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ABSTRACT
An important question in the field of active matter is whether or not it is possible to predict the phase behavior of these systems. Here,
we study the phase coexistence of binary mixtures of torque-free active Brownian particles for both systems with purely repulsive inter-
actions and systems with attractions. Using Brownian dynamics simulations, we show that phase coexistences can be predicted quanti-
tatively for these systems by measuring the pressure and “reservoir densities.” Specifically, in agreement with the previous literature, we
find that the coexisting phases are in mechanical equilibrium, i.e., the two phases have the same pressure. Importantly, we also demon-
strate that the coexisting phases are in chemical equilibrium by bringing each phase into contact with particle reservoirs and show that
for each species, these reservoirs are characterized by the same density for both phases. Using this requirement of mechanical and chemi-
cal equilibrium, we accurately construct the phase boundaries from properties that can be measured purely from the individual coexisting
phases. This result highlights that torque-free active Brownian systems follow simple coexistence rules, thus shedding new light on their
thermodynamics.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002279., s

I. INTRODUCTION

Experimental realizations of “active” colloidal particles, i.e., col-
loidal particles that self-propel, have opened the door to exploiting
active building blocks in new colloidal systems (see Refs. 1–8). These
active particles incessantly convert energy into self-propulsion, and
as such, systems containing active particles are inherently out-of-
equilibrium.

Intriguingly, while active systems often exhibit behavior fully
prohibited in equilibrium systems, such as gas–liquid phase sep-
aration in purely repulsive systems (see Refs. 9 and 10) and
symmetry-breaking motion,11,12 the steady-state behavior of active
systems can often be summarized by phase diagrams similar to
their passive counterparts, i.e., consisting of single-phase regions
and coexistence regions where the lever rule holds. For instance,
fairly classic phase diagrams have been observed in the attraction-
induced liquid–gas phase coexistence of active Lennard-Jones
particles13,14 and the melting and motility-induced phase sepa-
ration observed in repulsive, self-propelled spheres,9,15–19 dumb-
bells,20 and even polygons,21,22 as well as binary mixtures.23–26 In

equilibrium, phase boundaries and coexistences are inherently tied
to bulk thermodynamic properties. Since coexisting phases have
equal pressures and equal chemical potentials, the bulk properties
of the individual phases provide a direct route to predicting phase
coexistences—a strategy commonly used to draw phase diagrams.
However, for active particles, we are still in the process of developing
thermodynamic frameworks that describe their phase boundaries
(see Refs. 27–40).

Early attempts to perform such a task include the work of
Takatori and Brady27 and the work of Solon et al.28 These attempts
were motivated by the existence of a mechanical pressure for spher-
ical active particles29–32,34,35 but led to only qualitative predictions
of the phase diagrams of the systems under study. In the for-
mer work, phase coexistences were predicted using an approxi-
mate generalized free energy for the system, while in the latter
work, it was predicted by means of a Maxwell construction, which
was ultimately found to be not applicable to active matter systems.
Recently, Solon et al.36 developed a theory of phase-separating active
particles starting from a generalized Cahn–Hilliard description.
Interestingly, in this description, their prediction of the binodals
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requires information not only on the bulk coexisting phases but
also on the interface between them. Other attempts to explain the
thermodynamics of active particles include methods associated with
power functional concepts.38,39 In this direction, Hermann et al.39

developed a microscopic theory for bulk and interfacial behavior
in these systems and were able to capture the phase diagram of
an active Brownian particle system using only a few fit param-
eters. However, despite these and several other attempts to use
thermodynamical concepts to predict active phase separation, a
complete understanding of the applicability of such concepts is still
lacking.

In this paper, we attack the problem from a different angle and
explore the possibility of chemical and mechanical equilibrium in
these systems as directly as possible using computer simulations.
Specifically, we take the existence of mechanical pressure for torque-
free spherical active particles as a starting point28,30 and introduce
a numerical method to probe the possibility of chemical equilib-
rium in the system. In contrast to the previous literature,37,39,41–46

our aim is not to measure a chemical potential but simply to test
whether there is a quantity, similar to a chemical potential, that is
equal in both phases—which we can measure in simulations where
there is no direct contact between the coexisting phases. To this end,
we develop a simulation method that lets us to measure a quan-
tity, which is analogous to the chemical potential in equilibrium
systems, namely, a reservoir density. In classical statistical physics,
the chemical potential arises when we connect a system to a parti-
cle reservoir. The chemical potential is then directly related to the
density of the reservoir. Here, we copy this idea and develop a sim-
ulation method that measures these reservoir densities instead of
the chemical potential. We then explore the possibility of chemical
and mechanical equilibrium in active systems by examining two dif-
ferent systems: an out-of-equilibrium mixture of passive and active
attractive particles and an active–active mixture of purely repulsive
particles. As expected (see Ref. 30), we find the mechanical equilib-
rium for the coexisting phases. More importantly, we show that the
reservoirs of both species are characterized by the same density for
the coexisting phases. Finally, we show explicitly that the phase coex-
istence can be predicted quantitatively by measuring the pressure
and the reservoir densities.

II. MODEL AND METHODS
A. Model systems

In this paper, we investigate the phase coexistence in two dif-
ferent types of active systems. The first system consists of a mixture
of active and passive attractive particles. Here, phase separation is
induced by the attractions. Thus, at mild activity, we simply perturb
the attraction-dominated liquid–gas phase separation. In the second
system, we study a purely out-of-equilibrium phenomenon, namely,
motility-induced phase separation, in a mixture of repulsive parti-
cles with different amounts of self-propulsion. By choosing these
two systems, we explore both the case where the activity only per-
turbs the phase behavior and where the activity is largely responsible
for the phase coexistence, ensuring that our results are as general as
possible for torque-free systems. Moreover, these systems are excel-
lent starting points as phase coexistences have been studied quite
extensively in their single-component counterparts (see Refs. 10, 13,
and 14).

1. Lennard-Jones active–passive mixture
For the mixture of active and passive attractive particles, we

consider a three-dimensional system of N spherical particles that
interact via the well-known Lennard-Jones potential,

βU(r) = 4βϵLJ((
σ
r
)

12
− (σ

r
)

6
), (1)

truncated and shifted at rc = 2.5σ, with r = |ri − rj| being the center-
of-mass distance between particles i and j, σ being the particle diam-
eter, βϵLJ being the energy scale, and β = 1/kBT, where kB is the
Boltzmann constant and T is the temperature. Out of the N parti-
cles, we “activate” a subset of Na particles by introducing a constant
self-propulsion force f a along the self-propulsion axis ûi. We denote
the fraction of active particles by x = Na/N. The total density of the
system is given by ρ = N/V, where V is the volume of the system.

2. Weeks–Chandler–Andersen active–active mixture
For the active–active mixture of repulsive particles, we consider

a two-dimensional system of N particles interacting via the Weeks–
Chandler–Andersen potential,

βU(r) = 4βϵWCA((
σ
r
)

12
− (σ

r
)

6
+

1
4
) (2)

with the interaction cutoff radius rc = 21/6σ and the energy scale
βϵWCA. Specifically, we consider an active–active mixture with the
self-propulsions of fast and slow species being f f and f s, respec-
tively. We denote the fraction of fast particles by x = N f /N with N f
being the number of fast particles. The total density of the system
is given by ρ = N/A, where A is the area of the system. Note that in
this case, we find a phase separation between a high density “crystal”
phase and a low density gas phase.

B. Dynamics
These systems are simulated using overdamped Brown-

ian dynamics. Specifically, the equations of motion for particle
i are

ṙi(t) = βD0[−∇iU(t) + fiûi(t)] +
√

2D0ξi(t), (3)
˙̂ui(t) =

√
2Drûi(t) × ηi(t), (4)

where ξi(t) and ηi(t) are stochastic noise terms with zero mean and
unit variance and f i is the self-propulsion force. Note that for passive
particles, f i = 0. The translational diffusion coefficient D0 and the
rotational diffusion constant Dr are linked via the Stokes–Einstein
relation Dr = 3D0/σ2. We measure time in units of the short-time
diffusion τ = σ2/D0.

C. The normal component of the local pressure tensor
For systems of self-propelled particles that do not experience

torque, such as those we consider here, it has been shown that the
mechanical pressure is a state function.30 Moreover, when such a
system undergoes phase separation, the coexisting phases have the
same bulk pressure.31 Here, we use an expression for the local pres-
sure of an active system with only isotropic interactions,47 which
we generalize to binary mixtures. Our expression reproduces the
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pressure for systems of a single species28 and, when spatially aver-
aged over the whole system, also amounts to the known expressions
for the pressure of non-confined systems.32,35

Consider a binary system in d dimensions with N1 particles of
species 1 and N2 particles of species 2, whose equations of motion
are given by Eqs. (3) and (4). These equations should now be viewed
with the appropriate generalization in d dimensions and with U(r)
being an arbitrary pair-wise potential, with r = |ri − rj| being the
center-of-mass distance between particles i and j. The only differ-
ence between the two species is the value of the self-propulsion force
such that f i = f (1) for i ∈N1 and f j = f (2) for j ∈N2, with f (1) ≠ f (2). We
also define the angle between the axis of self-propulsion û(t) and a
fixed coordinate system as Ω(t).

Let us now define the microscopic density field for the two
species, which we denote as Ψ(1)(r, Ω) and Ψ(2)(r, Ω), such that

Ψ(1)(r, Ω) =
N1

∑
i=1

δ(r − ri)δ(Ω −Ωi), (5)

Ψ(2)(r, Ω) =
N2

∑
i=1

δ(r − ri)δ(Ω −Ωi). (6)

For later convenience, we define the moments

ρ(α)(r) = ∫ dΩΨ(α)(r, Ω), (7)

m(α)(r) = ∫ dΩû(Ω)Ψ(α)(r, Ω), (8)

s(α)ij (r) = ∫ dΩûi(Ω)ûj(Ω)Ψ(α)(r, Ω), (9)

where i and j denote the spatial components of the corresponding
vectors and tensors. The field ρ(α)(r) is the local density of species α,
while the field m(α)(r) is the corresponding local polarization.

We assume that the system is confined in the ẑ direction
by a wall, while it is translationally invariant in the dimensions
perpendicular to ẑ, i.e., periodic boundary conditions are applied.
Following Refs. 28 and 30, the pressure felt by the wall can be
written as

Pwall = Pid(z) + Pvir,ẑ(z) +∑
α
P(α)swim,ẑ(z), (10)

where z denotes any point in the bulk of the system,

Pid(z) = ⟨ρ(z)⟩kBT =
1

Ld−1 ∫ drd−1⟨ρ(r)⟩kBT (11)

is the ideal component of the pressure, where we have spatially
integrated over the dimensions that are perpendicular to the ẑ
dimension and divided by the surface Ld−1 that we integrated over,
ρ(r) = ∑αρ(α)(r) is the total density at point r, and brackets denote
an average at the steady state over noise realizations,

Pvir,ẑ(z) =
1

Ld−1 ∫z′′<z
dr′′ ∫

z′>z
dr′⟨ρ(r′′)ρ(r′)⟩∂ẑU(∣r′ − r′′∣)

(12)
is the standard local virial term, and

P(α)swim,ẑ(z) =
D0f (α)

(d − 1)Dr
[−β∂ẑU(z)⟨m(α)ẑ (z)⟩

+βf (α)⟨s(α)ẑẑ (z)⟩ − ∂ẑ⟨m
(α)
ẑ (z)⟩] (13)

is the local swim pressure of species α. In the above equation,
U(z), m(α)ẑ (z) and s(α)ẑẑ (z) have been averaged similar to Eq. (11).

Now, since the right-hand side of Eq. (10) is a local quantity
that does not depend on any wall properties, we straightforwardly
define the normal component of the local pressure of the system as

PN(z) = Pid(z) + Pvir,ẑ(z) +∑
α
P(α)swim,ẑ(z). (14)

In our particle simulations, we divide the simulation box into slabs
and measure the normal component of the pressure for each slab.
The contributions to each slab of the ideal and swim components of
the pressure can be calculated straightforwardly, while for the virial
component we follow Ref. 48.

D. Reservoir simulations
The standard method for showing chemical equilibrium in pas-

sive systems is to measure the chemical potential in both phases for
both species. For a passive system, this can be done in a number of
different ways depending on the exact circumstance—ranging from
grand canonical simulations to thermodynamic integration.49 How-
ever, for systems containing active particles, these methods do not
directly apply, and hence, we will address the question following a
different route.

In a textbook derivation of the chemical potential, one typi-
cally attaches the system in question to a large particle reservoir and
allows the particles of a given species to travel between the subsys-
tem in question and the particle reservoir. The subsystem is then in a
grand-canonical (μVT) ensemble, with μ set by the chemical poten-
tial of the reservoir. Hence, if two systems have the same chemical
potential, one must be able to connect them to the same particle
reservoir, i.e., one with the same particle density. Here, we follow
a similar procedure with our simulations.

Specifically, we connect a binary phase to particle reservoirs
that only contain a single species. To this end, we divide our sim-
ulation box into two sections, one that contains the “bulk” binary
phase and the other part of the box acting as a passive (or active)
particle reservoir (see Fig. 1). We place a semi-permeable mem-
brane at the division that only allows one of the two species, which
we call species R, to pass through at no energy cost. For the other
species, the wall is impenetrable with the wall–particle interaction
given by the purely repulsive Weeks–Chandler–Andersen-like wall
potential,

βU(z) = 4βϵWCA((
σ
z
)

12
− (σ

z
)

6
+

1
4
), (15)

where z is the distance of a particle in the bulk to the nearest semi-
permeable wall, βϵWCA = 40, and the interaction is cut off at a
distance z = 21/6σ.

At the start of the reservoir simulation, the bulk binary phase
in the middle section of the box has the desired partial densities of
the two different species, and the reservoir is initialized with a gas
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FIG. 1. The coexisting gas phase of a
Lennard-Jones active–passive mixture in
contact with (a) a passive particle reser-
voir and with (b) an active particle reser-
voir. The coexisting liquid phase of a
Lennard-Jones active–passive mixture in
contact with (c) a passive particle reser-
voir and with (d) an active particle reser-
voir. Note that the reservoirs associated
with the gas [(a) and (b)] and liquid [(c)
and (d)] phases have different cross sec-
tions, making the reservoir densities in
[(a) and (b)] seem a lot higher compared
to those in [(c) and (d)]—even though
they are equal.

of species R of arbitrary density. Over the course of the simulation,
particles of species R will exchange between the bulk binary phase
and the reservoir. Hence, the density of this species will change in
both the bulk phase and the reservoir. Additionally, a small frac-
tion of the bulk phase typically builds up on the semi-permeable
membrane and sometimes depletes the bulk region of the confined
species.

To counteract such deviations from the desired partial densi-
ties in the bulk phase, we “tune” the density of both species during
the equilibration of the simulation. This tuning is realized by either
adding or removing particles. Specifically, we measure at fixed inter-
vals the partial densities of each species in the center of the bulk
phases (i.e., away from the semi-permeable membrane). If the par-
tial density of one of the species is too high, particles of this species
are removed randomly. If the partial density of one of the species
is too low, particles of this species are added randomly. Eventu-
ally, after repeating this procedure many times, the average par-
tial densities of both species in the bulk region reach their desired
constant, and a steady state reservoir density is obtained. At this
point, we stop removing and adding particles and check that the
reservoir density remains constant. In this way, we have checked
that the binary phase and the particle reservoir are in chemical
equilibrium.

III. RESULTS
A. Lennard-Jones active–passive mixture

To start our investigation, we construct a liquid–gas coexis-
tence in an active–passive mixture in the regime where the system
phase separates due to attractions.13 Here, we set the energy scale
βϵLJ = 1.2, which for a purely passive system (x = 0) results in a well-
characterized liquid–gas coexistence at intermediate densities.50 In
the following, we fix the self-propulsion force f a = 10kBT/σ for all

active particles and perform simulations for a range of values of
the active fraction x and overall system density ρ in an elongated
simulation box.

We study the phase diagram for this mixture via direct coex-
istence simulations. We simulated approximately 8000 particles in
a three-dimensional elongated box with dimensions Lẑ = 12Lŷ
= 12Lx̂. Note that the use of an elongated box ensures that the
interface is, on average, planar and minimizes the number of
particles near the interface. For the highest density (smallest sim-
ulation box) we consider, the dimensions of the box are approxi-
mately 12σ × 12σ × 144σ. Thus, the short axis of the box is much
larger than the persistence length of the active particles, which is
βD0f /2Dr ≈ 1.67σ. Note that we performed direct coexistence sim-
ulations for system compositions x ∈ [0, 0.4] and total densities
ρσ3 = 0.20, 0.30, and 0.40. These simulations were initiated from
a configuration where all particles are located within a dense slab
and ran for approximately 3500τ. We collected data only for the last
500τ.

In Fig. 2(a), we show a typical snapshot of an active–passive
mixture exhibiting a liquid–gas coexistence. Here, the active and
passive particles are shown in red and blue, respectively. In Fig. 2(b),
we plot the corresponding density ρ(z), active particle fraction x(z),
and the normal pressure PN(z) along the long axis of the box.
Note that in the bulk regime of either phase, this normal pressure
PN will be equal to the bulk pressure P of the phase in question.
Figure 2(b) shows that, in this case, the system exhibits a gas–liquid
coexistence with the gas characterized by density ρG and composi-
tion xG and the liquid characterized by density ρL and composition
xL. We always find the gas phase to be more rich in active particles,
which is reminiscent of segregation phenomena seen in other studies
of active mixtures.51,52 Note that in all of our simulations, the pres-
sure is the same in both coexisting phases, indicating that the system
is in mechanical equilibrium.
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FIG. 2. (a) Liquid–gas coexistence of
a Lennard-Jones active–passive mixture
with an overall active fraction x = 0.22
and at an overall density ρσ3 = 0.20. For
the active particles, the self-propulsion
force equals f a = 10kBT /σ. Note that
active (passive) particles are colored red
(blue). (b) The corresponding density,
composition, and pressure profiles per-
pendicular to the planar interfaces. The
system contains N = 8192 particles.

Using composition and pressure profiles, similar to those
shown in Fig. 2(b), we map out the coexisting compositions and
pressures of our active–passive mixtures for a wide range of over-
all system densities ρ and compositions x. The results are plotted in
Fig. 3(a). Similar to passive systems, we find that the phase behavior
collapses in this representation, i.e., the lever rule holds within the
coexistence region.

The validity of the lever rule is also evident when plotting the
phase diagram in the active density–passive density (ρa–ρp) repre-
sentation, as shown in Fig. 3(b). This is consistent with the simula-
tion results of Ref. 23 where they summarized the phase behavior of
a different active–passive mixture in the ρa–ρp representation. We
also investigate the pressure dependence of the partial densities of
each species in the coexisting liquid and gas phases. In Fig. 3(c),
we plot these partial densities ργi vs pressure P, with i denoting the
species (active or passive) and γ denoting the phase [liquid (L) or
gas (G)].

Our results so far clearly demonstrate that the pressure is a
key variable in controlling phase coexistences in our active–passive
mixture: all phase coexistences are characterized by equal bulk pres-
sures in the two phases. However, phase coexistence in an equilib-
rium binary system requires not only equal pressures between the
two phases but also equal chemical potentials for both species. This
raises the question whether we can identify a quantity analogous to
the chemical potential in active–passive mixtures, which similarly
controls the phase coexistence.

To this end, we perform reservoir simulations on these liquid
and gas phases, with the other part of the box acting as a passive
(or active) particle reservoir (see Fig. 1), as described in Sec. II D.
Specifically, we select a binary gas and liquid that coexist and

connect them to particle reservoirs that only contain a single species.
Note that in total, we will need four simulations per coexistence
point, namely, the gas in contact with a passive particle reservoir,
the gas in contact with an active particle reservoir, the liquid in
contact with a passive particle reservoir, and the liquid in con-
tact with an active particle reservoir. This is shown in Fig. 1. The
goal will be to determine whether the active (and passive) reser-
voirs associated with the coexisting phases are the same. If they are,
then we can infer that they are in chemical equilibrium with each
other.

During the equilibration of these simulations, typically, a small
fraction of the bulk particles builds up on the semi-permeable
membrane and sometimes depletes the bulk region of the con-
fined species. To counteract this adsorption (see Fig. 4) and ensure
that the bulk phase has the correct density and composition far
away from the semi-permeable membrane, we tune the number of
particles of both species during equilibration. Eventually, the aver-
age partial densities of both species in the bulk region reach their
desired value, and also, the density of the reservoir reaches a constant
value.

In Fig. 5(a), we show the time evolution of the densities in the
active particle reservoirs for the coexisting liquid and gas phases at
βPσ3 = 0.34. Note that although we chose a high initial density of the
reservoirs in both cases, both reservoir densities quickly converged
to the same density. In Fig. 5(b), we plot the densities of both the
active and passive reservoirs as a function of the coexistence pressure
Pcoex. Clearly, for all coexisting liquid–gas pairs, we find the same
reservoir densities: ρres,L

p = ρres,G
p and ρres,L

a = ρres,G
a . Hence, the two

coexisting phases can be thought of being in chemical equilibrium
with the same reservoir.

FIG. 3. (a) Phase diagram of the
Lennard-Jones active–passive mixture in
the reduced pressure–composition P–x
representation. (b) The same phase
diagram in the reduced active particle
number density–passive particle number
density ρa–ρp representation. (c) Coex-
istence lines in the P–ρa and P–ρp rep-
resentations.
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FIG. 4. Density and composition pro-
files of the coexisting liquid (a) and gas
(b) phases of a Lennard-Jones active–
passive mixture in contact with a passive
particle reservoir. The partial densities of
the binary phases were chosen to cor-
respond to the coexistence at pressure
βPσ3 = 0.34. Note that some active parti-
cles adsorb at the wall. We thus exclude
these interfacial regions (shaded areas)
in the determination of the bulk den-
sity and composition, as well as in the
determination of the reservoir density.

B. Weeks–Chandler–Andersen active–active mixture
So far, we have shown that the gas–liquid coexistence for an

active–passive mixture of Lennard-Jones particles can be completely
described by the local normal pressure and the reservoir densities.
This, of course, raises the interesting question whether or not such
phase coexistence rules can also be found for systems undergoing a
motility-induced phase separation and whether or not they can be
used to predict the phase diagram.

To this end, we use the Weeks–Chandler–Andersen poten-
tial with the energy scale βϵWCA = 6.67. Here, we consider a two-
dimensional active–active mixture with the self-propulsions of fast
and slow species being f f = 160kBT/σ and f s = 120kBT/σ, respec-
tively. We chose such a set of forces for two reasons. First of all,
such a choice ensures that even the slow species undergoes motility-
induced phase separation into a gas and a crystal phase (see the
state diagram in Ref. 9). As a result, we can probe the full spectrum
of compositions of the binary mixture. Second and more impor-
tantly, such high self-propulsions result in relatively fast dynam-
ics for the system so that our reservoir simulations can access a
large number of configurations within a reasonable computational
time.

We start off by performing direct coexistence simulations
between the gas and the crystal phases, where we simulated approx-
imately 30 000 particles in a two-dimensional elongated box with
dimensions Lz = 5Ly. This choice for the dimensions of the box was
done such that two planar interfaces are created, which span the
box perpendicular to its long axis.31 Note that we also observe the

formation of gas bubbles in the crystal phase, which have been
reported in Ref. 31. We performed direct coexistence simulations for
system compositions x ∈ [0, 1] with an interval of 0.1 and total den-
sities ρσ2 = 0.45, 0.6, and 0.75. For the highest density we consider,
the dimensions of the box are approximately 90σ × 450σ. Thus, the
short axis of the box is larger than the persistence lengths of the
active particles, which are βD0f f /Dr ≈ 53.3σ and βD0f s/Dr = 40σ for
the fast and slow species, respectively. The simulations were initiated
from a configuration where all particles are part of a hexagonal crys-
tal and ran for approximately 1500τ. We collected data only for the
last 500τ. The long running times are necessary for the relaxation of
the compositions of the coexisting phases.

We then measured the local densities of the two species and the
normal component of the pressure by dividing the box into slabs of
length σ across the long z-axis and by measuring the corresponding
quantities for each slab. Typical results for such measurements and a
snapshot of the system in direct coexistence are shown in Fig. 6. The
results of these direct coexistence simulations are summarized in the
phase diagram, as shown in Fig. 7(a). Clearly, also for this active–
active mixture, we observe a collapse of the direct coexistence data
onto a single binodal.

As a next step, we predict the phase boundaries by calculat-
ing the pressure P and reservoir densities ρres

f and ρres
s for a wide

range of binary crystal and gas phases [shaded area in Fig. 7(a)]. This
involves putting the binary bulk phase in contact with a reservoir
of slow and fast particles separately for both the crystal and the gas
phase.

FIG. 5. (a) The density in the active par-
ticle reservoir over time for both the liq-
uid and the gas. Both phases converge
to the same reservoir density of active
particles. (b) The reservoir densities as
a function of the coexistence pressure
Pcoex. The liquid and gas phases are in
contact with the same reservoirs, show-
ing that there is chemical equilibrium
between the phases for each species.
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FIG. 6. (a) Motility-induced phase sep-
aration of an active–active binary mix-
ture with overall composition x = 0.5
and overall density ρσ2 = 0.75. Red
particles are “fast” swimmers with self-
propulsion force f f = 160kBT /σ, and blue
particles are “slow” swimmers with self-
propulsion force f s = 120kBT /σ. The sys-
tem contains approximately 30 000 parti-
cles. (b) The corresponding density (ρ)
and composition profile (x) along the
long direction z. (c) The corresponding
normal pressure profile along the long
direction z.

To construct the surface that corresponds to the gas in Fig. 7(b),
we ran simulations of a gas phase in contact with a reservoir in
order to acquire the reservoir densities for fast and slow swim-
mers. The gas phases we considered had compositions in the regime
x ∈ [0.1, 0.9] and densities ρσ2 ∈ [0.05, 0.5] [see the shaded area in
Fig. 7(a)]. The interval between the points we considered was 0.1 for
the composition and 0.02–0.05 for the density. We find that for the
total density ρσ2 > 0.4, the system spontaneously phase separates,
so we cannot probe this high-density regime. For each gas phase,
which corresponds to a point in the (x, ρσ2) grid, we ran two sim-
ulations, one in contact with a reservoir of fast swimmers and the
other one in contact with a reservoir of slow swimmers. Each simu-
lation provided us with a value for the density of the corresponding
reservoir and also a value for the local normal pressure in the binary
gas. The values for the pressures were reassuringly in close agree-
ment, since we simulated the same binary phase in both simulations.
Thus, a pair of such simulations provided us with a point on the
hypersurface (ρres

f , ρres
s ,βPσ2), which is a function of the variables

x and ρσ2. As the value of the pressure βPσ2, we take the average
from the two simulations. This surface can be well fitted by a second
degree polynomial. The red surface shown in Fig. 7(b) is the fitted
polynomial.

For the crystal phase, we followed a similar approach. We sim-
ulate the binary crystal in contact with a reservoir of slow and fast
particles separately. The points we simulated were in the inter-
val of compositions x ∈ [0.1, 0.9] and densities ρσ2 ∈ [1, 1.30],
with intervals 0.1 for the composition and 0.02 for the density
[see the shaded area in Fig. 7(a)]. Again, the results of the sim-
ulations give us a hypersurface, which we again fit with a second
degree polynomial. This polynomial is the blue surface shown in
Fig. 7(b).

Note that in these reservoir simulations, we also applied a
short-ranged wall torque to the particles of the confined species that
reorients these particles away from the wall. Specifically, particles
of the confined species that approach the wall are instantaneously
rotated by 180○ such that they are oriented toward the bulk of the

FIG. 7. (a) Direct coexistence results for the phase diagram
of the active–active mixture of WCA particles (markers) and
the predicted phase diagram (line) in the density–density
representation for fast and slow swimmers, as denoted by
ρf and ρs, respectively. To predict the binodals, we calcu-
lated the pressure P and reservoir densities for the fast and
slow species, denoted by ρres

f and ρres
s , for a wide range of

binary crystal and gas phases (shaded area). Note that X
denotes the crystal phase, while G denotes the gas phase.
(b) Surface plots of the gas (red) and crystal (blue) reservoir
densities vs the pressure. From the intersection between
the two surfaces, we obtain the predicted binodals in (a).
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simulation box. This wall torque was applied in order to minimize
the accumulation of particles on the wall. Without this wall torque,
we observe that for the majority of our reservoir simulations, the
semi-permeable membrane gets clogged up by a strong adsorption
layer of confined particles. As a result, the exchange between the
reservoir and the bulk binary phase is extremely slow such that we
need to run the simulation for exceedingly long times to sample the
reservoir densities. We have confirmed that the addition of the wall
torque does not affect the reservoir density nor the pressure in the
bulk phase.

Using the requirement of mechanical and chemical equilib-
rium, we accurately construct the phase boundaries from these prop-
erties. The intersection of the two surfaces in Fig. 7(b) is the line
where the reservoir densities of both species and pressures of the
binary crystal and gas phases are equal. Thus, it should correspond
to the binodals of the phase diagram. The lines on each of the two
(ρres

f , ρres
s ,P) surfaces can be converted back into lines in the x–ρ

and subsequently the ρf –ρs representation of the phase diagram.
The resulting phase boundaries are drawn in Fig. 7(a) in order to
compare them with the results from the direct coexistence sim-
ulations. These “predicted” binodals are in very good agreement
with the direct coexistence data. We thus have quantitatively pre-
dicted the phase diagram for an active–active mixture undergo-
ing motility-induced phase separation. This result highlights that
also for these systems, which are extremely far from equilibrium,
simple coexistence rules are satisfied. Therefore, this result sheds
new light on the thermodynamics of systems of active spherical
particles.

IV. CONCLUSIONS
In conclusion, we have demonstrated, for the first time, that

the phase coexistence of active spherical (torque-free) particles is
fully governed by mechanical and chemical equilibrium. We have
highlighted the generality of our results by applying our technique
to two very different active systems. Our results clearly show that
phase coexistence for mixtures of active particles can be completely
described by the local normal pressure and the reservoir densities
per species. Using this requirement of three sets of equal thermo-
dynamic quantities, we have quantitatively predicted phase coexis-
tences for these torque-free active systems. We would like to point
out that we have restricted ourselves to torque-free active systems
as it has been shown that in the presence of torques, the pressure is
no longer a state function.30 Consequently, for systems with torques,
one cannot naively follow the route presented in this paper and con-
struct the phase diagram by requiring equal pressure and reservoir
densities.

We would like to emphasize that we have introduced a purely
numerical method that allows one to construct phase diagrams from
chemical and mechanical equilibrium without making approxima-
tions and without requiring a priori knowledge of the interface
between the coexisting phases—the only interfaces present in our
work divide the reservoir from the bulk phase and are not the same
as the ones that appear in the phase diagram coexistences. This
numerical observation is intriguing, in particular, when compared
to theoretical treatments, such as in Refs. 36, 39, and 53, where the
characteristics of the interface play varying roles. We hope that this
work will inspire new theoretical investigations in this direction.
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