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ABSTRACT
We develop a phenomenological Landau–de Gennes (LdG) theory for lyotropic colloidal suspensions of bent rods using a Q-tensor expansion
of the chemical-potential dependent grand potential. In addition, we introduce a bend flexoelectric term, coupling the polarization and the
divergence of the Q-tensor, to study the stability of uniaxial (N), twist-bend (NTB), and splay-bend (NSB) nematic phases of colloidal bent
rods. We first show that a mapping can be found between the LdG theory and the Oseen–Frank theory. By breaking the degeneracy between
the splay and bend elastic constants, we find that the LdG theory predicts either an N–NTB–NSB or an N–NSB–NTB phase sequence upon
increasing the particle concentration. Finally, we employ our theory to study the first-order N–NTB phase transition, for which we find that
K33 as well as its renormalized version Keff

33 remain positive at the transition, whereas Keff
33 vanishes at the nematic spinodal. We connect these

findings to recent simulation results.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0008936., s

I. INTRODUCTION

Bent-core liquid crystals are mesophases formed by molecules
with a “banana-like” shape.1 In the simplest liquid-crystal phase,
i.e., the uniaxial nematic (N) phase, the long axes of the bent-core
molecules are preferentially aligned along a common direction, the
so-called nematic director n̂, and the transverse orientations of the
molecules are randomly oriented in the plane perpendicular to n̂.
In addition to the N phase with an orientational order of the main
molecular axis, the molecular shape can stabilize a nematic phase
with polar order, in which the transverse orientations exhibit a net
alignment in a direction perpendicular to n̂. In 1969, Meyer2 argued
that the polar order of the transverse directions couples to the bend
deformations of the nematic director n̂ through a mechanism called
the bend flexoelectric effect. The polar order and the bend flexoelec-
tric effect may occur in liquid crystals due to electrostatic polariza-
tion and may also arise due to the molecular shape in systems of

bent-core molecules in the absence of electric fields. As a result, it is
particularly easy to induce bend deformations in the nematic direc-
tor field of bent-core liquid crystals. Many years later, Dozov3 noted
that the bend elastic constant K33 can be very small for bent-core
liquid crystals, yielding a low energy cost for bend deformations. In
addition, Dozov speculated that K33 could also become negative in
certain bent-core liquid crystals. In this case, higher-order terms in
the derivatives of the nematic director field (beyond linear elastic-
ity) should be included in the free energy in order to stabilize the
system. The competition between the putative negative K33 term
and the positive higher-order terms would favor spontaneous bend
deformations. Interestingly, however, the theoretical work of Dozov
did not consider any polar order. Since it is impossible to extend a
pure bend deformation in three-dimensional space, Meyer as well
as Dozov predicted that the uniaxial N phase can become unsta-
ble with respect to either a spatially modulated twist-bend nematic
(NTB) phase, characterized by a heliconical variation with bend and
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twist deformations in the molecular orientation [see Fig. 1(a)], or a
modulated splay-bend nematic (NSB) phase, characterized by alter-
nating domains of splay and bend3,4 [see Fig. 1(b)]. Quantitatively,
Dozov’s theory, based on the Oseen–Frank elastic theory, predicts
that the uniaxial N phase becomes unstable to the formation of NTB
or NSB phases at a critical point corresponding to K33 = 0, where
the system either stabilizes an NTB phase if K11 > 2K22 or an NSB
phase if K11 < 2K22, with K11 and K22 being the splay and twist elastic
constants, respectively.3

Recently, Selinger and collaborators5–7 suggested that the pres-
ence of polar order could provide the simplest explanation not only
for the formation of spatially modulated phases, in agreement with
Meyer, but also for the negative bend elastic constant K33 proposed
by Dozov. These authors introduced a Landau theory that com-
bines the Oseen–Frank free energy for the nematic director n̂, the
polar order P perpendicular to n̂, and the coupling between the
polar order and bend deformations. By minimizing the free energy
with respect to the polar order, they obtained Dozov’s effective free
energy in terms of only the nematic director field n̂ with renormal-
ized elastic constants. In this picture, K33 remains always positive,
while its renormalized version Keff

33 decreases in magnitude and van-
ishes at a critical point where the uniaxial N phase becomes unstable
with respect to the NTB or NSB phase. Interestingly, they also found
the same criterion for the relative stability of the spatially modu-
lated phases calculated by Dozov,6 i.e., K11 < 2K22 for an NSB phase
and K11 > 2K22 for an NTB phase. Finally, Selinger’s theory has
been extended8–12 to a mesoscopic Landau–de Gennes (LdG) the-
ory where the director n̂ is replaced by a second rank, symmetric,
and traceless tensor Q(r) with components Qαβ(r), where α, β = 1, 2,
3 represent the Cartesian coordinates.

For completeness, we also mention that theories have been
developed for bent-core liquid crystals that do not involve spon-
taneous polar order or a negative bend elastic constant.13–18 Addi-
tionally, molecular field approaches19–30 for bent-core liquid crystals
exist, of which several20,26,28–30 support the idea of softening of the

FIG. 1. (a) Twist-bend nematic (NTB) phase characterized by a heliconical variation
of the particle orientation along the z-axis. (b) Splay-bend nematic (NSB) phase
characterized by alternating domains of splay and bend in the x-z plane.

bend elastic constant before the onset of the polar order in bent-core
liquid crystals, in agreement with Selinger et al.5–7

Much research in recent years has been focused on ther-
motropic bent-core mesogens that become liquid crystalline upon
lowering the temperature. Very recently, various routes have been
developed to synthesize lyotropic colloidal model systems of bent-
core molecules, e.g., silica rods with a sharp kink31–33 or smoothly
curved SU-8 rods.34 The liquid crystalline behavior of these colloidal
systems is driven by concentration and has been studied by simula-
tions and microscopic theories. Using Onsager theory,35 a first-order
uniaxial N to NTB phase transition has been predicted recently in a
system of hard curved particles at sufficiently high particle concen-
trations,19 which has been confirmed in computer simulations19,36

on systems of hard bent spherocylinders. In addition, this simu-
lation study showed that the N–NTB phase transition is followed
by a second-order NTB–NSB phase transition in a polydisperse sys-
tem of hard bent spherocylinders and in a system of hard curved
particles.

In this paper, we extend the existing LdG theories of ther-
motropic bent-core liquid crystals to lyotropic liquid crystals in
order to develop a framework to describe the recent findings of Refs.
19 and 36. To this end, we introduce a chemical-potential dependent
grand potential based on a Q-tensor expansion and a bend flexo-
electric term coupling the polarization and the divergence of the
Q-tensor.8–12 We first show that a mapping can be found between
the LdG theory and the Oseen–Frank theory of Selinger and co-
workers.6,7 We then show, by breaking the degeneracy between the
splay and bend elastic constants, that the LdG theory predicts a series
of second-order phase transitions between periodically modulated
nematic phases, reproducing what was found in Ref. 36. Finally, we
employ our theory to study the first-order N–NTB phase transition
observed in simulations. We find that while the LdG theory predicts
that K33 > 0 and Keff

33 = 0 at a second-order N–NTB phase transition,
it also predicts that K33 as well as Keff

33 remains positive at a first-order
N–NTB transition, whereas Keff

33 vanishes at the nematic spinodal.
As a final introductory remark, it is worth mentioning that the

splay-bend nematic phase considered in this paper differs from the
so-called splay nematic (NS) phase considered in Refs. 12, 37, and
38. This NS phase is characterized by a modulation perpendicular to
the average director, while the NSB phase is characterized by a spa-
tial modulation parallel to the global nematic director. Moreover,
the onset of the NS phase is driven by softening of the renormal-
ized splay elastic constant Keff

11 rather than of the renormalized bend
elastic constant Keff

33 .
The outline of this paper is as follows: Sec. II describes our LdG

theory. In Sec. III, we briefly review the isotropic-nematic phase
transition of hard rods within this framework, which will be used
as a reference system throughout this paper. In Sec. IV, we investi-
gate possible phase sequences of the spatially modulated phases. The
first-order N–NTB transition is studied in Sec. V, and the renormal-
ized elastic constants are derived in Sec. VI. Finally, we present our
conclusions and a discussion in Sec. VII.

II. LANDAU–de GENNES THEORY
LdG theory is based on the hypothesis that equilibrium prop-

erties of a thermodynamic system can be found from a variational
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Helmholtz (or Gibbs) free energy F, constructed as an expansion in
powers of a suitable order parameter. A restriction on the expan-
sion is that it must be stable against an unlimited growth of the
order parameter. It is well known39 that the orientational order
of three-dimensional nematic liquid crystals can be described by a
second-rank, symmetric, traceless tensor field, Q(r), with cartesian
components Qαβ(r) for α, β = 1, 2, 3, which vanishes in the isotropic
(I) phase and thus serves as an order parameter for the N phase. The
eigenvector of Q corresponding to the maximum modulus of a non-
degenerate eigenvalue defines the nematic director n̂ of the system.
The variational LdG free energy F for ordinary, non-chiral nematics
is constructed from frame-invariant contractions of Qαβ and spatial
derivatives ∂λQαβ such as QαβQβα, QαβQβλQλα, with phenomeno-
logical coefficients that contain the dependence on the thermody-
namic state (pressure and temperature). Usually for thermotropic
liquid crystals, only the quadratic term of the Landau expansion
changes sign as a function of temperature, which drives the phase
transition.40–42

In contrast to “ordinary” nematics, a proper characterization
of orientational order exhibited by bent-core liquid-crystal phases
requires additional order parameters. In the case of theories based
on the flexoelectric effect, not only the tensor field Q(r) is required
but also a vector field P(r) with cartesian components Pα(r) that
describes the polar order in a direction perpendicular to n̂. In the
I phase, Q = 0 and P = 0; in the uniaxial N phase, Q ≠ 0 and P = 0;
and in the spatially modulated nematic phases, Q ≠ 0 and P ≠ 0.
General O(3)-symmetric extensions of the free energy F that con-
tain additionally lowest order couplings with P and its derivatives
∂αPβ have been developed in Refs. 8–12. However, these expan-
sions are only suitable for thermotropic systems that become liquid
crystalline as a function of temperature. In contrast, lyotropic sys-
tems become ordered as a function of density and are not conve-
niently described by the Helmholtz free energy F. A naive remedy
for this problem would be to replace the temperature in F by the
density ρ, but this cannot capture the density jumps that are found
at first-order transitions, which for the I–N phase transition can
be as large as 25%.43 The density discontinuity at the I–N transi-
tion is instead exhibited by microscopic theories, such as Onsager
theory.

Here, we follow Ref. 44 and set up a Landau expansion for
lyotropics for which we will use the grand potential Ω rather than
the Helmholtz (or Gibbs) free energy F. By using Ω, the expansion
parameters will depend on the chemical potential μ, and the density
jumps will naturally be encoded through the relation ∂(Ω/V)/∂μ|V ,T
= −ρ, with V being the volume of the system and ρ being the average
density. Only the quadratic term QαβQβα has a μ-dependent prefac-
tor that changes sign to drive the phase transition. This procedure
is easier to use than, for example, the phase-field-crystal method of
Ref. 45, which produces terms that also explicitly depend on density,
for which also an Euler–Lagrange equation for ρ needs to be solved,
in addition to the one for Q.

We consider a system of hard bent rods modeled as curved or
kinked rods of contour length L and diameter D, at chemical poten-
tial μ in a macroscopic volume V at fixed temperature T. We write
the LdG grand potential as

ΔΩ(Q,P) = ∫
V

dr[Δωb + ωe + ωP], (1)

where Δωb ≡ Δωb(Q; μ) is the excess bulk grand potential density
with respect to the I state, ωe ≡ ωe(Q, ∇Q) describes elastic defor-
mations and surface tension effects, and ωP ≡ ωP(Q, P, ∇Q, ∇P)
contains additionally lowest order couplings between Q and the
polarization field P and its derivatives ∂αPβ.

We expand the bulk contribution in units of β−1 = kBT with kB
being the Boltzmann constant, until fourth order in Q, which gives
us

βB2Δωb(Q;μ) =
2
3

aβ(μ∗ − μ)QαβQβα −
4
3

b QαβQβλQλα

+
4
9

d QαβQβαQλρQρλ, (2)

where we use Einstein’s summation convention for repeated indices
throughout this paper. The second virial coefficient in the isotropic
fluid phase is given by B2 = πL2D/4 in the limit L≫D and is included
in our definition to render the Landau coefficients a, b, and d con-
veniently dimensionless. For simplicity, we assume them to be inde-
pendent of μ. We also introduce μ∗, the chemical potential at which
the quadratic term changes sign, i.e., it defines the spinodal of the
I–N transition. A stable I phase at μ < μ∗ requires a > 0, the stability
of expansion (2) with respect to an unlimited growth of Q requires
that d > 0, while b > 0 allows us to describe a first-order I–N transi-
tion to a state with Q≠0. Throughout, we will satisfy these stability
criteria.

For the terms in gradients of Q, we only retain terms up to
the square gradients in Q, and we consider only one of the possi-
ble invariants that involve the coupling between the order parameter
Q and quadratic gradient in Q to break the degeneracy between the
splay and bend elastic constants K11 and K33.46 We thus write

βB2ωe(Q,∇Q) =
2
9

l1(∂αQβλ)(∂αQβλ) +
2
9

l2(∂αQαλ)(∂βQβλ)

−
2
9

l3Qαβ(∂γQαγ)(∂ξQβξ), (3)

where we omitted another second-order term in ∇Q, which scales
with (∂αQβλ)(∂λQβα) because it can be written as a linear combina-
tion of a surface term and the elastic terms already included in the
expansion (3). We express the expansion parameters l1, l2, and l3
in units of L2 throughout this paper. We note again that we have
chosen only one of the possible couplings between Q and ∇Q to
break the degeneracy between K11 and K33.46 This choice is arbi-
trary; in addition, other terms could have been considered or even
more terms could have been included. Since all couplings add a con-
tribution proportional to S3 to the elastic constants, the predictions
of the theory are not affected by this choice.

Expressing Q(r) in terms of a scalar order parameter S(r) and a
nematic director field n(r),

Qαβ(r) =
3
2

S(r)(nα(r)nβ(r) −
1
3
δαβ), (4)

we can relate the parameters l1, l2, and l3 to the Oseen–Frank elas-
tic constants through βDK11 = 4S2

(2l1 + l2 − Sl3)/(πL2
), βDK22

= 8S2l1/(πL2
), and βDK33 = 4S2

(2l1 + l2 + (S/2)l3)/(πL2
), respec-

tively. These relations can be found by comparing the elastic
expansion (3) using expression (4) with the Oseen–Frank elastic
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energy,47,48

F =
1
2 ∫

dr[K11(∇ ⋅ n̂)2 + K22(n̂ ⋅∇ × n̂)2

+ K33∣n̂ × (∇ × n̂)∣2],
(5)

where K11, K22, and K33 are the splay, twist, and bend elastic con-
stants, respectively. We assume l1, l2, and l3 to be independent of
μ.

Finally, we expand ωP up to sixth order in P and write

βB2ωP(Q,P,∇Q,∇P) = e2Pα(δαβ +
2
S0

Qαβ)Pβ

+ e4PαPαPβPβ − λPα(∂βQαβ)

+ κ(∂αPβ)(∂αPβ) + e6PαPαPβPβPγPγ, (6)

with coefficients e2, e4, e6, κ, λ, and S0. Throughout this paper, we
will express λ and κ in terms of L and L2, respectively. Stability in
the dilute limit requires e2 > 0, while stability with respect to an
unlimited growth of P requires e6 > 0. The coefficients 2/S0, λ, and
κ represent the strength of the coupling between Q and P fields, the
flexoelectric coupling betweenP and gradients inQ, and a polar elas-
tic constant, respectively. In order to describe a favored polarization
perpendicular to the nematic director, leading to bend flexoelec-
tricity, we set S0 > 0.8 Finally, we allow e4 to be positive as well as
negative.

Our LdG expansion is very similar to those of Refs. 8 and 11.
Nevertheless, in contrast to their work, and following the suggestion
of Ref. 7, we consider terms up to sixth order in P and simultane-
ously allow the coefficient e4 of the fourth-order term in P to be
either positive or negative. This choice allows us to describe first-
order as well as second-order transitions to the spatially modulated
phases.49 In particular, if e4 < 0, we expect first-order phase transi-
tions, while if e4 ≥ 0, we expect second-order phase transitions. Our
expansion includes the additional elastic term Qαβ(∂γQαγ)(∂ξQβξ) to
break the degeneracy between the splay and bend elastic constants
K11 and K33 in agreement with Ref. 37. However, we note that Ref.
37 lacks the term (∂αQαλ)(∂βQβλ) and only considers terms up to
second-order in P. We also remark that our additional elastic term
not only allows us to break the degeneracy between the splay and
bend elastic constants but also enables us to change the ratio between
the splay and twist elastic constants K11/K22 by varying the particle
concentration. As will become clear in Sec. IV, this latter condition
is important for investigating the possibility of concentration-driven
phase transitions between the periodically modulated phases, as was
recently found in simulations of hard particles.36

III. I –N TRANSITION
Here, we briefly review the LdG theory to describe the I–N tran-

sition of uniaxial hard rods as derived in Ref. 44. As stated in Sec. II,
the uniaxial N phase is characterized by Q ≠ 0 and P = 0, and hence,
the ωP term in the grand potential (1) vanishes. We describe the bulk
uniaxial N phase by taking n̂ parallel to the z-axis. In this case, the
elastic expansionωe = 0 and ΔΩ/V reduces to Δωb. Inserting the ten-
sor order parameter (4) with n̂ = (0, 0, 1) in (2), we obtain βB2Δωb
= aβ(μ∗ − μ)S2

− bS3 + dS4. The Euler–Lagrange equation ∂Δωb/∂S
= 0 can be solved analytically, in order to find the stable, metastable,

and unstable phases. We find the solutions

SI(μ) = 0;

S±N(μ) =
3b
8d
⎛

⎝
1 ±

√

1 −
32adβ(μ∗ − μ)

9b2

⎞

⎠
,

(7)

whose stability can be investigated by analyzing the sign of
∂2Δωb/∂S2. We first note that from the conditions ∂2Δωb/∂S2

∣S=SI

= 0,∂2Δωb/∂S2
∣S=S+

N
= 0 and Δωb(SI) = Δωb(S+

N), we can find
the chemical potential μ∗ corresponding to the spinodal of the I
phase with respect to the N phase, the chemical potential βμ+ = βμ∗
− 9b/(32ad) corresponding to the spinodal of the N phase with
respect to the I phase, and the chemical potential βμIN = βμ∗
− b2/(4ad) corresponding to the I–N transition, respectively. We
then find that (i) for μ < μ+, the I phase (SI) is the stable configu-
ration; (ii) for μ+

< μ < μIN , the I phase is stable, S−N is unstable, and
S+

N is metastable; (iii) for μIN < μ < μ∗, the S+
N solution is stable, the

I phase is metastable, and S−N is unstable; and (iv) for μ > μ∗, the S+
N

solution is stable, S−N is metastable, and the I phase is unstable. The
solution S+

N represents the N phase, and for the sake of simplicity, we
will use SN(μ) ≡ S+

N(μ) throughout this paper.
In order to describe the I–N transition of hard rods, we first

convert the chemical potential μ to the particle concentration c = B2ρ
and then fit the phenomenological coefficients a, b, and d to results
from Onsager theory.44 Concerning the first, we introduce the grand
potential density of the I state ωI and define ω ≡ ωI + Δωb. From the
condition ∂(B2ω)/∂μ = −c, we then find

c(μ) = cI(μ) + aS2
(μ), (8)

where the particle concentration of the I phase cI(μ) = −∂(B2ωI)/∂μ
can be calculated within Onsager theory, by using an isotropic dis-
tribution function, such that βμ(cI) = log(cI/4π) + 2cI .50 By inverting
this relation, we obtain cI(μ). For the fit of the phenomenological
coefficients a, b, and d, we exploit the thermodynamic quantities
of the system at the I–N phase coexistence. Using Onsager theory
for a system of hard rods in the limit L/D →∞,50,51 we find cI(μIN )
= 3.290, c(μIN ) = 4.191, βμ∗ = 6.855, βμIN = 5.241, and SIN = 0.7992.
Inserting these values into the following expressions:

c(μIN) = cI(μIN) + aS2
IN ,

βμIN = βμ∗ − b2
/(4ad),

SIN = b/(2d),

(9)

we obtain a = 1.436, b = 5.851, and d = 3.693. With this set of coef-
ficients, a plot of SI and SN as a function of the concentration c as
defined by Eq. (8) allows one to observe that the concentration jump
associated with the I–N transition is correctly captured, as shown
in Ref. 44. Unless stated otherwise, we will use these values of a, b,
d, and μ∗ in the following. We will also follow Ref. 44 in fitting the
square-gradient coefficients l1 and l2 by using the surface tension of
a planar I–N interface of a system of hard rods with a parallel and
perpendicular anchoring, yielding l1 = 0.165L2 and l2 = 1.708L2. We
thus take a system of hard rods with L/D → ∞ as a reference sys-
tem for our study. Alternative reference systems are straightforward
to implement, provided that a sufficient number of quantities are
known at the bulk I–N transition.
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IV. SPATIALLY MODULATED PHASES
In this section, we study the phase behavior of lyotropic sus-

pensions of bent rods by employing the LdG theory introduced in
Sec. II with e6 = 0 and e4 > 0 in Eq. (6), i.e., using the formalism
for second-order phase transitions. We show that if l3 ≠ 0 in Eq. (3),
the LdG theory predicts that an N–NTB–NSB and an N–NSB–NTB
phase sequence can be stabilized in this system upon increasing the
nematic order, in addition to the N–NTB and N–NSB transitions
already predicted by the same theory in the case of l3 = 0.

To this end, we describe the NTB phase by a nematic director
n̂TB(z) precessing around the z-axis with a conical angle θ, a pitch
p = 2π/q, and a polarization vector PTB(z) perpendicular to n̂TB(z),
given by3,6

n̂TB(z) = (sin θ cos(qz), sin θ sin(qz), cos θ),
PTB(z) = P(sin(qz),− cos(qz), 0).

(10)

We describe the NSB phase by a nematic director n̂SB(z) and polar-
ization vector PSB(z) given by3,6

n̂SB(z) = (sinϕ(z), 0, cosϕ(z)),

PSB(z) = Pψ(z)(− cosϕ(z), 0,
1
2

sin 2ϕ(z)),
(11)

where ψ(z) = cos(qz) and ϕ(z) = θ sin qz. Observe that n̂SB describes
alternating domains of splay and bend.

In order to study the stability of these phases, we first find the
equilibrium values of q and θ, which can then be inserted into Eq. (1).
Subsequently, we minimize the obtained Ω with respect to S and P at
fixed μ, i.e., we solve the Euler–Lagrange equations ∂ΔΩ/∂S = 0 and
∂ΔΩ/∂P = 0. However, since we are considering second-order tran-
sitions from the uniaxial N phase, the dependence of S on μ is known
analytically, given by the SN (μ) solution of Eq. (7). As a consequence,
we can perform the stability analysis by minimizing Ω with respect
to P at fixed S, i.e., by solving the Euler–Lagrange equation ∂ΔΩ/∂P
= 0. The dependence of P and S on the particle concentration can
finally be obtained from the dependence on μ using the procedure
described in Sec. III.

A. Comparison with the Oseen–Frank theory
As already mentioned in the Introduction, the Oseen–Frank

theory of Dozov3 and Selinger and co-workers6,7 predicts a phase
transition from a uniaxial N phase to either an NTB or an NSB
phase. In this subsection, we show that a complete mapping exists
between the LdG theory with l3 = 0, i.e., with a degenerate bend and
splay elastic constant, and the Oseen–Frank theory of Selinger and
co-workers.6,7

To compute the grand potential density of the NTB phase, we
insert n̂TB(z) in the tensor order parameter [Eq. (4)] and the result-
ing Q(z) together with PTB(z) in the grand potential [Eq. (1)]. We
minimize the obtained grand potential with respect to the wave
number q and the tilt angle θ, respectively, and find

qTB =
3λ sin(2θTB)SP

8κP2 + 4S2(2l1 + l2) sin2 θTB − 4S2l2 sin4 θTB
(12)

and

sin2 θTB =
κP2

S2l1
+

√
κP2(κP2 + S2l1)

S2l1
. (13)

Inserting Eqs. (12) and (13) back into Eq. (1) and approximating for
small P, we find the grand potential density of the NTB phase,

ΔΩTB

V
=
ΔΩ
V
−
ΔΩN

V

= [
e2(S0 − S)

S0
−

9λ2

8(2l1 + l2)
]P2

+
9λ2√κS2l1

2S2(2l1 + l2)2 ∣P∣
3 + e4P4 + O(P5

), (14)

where ΔΩN /V = aS2(μ∗ − μ) − bS3 + dS4 is the grand potential
density of the N phase.

Analogously, in order to compute the grand potential density of
the NSB phase, we insert the nematic director n̂SB(z) into the tensor
order parameter [Eq. (4)] and the resultingQ(z) together with PSB(z)
into the grand potential [Eq. (1)]. In contrast to the case of the NTB
phase, the resulting grand potential density varies periodically as a
function of z, and hence, we average it over a full period 2π/q to find

ΔΩ
V
=

q
2π ∫

2π
q

0
dzΔω(z). (15)

We then minimize the obtained grand potential with respect to the
wave number q and the tilt angle θ, respectively, and find

qSB =
3λθSB(θ2

SB − 8)PS
8(4 + 3θ2

SB)κP2 + 16S2(2l1 + l2)θ2
SB

(16)

and

θ2
SB =

16κP2

3κP2 +
√
κP2(57κP2 + 32S2(2l1 + l2))

. (17)

Inserting Eqs. (16) and (17) back into Eq. (1) and approximating for
small P, we find for the grand potential density of the NSB phase,

ΔΩSB

V
=
ΔΩ
V
−
ΔΩN

V

= [
e2(S0 − S)

2S0
−

9λ2

16(2l1 + l2)
]P2

+
9λ2√κS2(2l1 + l2)

8
√

2S2(2l1 + l2)2
∣P∣3 +

3e4

8
P4 + O(P5

). (18)

We observe that for small P, both ΔΩTB and ΔΩSB vanish at the
critical scalar nematic order parameter

Sc = S0(1 −
9λ2

8e2(2l1 + l2)
). (19)

Close to this point, we can assume PTB ≪ 9λ2√κS2l1/(2e4S2
(2l1

+ l2)2
) and PSB ≪ 3λ2√κS2(2l1 + l2)/(

√
2e4S2

(2l1 + l2)2
) such that

the cubic terms dominate over the quartic terms in Eqs. (14) and
(18). Solving the Euler–Lagrange equations ∂(ΔΩTB/V)/∂P = 0 and
∂(ΔΩSB/V)/∂P = 0, we find

PTB =
4e2S2

(2l1 + l2)2
(S − Sc)

27S0λ2
√
κS2l1

(20)

and

PSB =
8
√

2e2S2
(2l1 + l2)2

(S − Sc)

27S0λ2
√
κS2(2l1 + l2)

, (21)
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respectively. Inserting Eqs. (20) and (21) back in Eqs. (14) and (18)
yields

ΔΩTB

V
= −

16e3
2S2
(2l1 + l2)4

(S − Sc)
3

729S3
0κλ4l1

(22)

and
ΔΩSB

V
= −

64e3
2S2
(2l1 + l2)3

(S − Sc)
3

729S3
0κλ4 . (23)

The ratio between the grand potential densities (22) and (23) is then
given by

ΔΩTB

ΔΩSB
=

2l1 + l2
4l1

=
K11

2K22
, (24)

where we have used that K11 = S2
(2l1 + l2) and K22 = S2

(2l1). From
Eq. (24) and the overall minus signs in Eqs. (22) and (23), it is clear
that at S = Sc, a second-order N–NTB occurs if K11 > 2K22, while
a second-order N–NSB occurs if K11 < 2K22, in perfect agreement
with the findings of Selinger and co-workers as well as of Dozov.3,6

As will be shown in Sec. VI, at Sc, the renormalized elastic constant
Keff

33 vanishes, while K33 remains positive. A complete mapping of
our LdG theory with the Oseen–Frank theory of Selinger follows.
In particular, it can be observed that Eqs. (20)–(23) strongly
resemble the expressions for the free-energy differences given in
Refs. 6 and 7.

B. Phase transitions between spatially modulated
nematic phases

The Oseen–Frank theories of Selinger and Dozov cannot
describe phase transitions between periodically modulated nematic
phases, since in these theories, the elastic constants do not explicitly
depend on control parameters, in contrast with the LdG framework.
However, for l3 = 0 in the case of the LdG theory described in Sub-
section IV A, the elastic constants K11, K22, and K33 depend on S,
but the ratio K11/K22 is independent of S, and consequently, the the-
ory predicts only either an N–NTB or an N–NSB phase transition. In
order to overcome this limitation, we consider l3 ≠ 0 in Eq. (3). This
procedure not only removes the degeneracy between K11 and K33

but also allows the ratio K11/K22 to vary with particle concentration.
Extending the computation of Subsection IV A (for details, see the
Appendix), we find that if l3 ≠ 0, the ratio of the (negative) grand
potential densities of the NTB and NSB phases close to the transition
point is given by

ΔΩTB

ΔΩSB
=

2l1 + l2
4l1

+
l3

8l1
S

=
K11

2K22
+

3l3
8l1

S, (25)

where we have used that K11 = S2
(2l1 + l2 − Sl3) and K22 = S2

(2l1).
The critical scalar nematic order parameter at which ΔΩTB, ΔΩSB,
and Keff

33 vanish reads

Sc =
−4l1 − 2l2 + S0l3

2l3
+

¿
Á
ÁÀ−9S0λ2

4e2l3
+
(4l1 + 2l2 + S0l3)2

4l2
3

. (26)

From the linear S-dependence of Eq. (25), one can deduce that,
depending on the values of l1, l2, and l3, either a second-order N–NTB
phase transition occurs at Sc followed by a second-order NTB–NSB

phase transition at S > Sc or a second-order N–NSB transition occurs
at Sc succeeded by a second-order NSB–NTB transition at S > Sc. To
illustrate this, we map out the phase diagram as a function of the
scalar nematic order parameter S and coefficient l3, for the coeffi-
cients e2 = 1, S0 = 0.85, κ = 0.1L2, and λ = 0.1L. In Fig. 2, we display
the resulting phase diagram three times with the background color
denoting the values of the splay, twist, and bend elastic constants as
indicated by the color bar. The I–N transition occurs at a nematic
order parameter value of SIN = 0.7922. The green line in Fig. 2 cor-
responds to the set of points where the renormalized Keff

33 vanishes
and hence the uniaxial N phase becomes unstable with respect to the
spatially modulated phases. For l3 > −1.0L2 and l3 < −1.25L2, only a
second-order N–NTB phase transition and a N–NSB phase transition
occur, respectively, as a function of S. For −1.25L2

≤ l3 ≤ −1.0L2,
instead, the N–NTB phase transition is followed by a second-order
NTB–NSB phase transition.

FIG. 2. Phase diagram as a function of the scalar nematic order parameter S and the coefficient l3 for the coefficients e2 = 1, S0 = 0.85, κ = 0.1L2, and λ = 0.1L, replicated
three times with the background color denoting the value of the splay (K11), twist (K22), and bend (K33) elastic constants as indicated by the color bar. The I–N phase
transition occurs at SIN = 0.7922. The green line corresponds to the set of points where the renormalized bend elastic constant Keff

33 vanishes and hence the uniaxial N phase
becomes unstable with respect to the spatially modulated nematic phases. For l3 > −1.0L2 and l3 < −1.25L2, only second-order N–NTB and N–NSB phase transitions occur
as a function of S. For −1.25L2 < l3 < −1.0L2, the N–NTB phase transition is followed by a second-order NTB–NSB phase transition.
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FIG. 3. Same as Fig. 2, but now for l1 = 1.65L2 and l2 = 0.854L2. For l3 < 5.75L2, the second-order N–NSB transition is followed by a second-order NSB–NTB transition.

To map out the phase diagram of Fig. 2, we have used the coef-
ficients l1 = 0.165L2 and l2 = 1.708L2, obtained from a fit to the
results from Onsager theory of hard rods, as stated in Sec. III. For
a different choice, l1 = 1.65L2 and l2 = 0.854L2, the phase sequence
of N–NTB–NSB can be replaced by a N–NSB–NTB phase sequence,
as shown in Fig. 3. Again, the I–N phase transition occurs at
SIN = 0.7922, the green line corresponds to the set of points where the
uniaxial N phase becomes unstable with respect to the spatially mod-
ulated phases, and the background color denotes the values of K11,
K22, and K33. We clearly observe from Fig. 3 that for l3 < 5.75L2, the
second-order N–NSB phase transition is followed by a second-order
NSB–NTB transition.

V. FIRST-ORDER N –N TB PHASE TRANSITION
We now consider the LdG theory of Sec. II with e6 > 0 and allow

e4 to change sign in order to describe the first-order N–NTB phase
transition recently found in Onsager theory and simulations.19,36

For the sake of simplicity, we set l3 = 0 corresponding to a degen-
erate splay and bend elastic constant. We again start by inserting
the nematic director n̂TB(z) into the nematic tensor order parameter
[Eq. (4)] and by inserting the resulting Q(z) together with PTB(z) in
the grand potential [Eq. (1)]. Minimizing the obtained grand poten-
tial with respect to the wave number q and the tilt angle θ, we find
expressions (12) and (13) already found in Sec. IV. We perform a
stability analysis inserting these expressions into the grand poten-
tial [Eq. (1)] and minimize the resulting Ω with respect to S and P
at fixed μ, i.e., we solve the Euler–Lagrange equations ∂ΔΩ/∂S = 0
and ∂ΔΩ/∂P = 0. Analytically solving this system is cumbersome
since the two equations take the form of polynomials of third and
fifth orders, respectively, with a nonzero constant term. For this rea-
son, we directly minimize the grand potential Ω using a simulated
annealing algorithm.52 In this way, we obtain S and P as a function of
μ. Note that in contrast to the situation discussed in Sec. IV, we can-
not perform a stability analysis by minimizing Ω with respect to P at
fixed S, i.e., by solving the Euler–Lagrange equation ∂ΔΩ/∂P = 0.
A jump in S is expected at a first-order N–NTB phase transition,
and while we know the expression of SN as a function of μ, we do
not know SNTB as a function of μ analytically. Nevertheless, valuable
insight can yet be obtained from the expression for P as a function
of S. For example, expressions can be derived for the spinodal of the

uniaxial N phase with respect to NTB and for the spinodal of the NTB
phase with respect to the uniaxial N phase. Hence, the limits of sta-
bility of the N and NTB phases are analytically known. For small P,
the solutions of the Euler–Lagrange equation ∂ΔΩ/∂P = 0 are given
by

P0(S) = 0,

P±1 (S) = ±

¿
Á
ÁÀ−16e4 −

√
γ(S)

48e6
,

P±2 (S) = ±

¿
Á
ÁÀ−16e4 +

√
γ(S)

48e6
,

(27)

with γ(S) = 256e2
4 − 96e6(8e2 − 8Se2/S0 − 9λ2

/(2l1 + l2)). The solu-
tion P0(S) corresponds to the uniaxial N phase. If e4 < 0, we find for
an increase in S, a jump from the uniaxial N phase corresponding
to P0(S) to the two (equivalent) solutions P±2 (S), while the solutions
P±1 (S) are always metastable. The solutions P±2 (S) represent the NTB
phase with the equilibrium wave vector q and equilibrium angle θ
given by Eqs. (12) and (13), respectively. The spinodal of the NTB
phase with respect to the uniaxial N phase, given by the condition
∂2ΔΩ/∂2P∣P=P±2 = 0, is at

S+
= S0(1 −

9λ2

8e2(2l1 + l2)
−

e2
4

4e2e6
), (28)

while the spinodal of the uniaxial N phase with respect to the NTB
phase, given by the condition ∂2ΔΩ/∂2P∣P=P0 = 0, is at

S∗ = S0(1 −
9λ2

8e2(2l1 + l2)
). (29)

If instead e4 ≥ 0, we find a second-order phase transition from
the N phase with P0(S) = 0 to the NTB phase with P±2 (S) at
Sc = S0(1 − 9λ2

/(8e2(2l1 + l2))), while the solutions P±1 (S) are
imaginary and hence unphysical. Note that the nematic spinodal
of the first-order N–NTB phase transition coincides with the transi-
tion point of the second-order N–NTB transition. Furthermore, the
transition point of the second-order N–NTB transition found in this
section coincides with the one found in Sec. IV.

Exemplarily, we show the analytical solutions for the amplitude
of the polar vector P (27) and the equilibrium wave vector q denoted
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in orange and tilt angle θ denoted in violet as given by Eqs. (12) and
(13) in Fig. 4 as a function of the scalar nematic order parameter S
for the coefficients e2 = 1, S0 = 0.85, λ = 0.08L, κ = 0.1L2, e6 = 10,
and e4 = −1 [Fig. 4(a)] and e4 = 1 [Fig. 4(b)]. The uniaxial N solu-
tion P0(S) = 0 is represented by a red full line when it is stable and
by a red dashed line when it is metastable. The NTB solution P±2 (S)
is represented by a black full line, while the metastable solutions
P±1 (S) are represented by black dashed lines. We find that in (a), the
spinodal of the NTB phase with respect to the uniaxial N phase is at

FIG. 4. Amplitude of the polar vector P and the equilibrium wave number q, and
tilt angle θ as given by Eqs. (27), (12), and (13), respectively, as a function of
the scalar order parameter S for the coefficients e2 = 1, S0 = 0.85, λ = 0.08L,
κ = 0.1L2, e6 = 10, and e4 = −1 (a) or e4 = 1 (b). The uniaxial N solution P0(S)
= 0 is represented by a red full line when it is stable and by a red dashed line
when it is metastable. The NTB solution P±2 (S) is represented by a black full line,
while the metastable solutions P±1 (S) are represented by black dashed lines. The
equilibrium q and θ are represented in orange and violet, respectively. In (a), the
spinodal of the NTB phase with respect to the uniaxial N phase is at S+ = 0.826,
while the spinodal of the uniaxial N phase with respect to the NTB phase is at
S∗ = 0.847. In (b), the second-order N–NTB transition occurs at Sc = 0.847. We
observe that S∗ = Sc , i.e., the nematic spinodal of a first-order N–NTB phase
transition becomes the transition point if the N–NTB transition is second-order.

S+ = 0.826, while the spinodal of the uniaxial N phase with respect
to the NTB phase is at S∗ = 0.847. In (b), the second-order N–NTB
transition occurs at Sc = 0.847. We note that S∗ = Sc, i.e., the nematic
spinodal of a first-order N–NTB phase transition becomes the tran-
sition point if the N–NTB transition is second-order. In addition, we
find that in the case of a second-order N–NTB phase transition, the
equilibrium q and θ tend to zero at the transition, in agreement with
Refs. 6 and 20.

The solutions S(μ) and P(μ) as obtained by directly minimiz-
ing Ω are plotted in Fig. 5. In addition, we plot θ, q, and S cos θ as a
function of μ. The dependence on chemical potential in Fig. 5 is then
converted to concentration in Fig. 6. If e4 =−1, upon increasing μ, we
find the “Onsager”-type first-order I–N phase transition described

FIG. 5. Scalar nematic order parameter (brown and blue) and amplitude of the
polarity P (black) as a function of the chemical potential βμ for the coefficients
e2 = 1, λ = 0.08L, κ = 0.1L2, e6 = 10, S0 = 0.85, and e4 = −1 (a) or e4 = 1
(b). The equilibrium q and θ are represented in orange and violet, respectively. In
(a), the “Onsager”-type first-order I–N transition at βμIN = 5.241 is followed by a
weakly first-order N–NTB transition at βμNNTB = 5.293. In (b), the “Onsager”-type
first-order I–N transition is instead followed by a continuous second-order N–NTB
transition at βμNNTB = 5.36.
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FIG. 6. Scalar nematic order parameter (brown and blue) and amplitude of the
polarity P (black) as a function of the particle concentration c = B2ρ for the coeffi-
cients e2 = 1, λ = 0.08L, κ = 0.1L2, e6 = 10, S0 = 0.85, and e4 = −1 (a) or e4 = 1
(b). The equilibrium q and θ are represented in orange and violet, respectively. In
(a), the “Onsager”-type first-order I–N transition with coexisting concentrations cI
= 3.290 and cN = 4.191 is followed by a weakly first-order N–NTB transition with
coexisting concentrations cN = 4.265 and cNTB = 4.295, i.e., a density jump on
the order of 1%. The inset shows a zoomed-in view of the discontinuous jump
in the scalar order parameter at the N–NTB transition. In (b), the “Onsager”-type
first-order I–N transition is instead followed by a continuous second-order N–NTB
transition at cN = cNTB = 4.36.

in Sec. III, followed by a weakly first-order N–NTB phase transition
at βμNNTB = 5.293, where the nematic order parameter jumps from
SN = 0.814 to SNTB = 0.836. The coexisting densities are cN = 4.265
and cNTB = 4.295, i.e., a density jump on the order of 1%. Interest-
ingly, we also find jumps in P, θ, q, and SN cos θ, which is to be con-
trasted with a second-order N–NTB phase transition. For instance,
upon increasing the chemical potential μ for the parameter e4 = 1,
we find an “Onsager”-type I–N phase transition and subsequently a
second-order N–NTB transition at βμNNTB = 5.36, where SN(μNNTB)

= SNTB(μNNTB) = 0.847, cN = cNTB = 4.36, and P = θ = q = 0,
so no jumps at all.

Finally, we map out two phase diagrams of Figs. 7(a) and 7(b).
In Fig. 7(a), we plot the phase diagram as a function of the particle
concentration c = B2ρ and the modulus of the flexoelectric coupling
coefficient |λ| for the same coefficients as above, i.e., e2 = 1, S0 = 0.85,
e4 = −1, κ = 0.1L2, and e6 = 10. The pink regions represent two-phase
coexistence regions. At |λ| < 0.14L, the phase diagram features the
“Onsager”-type first-order I–N transition followed by a weakly first-
order N–NTB transition at higher densities. At |λ| > 0.14L, however,
we find a direct first-order I–NTB transition of which the coexist-
ing densities decrease with an increase in |λ|. The two regimes are
separated by an I–N–NTB triple point at |λ| = 0.14L. It is important
to observe that the I–NTB transition remains always first-order such
that we never find a second-order I–NTB transition. Moreover, at λ
= 0, a first-order phase transition is found from a uniaxial N phase
to an NTB phase with an infinite pitch, i.e., a polar nematic phase. In
Fig. 7(b), instead, we build a phase diagram as a function of parti-
cle concentration c = B2ρ and coefficient e4 of the |P|4 term that we
allow to be negative because of the presence of a stabilizing (positive)
|P|6 term in the grand potential. We fix the other coefficients to the
values as employed above, i.e., e2 = 1, λ = 0.08L, κ = 0.1L2, e6 = 10,
and S0 = 0.85. Again, the pink regions represent bulk coexistence
regions. We note that we have chosen a value of λ such that the I–N
transition is followed by an N–NTB transition at e4 = −1 according
to Fig. 7(a). For −1.5 < e4 < 0, we find the “Onsager”-type first-order
I–N transition followed by a weakly first-order N–NTB transition.
We observe, however, a direct strongly first-order I–NTB transition
for e4 < −1.5 and an I–N–NTB triple point at e4 = −1.5. Furthermore,
we find that the line of first-order N–NTB transitions ends in a tri-
critical point at (c = 4.3, e4 = 0). At e4 > 0, the N–NTB transition
ceases to be first-order and becomes second-order as illustrated by
the dashed line.

As a final observation, we mention that the formalism intro-
duced in this section should also hold for the NSB phase. Despite
reasonable efforts, but not exhaustive, we did not find a set of coef-
ficients for which the NSB phase is more stable than the NTB one.
However, since in simulations and Onsager theory only an N–NTB
phase transition was found, we focused on the latter one. Very inter-
estingly, the nematic spinodal of such a putative N–NSB transition
would coincide with the nematic spinodal of the N–NTB phase found
here. Furthermore, by breaking the degeneracy between K11 and
K33, i.e., by setting l3 ≠ 0 in Eq. (3), the first-order N–NTB phase
transition described in this section could be followed by a first-order
NTB–NSB phase transition.

VI. RENORMALIZED ELASTIC CONSTANTS
The flexoelectric coupling term −λPα∂βQβα of Eq. (6) affects

the elastic response of polar nematic phases, which translates into
renormalized elastic constants. In order to quantify the renormaliza-
tion of the elastic constants, we follow the procedure of Refs. 1 and
6. First, we solve the Euler–Lagrange equation ∂(βB2ωP)/∂Pρ = 0.
By using Eq. (4) for the tensor order parameter Q, the fact that P
and n̂ are perpendicular, i.e., Pαnα = 0, and the fact that PαPα = 0 in
the uniaxial N phase, we find

Pρ =
λS0

2e2(S0 − S)
∂γQργ, (30)
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FIG. 7. (a) Phase diagram as a function of the particle concentration c = B2ρ and the modulus of the flexoelectric coupling coefficient |λ|/L for the coefficients e2 = 1, S0 = 0.85,
e4 = −1, κ = 0.1L2, and e6 = 10. For a weak flexoelectric coupling (|λ| < 0.14L), an “Onsager”-type first-order I–N transition is followed by a weakly first-order N–NTB transition,
while for strong coupling (|λ| > 0.14L), a direct strongly first-order I–NTB transition occurs. A I–N–NTB triple point stabilizes at |λ| = 0.14L. (b) Phase diagram as a function
of the particle concentration c = B2ρ and the coefficient e4 for the coefficients e2 = 1, λ = 0.08L, κ = 0.1L2, e6 = 10, and S0 = 0.85. For −1.5 < e4 < 0, the “Onsager”-type
first-order I–N transition is followed by a weakly first-order N–NTB phase transition, while a strongly first-order I–NTB transition occurs for e4 < −1.5. A I–N–NTB triple point
stabilizes at e4 = −1.5. The line of first-order N–NTB transitions ends in a tricritical point (c = 4.3, e4 = 0), from where it continues as a second-order N–NTB transition. In (a)
and (b), the circles indicate triple points, the square indicates the tricritical point, the pink regions represent coexistence regions, and the dashed line indicates a second-order
transition.

which upon insertion into Eq. (6), with l3 = 0 for convenience, yields

βB2ωP = −
λ2S0(S0 − 2S)
4e2(S0 − S)2 (∂γQγα)(∂βQβα)

+
λ2S0

2e2(S0 − S)2 (∂γQγα)Qαβ(∂ξQξβ). (31)

In the final step, we neglected the terms e4PαPαPβPβ, κ(∂αPβ)(∂αPβ)
and e6PαPαPβPβPγPγ in Eq. (6) because they do not contribute to the
linear elasticity as they contain derivatives of the nematic director
of order higher than two. It follows that the form of the renormal-
ized elastic constant is the same for second-order transitions (e4 > 0,
e6 ≥ 0) as well as for first-order ones (e4 < 0, e6 > 0). Using that
ni(∂ jni) = (∂ jni)ni = 0 and that

(∂αnβ)(∂αnβ) = (∇ ⋅ n̂)
2 + [n̂ ⋅ (∇× n̂)]2 + ∣n̂ × (∇× n̂)∣2

−∇ ⋅ [n̂(∇ ⋅ n̂) + n̂ × (∇× n̂)], (32)

we find

βB2(ωe + ωP) = [l1 +
1
2

l2 −
S0 − 4S
S0 − S

ξ(S)]S2
(∇ ⋅ n̂)2

+ [l1 +
1
2

l2 − ξ(S)]S2
∣n̂ × (∇ × n̂)∣2

+
1
3
[2l2 +

10S − 3S0

S0 − S
ξ(S)]S(∇ ⋅ n̂)(∇S ⋅ n̂)

+ [
1
6

l2 −
S0 − 3S
S0 − S

ξ(S)](∇S ⋅ n̂)2 + [
1
3

l2 − ξ(S)]∣∇S∣2

+ l1S2
{[n̂ ⋅ (∇ × n̂)]2 −∇ ⋅ [n̂(∇ ⋅ n̂)+ n̂× (∇× n̂)]},

(33)

with ξ(S) = 9λ2S0/(16e2(S0 − S)). Comparing Eq. (33) with the
Oseen–Frank elastic energy (5) gives us the renormalized splay

(Keff
11 ), twist (Keff

22 ), and bend (Keff
33 ) elastic constants

βDKeff
11 = βDK11 −

8S2

πL2
S0 − 4S
S0 − S

ξ(S),

βDKeff
22 = βDK22,

βDKeff
33 = βDK33 −

8S2

πL2 ξ(S),

(34)

where K11, K22, and K33 are the bare splay, twist, and bend elas-
tic constants discussed in Sec. II. Equation (34) directly reveals the
flexoelectric coupling as the source of the renormalization, since
λ = 0 gives ξ(S) = 0 and hence no renormalization at all. For λ ≠ 0,
we observe, however, that the renormalization procedure breaks
the degeneracy between the renormalized splay and bend elastic
constants, so even though K11 = K33, we have nevertheless that
Keff

11 ≠ Keff
33 . The renormalization does not affect the twist elastic con-

stant, for which K22 = Keff
22 . The elastic constants Keff

11 , Keff
22 = K22 and

K11 = K33 increase monotonically with S, while the renormalized
bend elastic constant Keff

33 starts to decrease beyond a certain value
of S until it becomes zero at Sc = S0(1 − 9λ2/(8e2(2l1 + l2))). As dis-
cussed in Secs. IV and V, the second-order N–NTB phase transition
occurs at a nematic order parameter value Sc, whereas in the case
of a first-order transition, the spinodal of the N phase with respect
to the NSB phase is located at Sc. As a consequence, our result is in
agreement with Selinger’s one in the case of a second-order N–NTB
transition, while in the case of a first-order transition, we find that
at the transition point, both K33 > 0 and Keff

33 > 0. In the latter case,
Keff

33 becomes zero at the nematic spinodal. The bare and the renor-
malized elastic constants are plotted as a function of the scalar order
parameter S in Fig. 8 for the coefficients e2 = 1, S0 = 1, λ = 0.08L, and
e6 = 10. The monotonic increase in Keff

11 , Keff
22 = K22 and K11 = K33

with S, together with the simultaneous softening of Keff
33 , can be

observed in Fig. 8. The picture is qualitatively the same for l3 ≠ 0,
with Keff

33 vanishing at Sc as given by Eq. (26).
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FIG. 8. Bare (K11, K22, K33) and renormalized (Keff
11 , Keff

22 , Keff
33 ) splay, twist, and

bend elastic constants as a function of the scalar nematic order parameter S
for the fixed values of the coefficients e2 = 1, S0 = 1, λ = 0.08L, and e6 = 10.
While Keff

11 , K11 = K33, and Keff
22 = K22 increase monotonically with S, Keff

33
starts to decrease beyond a certain value of S, until it becomes zero at S = S0(1
− 9λ2/(8e2(2l1 + l2))). This nematic order parameter value Sc is where the N–NTB
transition occurs if it is second-order, while it is the spinodal S∗ of the N phase with
respect to the NTB one in the case of a first-order N–NTB transition. S+ indicates
the spinodal of the NTB phase with respect to the uniaxial N one.

VII. CONCLUSIONS AND DISCUSSION
In this paper, we have developed a phenomenological LdG the-

ory for lyotropic suspensions of bent hard rods, using a Q-tensor
expansion of the chemical-potential dependent grand potential. In
addition, we introduce a bend flexoelectric term that couples the
polarization and the divergence of the Q-tensor to study the stabil-
ity of uniaxial (N), twist-bend (NTB), and splay-bend (NSB) nematic
phases of colloidal bent rods as a function of particle concentration.
We first showed that our LdG theory can be mapped onto an Oseen–
Frank theory. Subsequently, by breaking the degeneracy between
the splay and bend elastic constants, we find that the LdG theory
predicts either an N–NTB–NSB or an N–NSB–NTB phase sequence
upon increasing the particle concentration. We have mapped out
several phase diagrams as a function of the particle concentration

that can be used as guidelines for experiments, simulations, and
microscopic theories. In addition, we have focused on the first-order
N–NTB phase transition. Our model is able to reproduce the discon-
tinuous jumps associated with this transition, including the density
jump and the discontinuities in the polarization and nematic order.
Moreover, in contrast to the case of a second-order N–NTB phase
transition where the bend elastic constant K33 is positive while its
renormalized version Keff

33 vanishes, we have found that Keff
33 vanishes

at the nematic spinodal in the case of a first-order N–NTB transi-
tion so that K33 and Keff

33 remain positive at the actual transition
point. This finding appears to be general and could help in under-
standing the problem of the softening of the elastic constants in
systems with spontaneous polar order and of the mechanism driv-
ing the onset of the spatially modulated phases in bent-core liquid
crystals.

Finally, it is interesting to employ the LdG theory to study con-
finement effects of these spatially modulated nematic phases and to
investigate the structure of the interface between a coexisting NTB
and an NSB phase with either an isotropic, uniaxial nematic or a
substrate. We will postpone this to future work.
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APPENDIX: GRAND POTENTIAL DENSITY OF THE N TB
AND N SB PHASES FOR l 3 ≠ 0.

In order to compute the grand potential density of the NTB
phase, we insert n̂TB = (sin θ cos(qz), sin θ sin(qz), cos θ) in the ten-
sor order parameter Qαβ(r) = 3

2 S(r)(nα(r)nβ(r) − 1
3δαβ) and the

resulting Q, together with PTB = (P sin(qz), −P cos(qz), 0), in the
grand potential given by Eq. (1). We minimize the obtained grand
potential with respect to the wave number q and the tilt angle θ,
respectively, and find

qTB =
3λ sin(2θTB)SP

8κP2 + 4S2(2l1 + l2) sin2 θTB − 4l2S2 sin4 θTB + 2S3l3(sin2 θTB − sin4 θTB)
(A1)

and

sin2 θTB =
κP2

S2l1
+

√
κP2(κP2 + S2l1)

S2l1
. (A2)
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Inserting (A1) and (A2) back into Eq. (1), and approximating for
small P, the grand potential density in the NTB phase is given by

ΔΩTB

V
=
ΔΩ
V
−
ΔΩN

V

= [
e2(S0 − S)

S0
−

9λ2

4(4l1 + 2l2 + Sl3)
]P2

+
18λ2√κS2l1

S2(4l1 + 2l2 + Sl3)2 ∣P∣
3 + e4P4 + O(P5

), (A3)

where ΔΩN/V = aS2
(μ∗ − μ) − bS3 + dS4 is the grand-potential

density of the N phase.
Analogously, in order to compute the grand potential den-

sity of the NSB phase, we insert the nematic director n̂SB
= (sin(θ sin(qz)), 0, cos(θ sin(qz))) into the tensor order parame-
ter Qαβ(r) = 3

2 S(r)(nα(r)nβ(r)− 1
3δαβ) and the resulting Q, together

withPSB = (−P cos(qz) cos(θ sin(qz)), 0, 1
2 P cos(qz) sin(2θ sin(qz))),

into the grand potential given by Eq. (1) and average it over a full
period 2π/q. We then minimize the obtained grand potential with
respect to the wave number q and the tilt angle θ, respectively, and
find

qSB =
3λθSB(θ2

SB − 8)PS

8(4 + 3θ2
SB)κP2 + 16S2(2l1 + l2 + Sl3)θ2

SB

(A4)

and

θ2
SB =

16κP2

3κP2 +
√
κP2(57κP2 + 16S2(4l1 + 2l2 + Sl3))

. (A5)

Inserting Eqs. (A4) and (A5) back into Eq. (1) and approximating
for small P, the grand potential density of the NSB phase reads

ΔΩSB

V
=
ΔΩ
V
−
ΔΩN

V

= [
e2(S0 − S)

2S0
−

9λ2

8(4l1 + 2l2 + Sl3)
]P2

−
9λ2√κS2(4l1 + 2l2 + Sl3)

4S2(4l1 + 2l2 + Sl3)2 ∣P∣3 +
3
8

e4P4 + O(P5
), (A6)

where ΔΩN/V = aS2
(μ∗ − μ)−bS3 + dS4 is again the grand potential

density of the N phase.
We observe that for small P, both ΔΩTB and ΔΩSB vanish

at the critical point Sc given by Eq. (26). Close to this point,
we can assume PTB ≪ 18λ2√κS2l1/(e4S2

(4l1 + 2l2 + Sl3)2
) and

PSB ≪ 6λ2√κS2(4l1 + 2l2 + Sl3)/(e4S2
(4l1 + 2l2 + Sl3)2

) such that
the cubic terms dominate over the quartic terms in Eqs. (A3) and
(A6). Solving the Euler–Lagrange equations ∂(ΔΩTB/V)/∂P = 0
and ∂(ΔΩSB/V)/∂P = 0, we find

PTB =
(9λ2S0 − 4e2(S0 − S)(4l1 + 2l2 + Sl3))(4l1 + 2l2 + Sl3)S2

108λ2l1S0
√
κS2l1

(A7)

and

PSB =
(9λ2S0 − 4e2(S0 − S)(4l1 + 2l2 + Sl3))

√
κS2(4l1 + 2l2 + Sl3)

27λ2κS0
,

(A8)

respectively. Inserting these back in Eqs. (A3) and (A6) gives close
to the transition
ΔΩTB

V
=
(−9λ2S0 + 4e2(S0 − S)(4l1 + 2l2 + Sl3))3

(4l1 + 2l2 + Sl3)S2

46 656κλ2l1S3
0

(A9)

and
ΔΩSB

V
=
(−9λ2S0 + 4e2(S0 − S)(4l1 + 2l2 + Sl3))3S2

5832κλ2S3
0

, (A10)

respectively. The ratio between the grand potential densities (A9)
and (A10) is then given by Eq. (25).
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