPs in a nearly
hard-sphere system in computer simulations, thereby providing
evidence that the LPs are stable in a binary hard-sphere system.
The key result of this study is that soft repulsive spheres can be
mapped onto a hard-sphere system in such a way that the
structure and thermodynamics are invariant, but that the
dynamics and therefore the kinetic glass transition are strongly
affected by higher-body correlations, i.e., 5-fold symmetry
clusters, which can be tuned both in simulations and in
experiments by the softness of the particle interactions. In this
way, softness suppresses 5-fold symmetry and enhances
crystallization of the LPs.
This work is organized as follows. In the section Freezing

Transition and 5-fold Symmetry, we detemine the binary
fluid−LP phase coexistence for a BHS mixture and a Weeks−
Chandler−Andersen (WCA) mixture for varying degrees of
softness in the interaction potentials. We find that the freezing
transition shifts to higher number densities with increasing
particle softness. As crystallization may be suppressed by slow
dynamics due to the presence of 5-fold symmetry clusters, we
investigate the number fraction of 5-fold symmetry clusters as a
function of supersaturation. Surprisingly, we find that a tiny
softness in the interparticle potential is able to reduce the
fraction of 5-fold symmetry clusters that are responsible for the
slow dynamics in the fluid phase.
This interesting finding immediately begs the question

whether or not LP nucleation can be observed by particle
softness. To this end, we study nucleation of the LP using the
seeding approach for varying particle softness in the section
Nucleation Behavior. We find a significant collapse of the
nucleation barrier heights and rates as a function of
supersaturation for the three different LPs and varying particle
softness. Pinpointing the supersaturation range where the
nucleation barrier becomes very low enables us to observe for
the first time spontaneous nucleation of the LP as reported in
the section Spontaneous Nucleation. Moreover, we find that
the supersaturation level where the fluid becomes unstable
with respect to the LP is universal for all WCA systems.
We then continue by investigating the thermodynamic

invariance of the WCA systems by relating the thermody-
namics and structural two-body correlations to that of the
hard-sphere system in section Invariance with Hard Spheres.
Finally, in the section Kinetic Glass Transition, we measure

in simulations the structural relaxation time as a function of
density and fit our data with a prediction from mode-coupling
theory to estimate the kinetic glass transition. We find that the
kinetic glass transition depends strongly on particle softness.
For the lowest softness and therefore also for BHS, we find that
the glass transition pre-empts the packing fraction where the
fluid becomes unstable with respect to the LP, in contrast to
the softer WCA systems. Intriguingly, we also find a marked
correlation between the relaxation times and the fraction of 5-
fold symmetric clusters calculated in the first section.

RESULTS AND DISCUSSION
Freezing Transition and 5-fold Symmetry. Phase

Diagram Calculation. We first study the effect of particle
softness on the freezing transition of the LPs in a binary fluid
of soft repulsive spheres. To vary the softness of the pair
interaction, we consider a binary mixture of NL large (L) and
NS small (S) spheres in a volume V interacting with a WCA
potential uαβ(rij) between species α = L, S and β = L, S19

Figure 1. Structure of the three types of Laves phases, showing the
different stacking sequences of the large-sphere dimers, marked as
“aa”, “bb”, and “cc”, when viewed along specific projection planes.
The stacking of the large-sphere dimers is (i) “··· aa-bb-cc···” for
MgCu2, (ii) “··· aa-bb···” for MgZn2, and (iii) “··· aa-bb-cc-bb···” for
MgNi2.
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where rij = |ri − rj| denotes the center-of-mass distance between
particles i and j, ri the position of particle i, and ϵ the
interaction strength. For a BHS mixture, LPs are thermody-
namically stable for a diameter ratio q ∈ [0.76, 0.84] .11 In this
work, we set the diameter ratio q = σS/σL = 0.78, which is close
to the value of a recent experimental study.20 Here σα denotes
the diameter of species α and σ σ σ= +αβ α β( )/2. The sof tness
of the potential can be tuned by changing the reduced
temperature T* = kBT/ϵ with kB being Boltzmann’s constant
and T the temperature. The WCA potential has been
previously used to mimic the interactions between hard
spheres21−24 as it reduces to the hard-sphere potential in the
limit of T*→ 0. In Figure 2, we plot the WCA potential for T*

= 0.005, 0.025, and 0.2 along with the pair potentials of some
notable experimental systems for which the Laves phases have
been reported in the literature, which are polystyrene latex
spheres6 and binary nanoparticle suspensions.3,4 Figure 2
shows that the WCA potential at T* = 0.025 agrees well with
that of the nanoparticle systems of Evers et al.4 and
Shevchenko et al.,3 whereas the WCA potential at T* = 0.2
is slightly softer. The pair potential of the polystyrene latex
spheres of Hasaka et al.6 is considerably softer and more long
ranged than the WCA pair interactions used in the present
study.
We first determine the freezing transition of the LPs for

varying softness of the interparticle potential using thermody-
namic integration of the equation of state of the binary fluid
phase at a composition xL = NL/(NL + NS) = 1/3,
corresponding to the stoichiometry of the LPs and an Einstein
integration for the LPs to obtain the free energies of the fluid
and LPs, respectively. A more detailed description can be

found in the Supporting Information. By employing a
common-tangent construction on the free-energy curves, we
obtain the fluid−LP coexistence, which is plotted in Figure 3 in

the temperature kBT/ϵ−reduced density ρσL
3 plane, where ρ =

(NL + NS)/V denotes the density. We find that the freezing
transition moves to higher ρσL

3 with increasing temperature or
softness of the particle interaction.
The bulk densities of the fluid−LP coexistence for a BHS

mixture with a diameter ratio q = 0.78 correspond to packing

fractions η = 0.5356BHS
(f) and η = 0.5943BHS

(LP) for the fluid and
LP, respectively. As the freezing transition of the LPs is located
at relatively high densities, crystallization is likely suppressed
by slow dynamics.

High-Coordination Clusters. In the case of monodisperse
spheres, glassy dynamics and suppression of crystallization are
often linked to the presence of icosahedral clusters with 5-fold
symmetry in the supersaturated fluid, which is incompatible
with the long-range periodic order of a crystal. To investigate
whether or not 5-fold symmetry structures suppress crystal-
lization of the LPs in a binary fluid mixture at composition xL =
1/3, we measure the number fraction of three significant
representatives of the 5-fold symmetry structures, i.e., the
pentagonal bipyramids, defective icosahedra, and regular
icosahedral clusters as depicted in Figure 4, using the
topological cluster classification (TCC)25 for varying softness
of the interparticle potential. The effect of the presence of
these clusters on the kinetics and nucleation of monodisperse
hard-sphere systems has already been investigated.26,27 In
order to investigate the effect of particle softness, we compare
the number fraction of these clusters at fixed supersaturation
βΔμ for varying temperatures T*. The supersaturation βΔμ =
βμfluid(P) − βμLP(P) is defined as the chemical potential
difference between the supersaturated fluid and the stable LP
at pressure P.
In Figure 4, we plot the number fraction Nc/N of the three

investigated clusters in a binary fluid mixture at composition xL
= 1/3 versus βΔμ for varying T* corresponding to different

Figure 2. WCA potential at T* = kBT/ϵ = 0.2, 0.025, and 0.005
along with the pair potentials of the experimental systems (dashed
lines) for which the Laves phase has been reported in the
literature, which are binary nanoparticle suspensions of Evers et
al.4 and Shevchenko et al.,3 and polystyrene spheres of Hasaka et
al.6

Figure 3. Fluid−Laves phase (LP) coexistence as denoted by the
blue region of a binary mixture of WCA spheres with a diameter
ratio q = 0.78 at a fixed composition xL = NL/(NL + NS) = 1/3 in
the reduced temperature kBT/ϵ−reduced density ρσL

3 plane. In the
limit of kBT/ϵ → 0, the system reduces to a binary mixture of hard
spheres.
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particle softness. We clearly see that the number fraction of 5-
fold symmetry clusters increases with βΔμ, but more
significantly, it decreases substantially with a small increase
in particle softness. Notably, the five-membered rings as
observed in the clusters highlighted in Figure 4 are also
prevalent in the three LP crystal structures. It is thus not
immediately clear whether these pentagons in the super-
saturated fluid act as nucleation precursors or are responsible
for the slow dynamics.
We therefore analyze the five-membered rings further in the

BHS fluid phase as well as in the three ideal LPs and classify
them according to their large/small sphere composition and
topology. In particular, to ensure that the systems at high
supersaturation (βΔμ = 0.53) are well-equilibrated, we run the
simulations for a very long time (>107 MC cycles). We

distinguish eight topologies (indexed ) in Figure 5(b) and
measure the probability to observe a specific topology P( ) in
the ideal LPs and the metastable BHS fluid at a high
supersaturation βΔμ ≃ 0.53. We reason that if these five-
membered rings are formed randomly in a fluid mixture, P( )
should follow a binomial distribution where the probability to
observe a large sphere in a pentagonal cluster is determined by
the composition xL. We present the probability distributions
P( ) for the LPs, the metastable fluid, and binomial
distribution all at a composition xL = 1/3 in Figure 5(a). We
find that the probability distribution P( ) of the pentagons in
the BHS fluid mixture (black line in Figure 5(a)) and in the
WCA mixtures (see the Supporting Information) follows
reasonably well the binomial distribution (pink line in Figure
5(a)) for all topologies, demonstrating that the pentagons are
formed randomly in the fluid. Furthermore, the pentagons with
a topology = 1 are predominant in the supersaturated BHS
fluid phase, whereas pentagons with a topology = 3 and 4
are prevalent in the ideal LPs. We therefore conclude that the
5-fold symmetry clusters in the supersaturated fluid do not act
as precursors for crystallization, but are responsible for the
slowing down of the dynamics and the kinetic arrest.
For future studies, it may be interesting to investigate

whether a slightly different composition of the mixture,
namely, one that increases the probability of finding
pentagonal clusters with a topology that is found in LPs,
may enhance LP crystallization.28 More importantly, we find
that the presence of these 5-fold symmetry clusters can be
reduced significantly by particle softness. This unexpected
finding raises the immediate question whether or not crystal
nucleation of the LPs can be enhanced or suppressed by tuning
the softness of the interparticle potential.

Nucleation Behavior. To investigate the effect of particle
softness on the nucleation of the LPs, we determine the
nucleation barrier height, critical nucleus size, and nucleation
rate using the seeding approach.29,30 This technique involves
inserting a crystalline seed of a predetermined shape and size
into a metastable fluid. The configuration is subjected to a two-
step equilibration process in the NPT ensemble where (i) the
interface between the crystalline cluster and surrounding fluid

Figure 4. Number fraction of particles Nc/N belonging to three
different 5-fold symmetry clusters as a function of the super-
saturation βΔμ of the fluid phase of a binary mixture of WCA
spheres at varying temperatures as labeled corresponding to
different degrees of particle softness and of a binary hard-sphere
mixture. The three data sets correspond to pentagonal bipyramids
(diamonds), defective icosahedra (bullets), and icosahedra
(squares). The error bars determined from five independent
simulation runs are smaller than the symbols and are presented in
Table I in the Supporting Information. Sketches of these clusters
are shown on the right. We highlight (one of the) pentagons in the
respective clusters.

Figure 5. (a) Probability distribution to observe a specific cluster topology P( ) for the five-membered rings for the three ideal LPs, a
supersaturated binary hard-sphere (BHS) fluid (βΔμ ≃ 0.533), and a binomial distribution, all at composition xL = 1/3. The eight distinct
cluster topologies are shown in (b) with their index label . The error bars determined from five independent simulation runs are smaller
than the symbols and are presented in Table 2 in the Supporting Information.
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is equilibrated by keeping the cluster fixed and then (ii) the
constraint on the cluster is relaxed and the system is
equilibrated further. Subsequently, the equilibrated config-
uration is simulated for a range of pressures in order to
determine the critical pressure β σP Lc

3 at which the critical
cluster size of Nc particles stabilizes. We note that seeding
simulations in the NVT ensemble have a strong dependence on
system size due to a progressive depletion of particles in the
supersaturated fluid phase when a crystal nucleus starts to grow
and due to a drop in pressure when the fluid starts to
crystallize. In order to avoid finite-size effects, we perform
simulations in the NPT ensemble, where the system is subject
to a fixed pressure.23 An illustration is shown in Figure 6,

where a MgZn2 LP seed melts, stabilizes, and grows out, as can
be observed from the evolution of the size of the largest cluster
NCl as a function of time t/τMD, at β σP L

3 = 22.6 (red curve), 23
(green) , and 25 (orange) , re spec t i ve ly . Here ,

τ σ= m k T/LMD B denotes the MD time unit and m the
mass of the particles.
In order to discriminate crystalline clusters with LP-like

symmetry from the fluid phase, we use a local bond-
orientational order parameter measuring the hexagonal
symmetry of every particle i with identity α(i) ∈ L, S. We
then determine large−large, large−small, and small−small
particle pairs with strongly correlated LP-like symmetry and
construct clusters of mutually bonded LP-like solid particles. A
detailed description can be found in the Supporting
Information.

The height of the Gibbs free-energy barrier ΔGc for a critical
nucleus size Nc can subsequently be obtained from classical
nucleation theory:

β β μΔ = ΔG N N( ) /2c c c (2)

By using different critical cluster sizes Nc in the seeding
approach, we obtain ΔGc for varying critical pressures,
corresponding to different supersaturations βΔμ. We repeat
these calculations for the three distinct LPs, MgZn2, MgCu2,
and MgNi2, as crystalline seeds in the seeding approach. In
Figure 7(a), we present ΔGc as a function of βΔμ for the three
LPs and for temperatures kBT/ϵ = 0.005, 0.025, 0.1, and 0.2,
corresponding to varying particle softness. We observe that for
all temperatures and the three LP types, ΔGc goes to infinity
upon approaching bulk coexistence at βΔμ = 0, decreases with
increasing supersaturation βΔμ, and approaches zero at
sufficiently high βΔμ. We find that all our ΔGc data coincide
within statistical error bars for all three LPs, which is to be
expected, as the free-energy differences between the three bulk
LPs are extremely small. More interestingly, we observe that
the ΔGc data collapses onto a master curve for all four
temperatures, yielding an intriguing thermodynamic invariance
for the different degrees of softness in the WCA interaction
potential.
In addition, we calculate the nucleation rate J, which is

determined by a thermodynamic term related to the Gibbs
free-energy barrier βΔGc and a kinetic prefactor:

σ β μ
π

σ
ρ σ β= Δ − Δ

+J
D N

f
D

G
6

exp( )L

L

L

L
L

5

c

2

f
3

c
(3)

where = ⟨ − ⟩+f N t N t( ( ) ) /c
2 is the attachment rate of

particles to the critical cluster, t is the time, ρ β σP( )Lf c
3 is the

critical density of the fluid at the critical pressure, and DL is the
long-time diffusion coefficient at the same ρf. The attachment
rate f+ is measured from 10 independent simulation trajectories
at the critical density ρf. We present the nucleation rates as a
function of βΔμ in Figure 7(b) and find that they collapse for
all four temperatures and three LPs onto a master curve, in a
similar way to what we observed for the nucleation barriers in
Figure 7(a). This finding can be rationalized by the fact that
the nucleation rate is predominantly determined by the
thermodynamic term and simply echoes the thermodynamic
invariance as observed for βΔGc for the three LPs and the four
temperatures.
To summarize, we find by employing the seeding approach

that both the nucleation barriers and nucleation rates collapse
onto a master curve for the different degrees of particle
softness and for the three different types of LPs. This finding is
in contrast to a previous simulation study that showed that the
enhanced crystal nucleation rate for softer spheres is caused by
a lower nucleation barrier.31 Moreover, we find not only that
the nucleation barrier decreases with supersaturation βΔμ but
more importantly this method also allows us to pinpoint the
supersaturation range, where the nucleation barrier of the LP
becomes so low (less than several kBT) that spontaneous
nucleation should occur.

Spontaneous Nucleation. Guided by the seeding
approach results, we perform MD simulations in the NPT
ensemble and search for spontaneous nucleation of the LP in a
highly supersaturated binary fluid phase of soft repulsive
spheres, which has hitherto never been observed in previous

Figure 6. (a) Largest cluster size NCL with LP symmetry as a
function of time t/τMD using the seeding approach in MD
simulations of a binary mixture of WCA spheres in the NPT
ensemble at temperature T* = 0.2, composition xL = 1/3, and a
diameter ratio q = 0.78 for varying pressures β σP L

3 with
corresponding supersaturations βΔμ between brackets in order
to estimate the critical pressure β σP Lc

3. The initial seed size is 2205
particles of the MgZn2 Laves phase. The snapshots in (b) show the
melting of the seed at β σ =P 22.6L

3 (red box), growth of the seed at
β σ =P 25L

3 (orange box), and a stable seed at the critical pressure

β σ =P 23Lc
3 (green box). The large (small) spheres are colored blue

(red). Fluid particles (particles with a disordered neighborhood,
see the Supporting Information) are reduced in size for visual
clarity.
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simulation studies. In Figure 8, we determine the size of the
largest cluster NCL with LP symmetry as a function of time t/

τMD for a range of pressures beyond coexistence, for kBT/ϵ =
0.2, where the coexistence pressure β σP L

3 = 21.32. The results
yield some interesting observations. At pressure β σP L

3 = 29, no
crystallization is observed within our long simulation times. At
a slightly higher pressure, β σP L

3 = 29.5 (βΔμ = 0.524), we
observe that the system stays in a metastable fluid phase for a
certain induction time until a nucleation event occurs; that is, a
crystalline nucleus of the MgZn2 phase forms that subsequently
grows out and transforms into the MgCu2 phase as soon as the
cluster spans the whole simulation box. Upon increasing the
pressure further, β σ ≥P 30L

3 , the crystallization exhibits
features of spinodal-like behavior as the supersaturated fluid
is unstable with respect to the crystal phase and small
crystalline nuclei appear immediately throughout the system.
We later refer to this spinodal-like behavior as the instability
line, which we define as the lowest pressure β σP L

3 (or
supersaturation βΔμ) where crystallization sets in immediately
as soon as the simulation is started. For still higher pressures,

we again see immediate crystallization, but the clusters grow
less, which we attribute to glassy behavior.
More importantly, we also investigate whether or not the

nucleation of the LP proceeds via a classical pathway by
analyzing different particle configurations of a spontaneous
nucleation event in time. We observe in the initial stage of the
simulation the formation and dissolution of small crystalline
nuclei in the binary fluid phase until a crystal nucleus of the LP
exceeds its critical size at an intermediate time and
subsequently grows out; see the Supporting Information for
a movie. We thus show that crystal nucleation of the LP
follows a classical pathway. This finding is important, as our
approach for estimating the Gibbs free-energy barrier heights
and nucleation rates from seeding simulations and classical
nucleation theory is only valid in the case that nucleation
proceeds via a classical nucleation pathway. We hereby validate
our method used in the previous section for measuring the
nucleation barriers and nucleation rates.
To study the effect of temperature or particle softness on the

spontaneous nucleation of the LP in a binary mixture of WCA
spheres, we perform MD simulations in the NPT ensemble for
T* = 0.1 and 0.025 and pressures higher than the coexistence
pressures β σP L

3 = 20.03 for T* = 0.1, and β σP L
3 = 18.35 for T*

= 0.025, respectively. We find a similar pressure-dependence
(not shown) to that described above for T* = 0.2: absence of
crystallization at low pressures, nucleation in a tiny
intermediate pressure regime, and immediate spinodal-like
crystallization at β σ ≃P L

3 27.5 at T* = 0.1, and β σ ≃P L
3 25.5 for

T* = 0.025. Surprisingly, the values of the thermodynamic
driving force βΔμ corresponding to the pressures at which the
fluid is unstable are given by βΔμ = 0.53 ± 0.02 for all three
temperatures, which yields again an intriguing “universality” for
the onset of spinodal-like behavior.

Invariance with Hard Spheres. Perturbation and integral
equation theories of simple liquids are based on the premise
that the structure of monatomic fluids at high densities
resembles that of hard spheres.19,32,33 Hence, a system of hard
spheres serves as a natural reference system for determining
the properties of more realistic systems. On this basis one
expects invariance of the structure along the melting and
freezing line of simple fluids and of thermodynamic properties

Figure 7. (a) Height of the Gibbs free-energy barrier βΔGc and (b) the nucleation rate σJ D/L L
5 as a function of the chemical potential

difference βΔμ between the fluid and the LP for a binary WCA mixture for the three different LPs and for temperatures kBT/ϵ = 0.005,
0.025, 0.1, and 0.2.

Figure 8. (a) Size of the largest crystalline cluster NCL for a binary
mixture of WCA spheres with a diameter ratio q = 0.78 and
temperature T* = 0.2 as a function of time t/τMD for varying
pressures β σP L

3 with corresponding supersaturations βΔμ between
brackets using MD simulations in the NPT ensemble. (b) Final
configuration of a spontaneous nucleation event at β σ =P 29.5L

3

(βΔμ = 0.524), initiated by the formation of a crystalline nucleus
of the MgZn2 phase that subsequently grows out and transforms
into the MgCu2 phase as the cluster spans the simulation box.

ACS Nano www.acsnano.org Article

https://dx.doi.org/10.1021/acsnano.9b07090
ACS Nano 2020, 14, 3957−3968

3962

https://pubs.acs.org/doi/10.1021/acsnano.9b07090?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.9b07090?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.9b07090?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.9b07090?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.9b07090?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.9b07090?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.9b07090?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.9b07090?fig=fig8&ref=pdf
www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.9b07090?ref=pdf


such as the relative density change upon freezing and
melting.34,35

Here, we observe an invariance of the Gibbs free-energy
barriers, nucleation rates, and the onset of spinodal-like
behavior as a function of βΔμ for binary WCA mixtures at
different temperatures. Inspired by this significant observation,
we investigate whether other thermodynamic quantities and
structural properties are invariant along the freezing line of our
WCA systems. Such an invariance is very interesting, as it
allows us to map the WCA mixture onto a simple binary hard-
sphere system. A BHS mixture with a fixed composition
depends on only one thermodynamic variable, the overall
packing fraction, thereby yielding a simple one-dimensional
phase diagram with a singular freezing and melting transition.
In addition, the invariance may enable us to make predictions
on the nucleation of the LP in a binary hard-sphere mixture
and may shed light on why LP nucleation is observed in a
binary mixture of soft repulsive spheres and not in a system of
hard spheres.
Thermodynamic Invariance. To investigate the thermo-

dynamic invariance of our WCA systems, we relate the
thermodynamic properties of the WCA systems to those of a
reference hard-sphere system. For this purpose, we scale the
freezing number density of the binary WCA system for q =
0.78 at temperature T* to the binary hard-sphere freezing

packing fraction ηBHS
(f) , which allows us to determine an ef fective

diameter σ*L as well as an effective packing fraction η* at each

temperature, in a similar way to that in refs 22 and 36. For a
BHS mixture with a diameter ratio q = 0.78, the freezing

packing fraction is ηBHS
(f) = 0.5356. In Figure 9(c), we present

the phase diagram in the temperature kBT/ϵ−effective packing
fraction η* plane. As the freezing density for all temperatures
of the WCA system is scaled to the freezing density of hard
spheres, the freezing line becomes a vertical line in this
representation. In addition, we find that the softness of the
interactions has only a minor effect on the melting line and the
width of the coexistence region. We find that the melting line
shifts slightly to lower packing fractions and that the width of
the coexistence region decreases marginally upon increasing
the softness of the potential, i.e., increasing the reduced
temperature T*. In addition, we also plot the effective packing
fractions corresponding to the state points where the fluid
becomes unstable with respect to freezing, i.e., βΔμ ≃ 0.53.
This instability line lies well inside the two-phase coexistence
region and shifts slightly to higher η* with increasing
temperature T*.
Subsequently, we use the same effective diameter σ*L to scale

the equations of state, β σ*P L
3 versus η* for our WCA systems at

different temperatures, and compare them with the equation of
state for a BHS mixture with a diameter ratio q = 0.78. As seen
in Figure 9(a), we find a perfect collapse of the equations of
state, demonstrating a thermodynamic invariance for the
equations of state for the WCA systems with temperature.

Figure 9. (a) Reduced pressure β σ*P L
3 and (b) supersaturation βΔμ versus effective packing fraction η* for a binary hard-sphere mixture and

a binary WCA mixture for varying temperatures with a diameter ratio q = 0.78 and composition xL = 1/3. The error bars in (a) and (b) are
≤0.1% and invisible with respect to the line thickness. (c) Phase diagram of this binary WCA mixture in the reduced temperature kBT/ϵ−η*
plane. The yellow circles connected by a vertical dashed line denote the instability line where the fluid is unstable with respect to freezing.
The kinetic MCT glass transition points are denoted by the red circles. For kBT/ϵ = 0.005, we find that kinetic glass transition precedes the
spinodal-like instability, similar to hard spheres. Therefore, the instability point is not marked for this temperature as we do not observe
crystallization within reasonable time scales. (d) Pair correlation function gLL(r) for the large spheres as a function of the scaled radial
distance σ*r/ L for a binary mixture of WCA spheres at three different temperatures and for a BHS mixture using MC simulations along the
freezing line (βΔμ = 0) and along the instability line (βΔμ ≃ 0.53).
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Finally, we plot the chemical potential difference βΔμ =
βμfluid(P) − βμLP(P) between the fluid and the Laves phase as
a function of the effective packing fraction η* in Figure 9(b)
for both the WCA systems at varying temperatures and the
BHS mixture. The deviation of the BHS system from the WCA
systems at very high packing fractions η* ≃ 0.575 is due to
equilibration issues beyond the kinetic glass transition.
The collapse of the chemical potential difference for the

WCA systems with different temperatures and the BHS system
yields a fascinating “universality” in the thermodynamic driving
force for nucleation of the LPs, explaining our observation of
the thermodynamic invariance of the Gibbs free-energy
barriers, nucleation rates, and the onset of spinodal-like
behavior as a function of βΔμ for different temperatures as
described above. We note that relating the properties of a
system with realistic pair interactions to those of a hard-sphere
system forms the basis of perturbation theories. The method
that we use here to determine the effective diameter of an
equivalent hard-sphere system is the simplest one and
resembles the expression given by Barker and Henderson.37

A more accurate prescription is given by the WCA theory,
which equates the free energy of the reference system to that of
a hard-sphere system at the same density and temperature,
yielding a density- and temperature-dependent effective
diameter.38 In lowest order, WCA theory reduces to the
Barker−Henderson expression, which is accurate for the WCA

systems in the temperature and density range considered here,
i.e., T* ≤ 0.2 and η* ≤ 0.575.

Structural Invariance. In order to investigate whether the
structure is also invariant along lines in the phase diagrams
identified by equal βΔμ values, we measure the pair correlation
function gLL(r) for the large spheres as a function of the radial
distance expressed in terms of the effective diameter of the
large spheres for the WCA systems at the three different
temperatures and for the BHS mixture along the (i) freezing
line βΔμ = 0 and (ii) instability line βΔμ ≃ 0.53, where we
made sure that the system remained in the fluid state during
our sampling. The results are presented in Figure 9(d). We
find a good collapse of both sets of gLL(r)’s as the peak
positions coincide, showing a structural invariance of the two-
body correlation functions along the freezing and instability
lines. Additionally, one observes that the height of the first
peak of the gLL(r) increases and the peak becomes narrower,
and thus the gLL(r) becomes more hard-sphere-like upon
lowering the temperature.
The collapse of the phase diagram, equations of state, and

pair correlation functions demonstrate an invariance of the
binary WCA mixtures for varying temperatures along lines of
equal βΔμ, i.e., thermodynamic driving force, in the phase
diagram. We thus find that a binary mixture of soft repulsive
spheres can be mapped onto a hard-sphere system in such a
way that the structure and thermodynamics are invariant.
However, this invariance does not yet explain why nucleation

Figure 10. (a) Self-intermediate scattering function Fs(q, t) for the large spheres as a function of time σtD / L0
2 for a binary WCA mixture with

a diameter ratio q = 0.78 at T* = 0.2 for varying effective packing fractions η* as obtained from MC simulations. (b) Structural relaxation
time τα as a function of η η η| * − *| */c c for a binary mixture of WCA spheres at T* = 0.025, 0.1, and 0.2 and a binary hard-sphere mixture. Note
that in (c) and (d) the same color coding is used as in (b). (c) Self-intermediate scattering function Fs(q*, t) for the large spheres for a binary
mixture of WCA spheres at three different temperatures and for a BHS mixture using MC simulations along the freezing line and along the
instability line. The four curves on the left correspond to βΔμ = 0, and the four curves on the right correspond to βΔμ = 0.533. (d)
Exponential relation between the relaxation time τα at three different levels of supercooling (βΔμ = 0, βΔμ = 0.2, and βΔμ ≃ 0.53) and the
number fraction of particles Nc/N belonging to a defective icosahedron.
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of LPs is observed in the case of WCA systems and not for a
binary hard-sphere mixture.
Kinetic Glass Transition. To shed light on this counter-

intuitive result, we investigate the kinetics of the WCA systems
as a function of temperature. We already demonstrated above
that the degree of 5-fold symmetry clusters can be tuned by the
softness of the interaction potential. To investigate the effect of
5-fold clusters on the kinetics of the system further, we
determine the kinetic glass transition of the WCA systems at
varying temperatures. To this end, we calculate the self-
i n t e r m e d i a t e s c a t t e r i n g f u n c t i o n

= ∑ ⟨ { ·[ − ]}⟩=F q t N i tq r r( , ) 1/ exp (0) ( )L j
N

j js 1
L at the wave

vector q = |q| = 2π/σL as a function of time σtD / L0
2 using

MC simulations. The summation runs over all large particles
NL, and the short-time diffusion coefficient of the large spheres
D0 is computed in separate MC simulations. We repeat this
calculation for a binary mixture of WCA spheres at
temperatures T* = 0.2, 0.1, and 0.025 and for a binary
mixture of hard spheres, all at a diameter ratio of q = 0.78,
using MC simulations at varying effective packing fractions η*.
Exemplarily, we plot Fs(q, t) for a WCA mixture at T* = 0.2 in
Figure 10(a) for varying η*. The dynamics slows down
dramatically with increasing η*. We plot the structural
relaxation time τα in reduced units, defined by Fs(q, τα) =
e−1, as a function of η η η| * − *| */c c in Figure 10(b) for our
WCA systems at T* = 0.025, 0.1, and 0.2 and the BHS
mixture. At sufficiently high densities, the structural relaxation
time τα diverges algebraically, and we find a perfect collapse of
all the data. We employ the prediction from mode coupling
theory (MCT),39 τ η η∼ | * − *|α

γ−
c , to fit the structural

relaxation times τα as a function of η* using η*
c and γ as fit

parameters. Here, η*
c denotes the critical packing fraction

corresponding to the kinetic glass transition as described by
MCT. We note that η*

c serves solely as a proxy for a qualitative

change in the dynamics and mention that for η η> *
c the

relaxation time diverges exponentially as shown for both active
and passive hard-sphere systems.40,41 The structural relaxation
τα is well described by an exponential divergence at a packing
fraction corresponding to the ideal glass transition as described
by the Vogel−Fulcher−Tammann law. We also stress that the
structural relaxation times are determined here from
simulations, thereby incorporating all many-body correlations
in the binary fluid phase in contrast to theoretical predictions
from MCT that uses the structure factor (two-body
correlation) as input.
We list the critical MCT packing fractions η*

c with the
corresponding supersaturation βΔμ, critical exponents γ, and
the effective diameters σ*L in Table 1 for the WCA systems at
varying temperatures, i.e., softness of the interaction potential
and the BHS mixture. The statistical error on γ (<3%) and η*

c
(<0.2%) are determined by the fit, and on τα (<0.1%) by the
real part of the F q t( , ))s . We also plot the critical MCT packing

fractions η*
c in Figure 9(c). The results are noteworthy. We

clearly observe that the critical MCT effective packing fraction
η*

c and corresponding supersaturation βΔμ decrease with
decreasing softness of the interaction potential. In fact, in the
BHS case, the kinetic glass transition, as predicted by MCT,

precedes the state point where the fluid becomes unstable with
respect to freezing.
In order to make a further comparison between the

investigated systems, we compare Fs(q*, t) at the wave vector
q* = |q*| = π σ*2 / L , for state points along the freezing line βΔμ
= 0 and along the instability line βΔμ ≃ 0.53 for a BHS system
and WCA systems at T* = 0.025, 0.1, and 0.2, in Figure 10(c).
Not only do we observe a different dynamical behavior for
varying softness, but we also note a strong correlation between
the relaxation times τα and the number fraction of 5-fold
symmetry defective icosahedron clusters. We display this
correlation in Figure 10(d), where we find an exponential
relation between the structural relaxation times in the fluid
phase for varying particle softness and different super-
saturations βΔμ and the fraction of particles belonging to a
defective icosahedron. Such a correlation between the defective
icosahedron and the structural relaxation times was also found
for weakly polydisperse hard spheres.42

To summarize, we find that a BHS mixture gets kinetically
arrested at a lower packing fraction than the packing fraction
where we expect to find spontaneous nucleation of the LP.
However, for a slightly softer interaction potential, a binary
WCA mixture at T* = 0.025, we find the reverse situation, and
hence spontaneous nucleation is observed at a packing fraction
that is lower than that of the kinetic glass transition. This
finding may explain why LP nucleation is never observed in a
binary mixture of hard spheres and is observed here for a
binary WCA system.

CONCLUSIONS
In 2007, a novel self-assembly route toward a photonic band
gap material was proposed in which the diamond and
pyrochlore structure are self-assembled from a binary mixture
of colloidal hard spheres into a closely packed MgCu2 Laves
phase.11 Despite numerous efforts, spontaneous crystallization
of the LPs has never been observed in simulations of BHS
mixtures or in experiments on micron-sized colloidal hard
spheres, casting doubts on the thermodynamic stability of
these crystal structures in binary hard spheres. Recent MC
simulations have shown, however, that by introducing size
polydispersity, either in a static or dynamic way, and by using
unphysical particle swap moves, LPs may be nucleated from a
dense hard-sphere fluid.43,44

Alternatively, to alleviate problems with the degeneracy of
the three competing LPs and with the metastability of the
MgCu2 with respect to the MgZn2 phase, one may resort to
another self-assembly route in which the MgCu2 phase, stable
in the present system, is formed from a binary mixture of

Table 1. Critical MCT Effective Packing Fraction η*
c

Corresponding to the Kinetic Glass Transition for a Binary
Mixture of WCA Spheres at Varying Temperatures and for a
BHS Mixture, All at a Diameter Ratio q = 0.78, the
Corresponding Supersaturation Level βΔμ, the Critical
Exponents γ of the MCT Fits, and the Effective Large-
Sphere Diameters σ*L

system ηc* βΔμ γ σL*

kBT/ϵ = 0.2 0.5837 0.673 1.3545 1.0583
kBT/ϵ = 0.1 0.5816 0.620 1.3984 1.0764
kBT/ϵ = 0.025 0.5792 0.604 1.3993 1.1009
BHS 0.5681 0.452 1.3140 1.0000

ACS Nano www.acsnano.org Article

https://dx.doi.org/10.1021/acsnano.9b07090
ACS Nano 2020, 14, 3957−3968

3965

www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.9b07090?ref=pdf


colloidal spheres and preassembled tetrahedral clusters of
spheres as shown in both simulations45 and experiments using
DNA-mediated interactions.46

To better understand why the nucleation of LP is severely
hampered in a binary fluid of hard spheres, we investigated the
degree of 5-fold symmetry in the binary fluid phase, as the
presence of 5-fold symmetry structures may suppress
nucleation. In order to study the effect of softness of the
interaction potential, we measured the number fraction of
three significant representatives of the 5-fold symmetry
structures in a binary fluid of WCA spheres at varying
temperatures kBT/ϵ, thereby altering the softness of the
interaction potential. In the limit of kBT/ϵ → 0, this system
reduces to the binary hard-sphere system. Surprisingly, we
found that particle softness significantly reduces the degree of
5-fold symmetry in the binary fluid phase.
To investigate the repercussions of this finding on LP

nucleation, we subsequently performed simulations with a
crystalline seed to measure the nucleation barrier and
nucleation rate for the three LP types and for varying
temperatures, i.e., degrees of particle softness. These results
enabled us to study, for the first time, spontaneous nucleation
of the LPs in simulations of nearly hard spheres. We thus find
that the seeding approach is versatile and robust:29,30 it enables
one to not only determine the nucleation barrier and
nucleation rate but also locate the regime in the phase
diagram where spontaneous nucleation may occur and
provides information on how a crystal nucleus grows and
melts.
Our observation of spontaneous nucleation of the LP in a

system of soft spheres is important and intriguing for two
reasons. On one hand, our simulations provide evidence that
the LP is stable in the phase diagram of such a binary mixture,
as predicted theoretically more than a decade ago.11 On the
other hand, it immediately begs the question why LP
nucleation has never been seen in simulations of BHS mixtures
or in experiments on micron-sized colloidal hard spheres
despite numerous attempts by many research groups, whereas
it nucleates spontaneously with a tiny degree of particle
softness.
To address this question, we studied the role of softness in

the interaction potential on the structure, phase behavior, and
dynamics of the LPs and found that a system of soft repulsive
spheres can be mapped onto a binary hard-sphere system in
such a way that the structure and thermodynamics are
invariant in reduced units for varying softness of the interaction
potential. However, the invariance of the nucleation barrier
and nucleation rate as a function of supersaturation for varying
softness of the potential seems to be at odds with the
observation of LP nucleation in WCA systems for T* ≥ 0.025
and the absence of it in binary hard spheres.
In order to shed light on this counterintuitive result, we

determined the kinetic glass transition by fitting the structural
relaxation times as obtained from the self-intermediate
scattering functions with an MCT fit for the various WCA
systems. Surprisingly, we found that the packing fraction
corresponding to the kinetic glass transition strongly depends
on the softness of the particle interactions, which in turn affects
the presence of 5-fold symmetry clusters in the supersaturated
fluid phase. It will be interesting to investigate in future work
whether or not there is a connection with previous studies that
show that the fragility of a glass can be tuned by particle
softness.47−50 We thus find that crystallization can be enhanced

by tuning the softness of the particle interactions, either by
charge, ligands, or a stabilizer, in simulations or experiments.
This finding is indeed consistent with the experimental
observations of the LPs, as they all seem to involve particles
interacting with (slightly) soft repulsive interactions.3−10

Moreover, introducing a small degree of softness in the
particle interactions can be exploited in a wealth of other
crystallization studies. For instance, there are still many open
questions on how and why binary crystal phases nucleate. A
systematic study of binary nucleation has been hampered so far
by either slow dynamics or finding the right regime in the
phase diagram where nucleation may occur.
Finally, we note that the structure as characterized by the

two-body correlation functions as well as the thermodynamics
which is predominantly determined by also two-body
correlations is invariant in reduced units for varying softness
of the pair potential. However, the structural relaxation time
and the kinetics depend strongly on the presence of 5-fold
structures, and thus on higher-body correlations. We hope that
this finding will inspire the development of new theories for
predicting the kinetic glass transition that take into account
higher-body correlations.

METHODS
In the determination of the kinetic glass transition and the degree of
5-fold symmetry clusters at different supersaturations, MC simulations
were performed on N = NL + NS = 1200 particles (WCA spheres and
binary hard spheres) with composition xL = NL/(NL + NS) = 1/3, in
the NVT ensemble involving standard single-particle translation
moves. The cluster concentrations are averaged over 100 independent
snapshots. Spontaneous nucleation of LPs was observed in MD
simulations performed using HOOMD-blue (highly optimized object-
oriented many-particle dynamics)51,52 in the NPT ensemble on 1536
WCA spheres at composition xL = 1/3. The temperature T and
isotropic pressure P are kept constant via the Martyna−Tobias−Klein
(MTK)53 integrator, with the thermostat and barostat coupling
constants τT = 1.0 τMD and τP = 1.0 τMD, respectively, where
τ σ= ϵm/LMD is the MD time unit. The time step is set to Δt =
0.004τMD and the simulations are run for 109τMD time steps, unless
otherwise specified. The simulation box is cubic and periodic
boundary conditions are applied in all directions.

Differently, in the context of the implementation of the seeding
approach, the nucleation free-energy barrier heights and nucleation
rates were calculated using a crystal seeding approach involving a two-
step equilibration process as described in the main text, via MC
simulations in the NPT ensemble involving isotropic volume scale
moves in addition to the particle translation moves. The initial
configurations were seeded with all three LP types MgCu2, MgZn2,
and MgNi2, surrounded by disordered particles, at overall
composition xL = 1/3. The data points on the free-energy barrier
height and nucleation rate profiles are obtained from simulations with
five different seed sizes (Nseed): (i) Nseed = 96 (all three LPs) and total
system size N = 4140, (ii) Nseed = 192 (MgCu2), 384 (MgZn2,
MgNi2) and N = 4160, (iii) Nseed = 648 (MgCu2), 1080 (MgZn2),
720 (MgNi2) and N = 8100, (iv) Nseed = 1536 (MgCu2), 1728
(MgZn2), 1440 (MgNi2) and N = 12500, and (v) Nseed = 3000
(MgCu2), 2688 (MgZn2, MgNi2) and N = 17 000 particles,
respectively. The critical pressures and attachment rates for the
different seed sizes were obtained from MD simulations in the NPT
ensemble, where the simulations were initialized with the MC-
equilibrated configurations. The details of the MD simulations are
described above.

Finally, in order to investigate the effect of 5-fold symmetry clusters
on crystallization, we require an algorithm that is capable of
successfully finding different topological clusters in a metastable
fluid. To this aim, we employ the topological cluster classification25

for varying softness of the interparticle potential. The algorithm is
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used regardless of the species of the particles forming the clusters, and
the bonds between particles are detected using a modified Voronoi
construction method. The free parameter fc, controlling the amount of
asymmetry that a four-membered ring can show before being
identified as two three-membered rings, is set to 0.82.
The details on the free-energy calculations and on the local bond-

orientational order parameter employed to detect clusters with LP-
like symmetry can be found in the Supporting Information.
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