
506 | Nature | Vol 582 | 25 June 2020

Article

Optical Fourier surfaces

Nolan Lassaline1, Raphael Brechbühler1, Sander J. W. Vonk1,2, Korneel Ridderbeek1,  
Martin Spieser3, Samuel Bisig3, Boris le Feber1, Freddy T. Rabouw1,2 & David J. Norris1 ✉

Gratings1 and holograms2 use patterned surfaces to tailor optical signals by 
diffraction. Despite their long history, variants with remarkable functionalities 
continue to be developed3,4. Further advances could exploit Fourier optics5, which 
specifies the surface pattern that generates a desired diffracted output through its 
Fourier transform. To shape the optical wavefront, the ideal surface profile should 
contain a precise sum of sinusoidal waves, each with a well defined amplitude, spatial 
frequency and phase. However, because fabrication techniques typically yield profiles 
with at most a few depth levels, complex ‘wavy’ surfaces cannot be obtained, limiting 
the straightforward mathematical design and implementation of sophisticated 
diffractive optics. Here we present a simple yet powerful approach to eliminate this 
design–fabrication mismatch by demonstrating optical surfaces that contain an 
arbitrary number of specified sinusoids. We combine thermal scanning-probe 
lithography6–8 and templating9 to create periodic and aperiodic surface patterns with 
continuous depth control and sub-wavelength spatial resolution. Multicomponent 
linear gratings allow precise manipulation of electromagnetic signals through 
Fourier-spectrum engineering10. Consequently, we overcome a previous limitation in 
photonics by creating an ultrathin grating that simultaneously couples red, green and 
blue light at the same angle of incidence. More broadly, we analytically design and 
accurately replicate intricate two-dimensional moiré patterns11,12, quasicrystals13,14 
and holograms15,16, demonstrating a variety of previously unattainable diffractive 
surfaces. This approach may find application in optical devices (biosensors17, 
lasers18,19, metasurfaces4 and modulators20) and emerging areas in photonics 
(topological structures21, transformation optics22 and valleytronics23).

A patterned optical surface can be described as a Fourier sum of  
sinusoidal waves. Each component represents a specific spatial  
frequency (g = 2π/Λ with period Λ) that interacts with an impinging 
beam. For applications, diffractive surfaces should ideally contain 
only the frequencies of interest. However, they are typically obtained 
by etching patterns into surfaces to a fixed depth, creating arrays of 
vertical elements (trenches, holes and pillars) dictated by fabrication 
rather than design. This not only contributes unwanted spatial frequen-
cies, complicating the optical response, but restricts the number of 
desired Fourier components that can be included. Appropriate place-
ment of the elements (for example, aperiodically10,13,14,18) can offer some 
additional control. Alternatively, the collective response from arrays 
of smaller elements—nanoscale, subwavelength resonators—can be 
exploited in metasurfaces24. However, no approach has yet offered 
complete control over the Fourier components in a diffractive surface. 
If such an approach were available, simple analytical formulas could 
immediately specify the sum of sinusoids needed to obtain a complex 
desired output.

Wavy surfaces are in principle achievable using greyscale lithog-
raphy25, which spatially adjusts the exposure of a polymeric resist to 
produce patterns with multiple depth levels. The surface profile can 
then be transferred into the underlying substrate via etching. However, 

greyscale lithography has not yet provided sufficient spatial resolu-
tion or depth control to create arbitrary optical surfaces. Similarly,  
interference lithography, which exposes the resist to multiple over-
lapping optical beams, can generate complex diffractive surfaces26,27. 
But they contain at most a few spatial frequencies, constrained by the 
exposure wavelengths.

To obtain arbitrary control over the Fourier components, we first 
designed our structure by taking the Fourier transform of the desired 
diffraction pattern. After converting this analytical function into a 
two-dimensional (2D) greyscale bitmap (8-bit depth with 10 nm × 10 nm 
pixels; see Methods and Extended Data Fig. 1), we then use thermal 
scanning-probe lithography6–8 to raster-scan a heated cantilever with a 
sharp tip across a polymer film, locally removing material to match the 
bitmap depth at each pixel. The simultaneous monitoring of the surface 
topography by the tip for feedback means that arbitrary surfaces with 
sub-nanometre depth control and high spatial resolution (<100 nm) 
can be written at about 6 s µm−2. These profiles can provide diffractive 
elements directly or be used as an etch mask or template. We exploit 
templating to replicate the pattern in other materials9.

Figure  1 demonstrates our approach with sinusoidal gratings  
modulated in one dimension (1D, periodic in x, constant in y), tem-
plated into silver (Ag), with one, two or three Fourier components  
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(Fig.  1a, d, g). Ag was chosen as a low-loss metal to explore 
non-transparent reflective gratings. The insets show the targeted ampli-
tudes, Ai, and spatial frequencies, gi, for sinusoid i (see the Methods for 
the analytical formulas for all surfaces). Because our structures are 
finite in size, their Fourier spectra will be slightly broader than in the 
analytical design (see modelling in Methods). The measured topog-
raphies for the patterns (Fig. 1b, e, h) show that the process faithfully 
reproduces the targeted profile with 1.8–2.3 nm root-mean-square 
(RMS) error (see Methods and Extended Data Fig. 2). These low values 
indicate that the desired Fourier components are dominant. Indeed, 
a detailed analysis for the single sinusoid (Extended Data Fig. 2)  
shows that the second harmonic is the largest error component with 
an amplitude of only 3.5% of A1 (0.9 nm).

To test the optical response of our gratings, we measure 
angle-resolved reflectivity spectra by imaging the back focal plane of 

an optical microscope onto a spectrometer28,29 (Methods; Extended 
Data Fig. 3a). Each sinusoidal component (here periodic in x) can  
provide momentum Λ= (2π/ )^

i ig x  (where x̂ is the unit vector along x) 
to an impinging beam. These contributions can affect the outgoing 
angle of the radiation or lead to electromagnetic surface waves— 
surface plasmon polaritons (SPPs)—that propagate along the Ag–air 
interface with in-plane wavevector kSPP. We use the latter process  
(photon–SPP coupling) to characterize the capabilities of our surfaces.

We measure reflectivity as a function of the in-plane wavevector k‖ 
of the incoming light. Figure 1c plots results for the single-sinusoidal 
grating for k xk= ^x‖  (that is, energy versus kx with ky ≈ 0; see Extended 
Data Fig. 3b). A linear polarizer was used to select only p-polarized 
light, which couples to SPPs (Methods). Decreased reflectivity (orange 
lines) occurs when k‖ ± g1 = kSPP. Thus, the grating creates a photon–SPP 
coupling channel, allowing the plasmonic dispersion to be optically 
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Fig. 1 | Fourier surfaces modulated in one dimension. a, d, g, Scanning-electron 
micrographs (SEMs, 30° tilt) of Ag gratings with 1, 2 or 3 sinusoidal components. 
The insets show the sinusoidal amplitudes Ai and spatial frequencies gi. All design 
parameters are given in Extended Data Table 1. b, e, h, Measured (atomic force 
microscopy) and targeted surface topographies for the structures in a, d and g. 
Scan lengths are 11.3 µm and represent a single line in the structures. All target 
functions account for a slight distance miscalibration in the thermal scanning 
probe. The measured RMS error for the patterns are 1.8 nm, 2.1 nm and 2.3 nm, 
respectively (see Methods). c, Experimental (left) and modelled (right) 

angle-resolved reflectivity spectra (energy versus in-plane photon wavevector 
along the grating, kx, with ky ≈ 0) for the structure in a. The orange lines represent 
decreased reflectivity at photon angles that launch surface plasmon polaritons 
(SPPs). These lines trace the SPP dispersion, displaced into the light cone by g1. 
The black region represents energies and angles accessible in experiment 
(Extended Data Fig. 3). f, The two-component grating provides two photon–SPP 
coupling channels, doubling the orange lines. i, The three-component grating 
was designed to exhibit two plasmonic stopbands.
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probed. The match between the data and our analytical model  
(Fig. 1c; Methods), both here and below, confirms the fidelity of our 
process. See also Extended Data Fig. 4.

By including additional Fourier components, increasingly complex 
diffractive surfaces can be constructed. With two spatial frequencies 
g1 and g2 (Fig. 1d, e), two photon–SPP coupling channels open (Fig. 1f). 
Furthermore, SPP–SPP coupling arises if one of the spatial frequencies 
satisfies  k g k± = ′

iSPP SPP, where kSPP and k′SPP are wavevectors for SPPs 
propagating in different in-plane directions. This leads to a plasmonic 
stopband30,31 (Extended Data Fig. 3b). Extended Data Fig. 5 shows an 
example at k‖ = 0 when g2 = 2g1. Although we have focused so far on the 
spatial frequencies of the sinusoids, our fabrication approach also 
allows independent control of their phase and amplitude. In Extended 
Data Fig. 5, phase is used to render either the upper or lower stopband 
edge ‘dark’ (not coupled to photons)30. Extended Data Fig. 6 uses ampli-
tude to tune the stopband width (in energy) from 0 eV to about 0.5 eV. 
More generally, by adding further sinusoids, more complex plasmonic 
dispersions can be obtained. For example, Fig.  1g shows a 
three-component grating that results in multiple stopbands. These 
can be placed at arbitrary energies and incident photon angles. 
Although the surface profile (Fig. 1h) would be difficult to intuit, Fou-
rier design followed by our process leads directly to the desired 
response (Fig. 1i). When such Fourier surfaces are converted into con-
ventional two-depth-level gratings, the response is corrupted by 
unwanted spatial frequencies (Extended Data Fig. 4).

The control of sinusoidal components, shown above for patterns 
modulated in 1D with all gi along x̂, can be extended to patterns modu-
lated in 2D (Extended Data Fig. 7a, b). For example, if we sum two sinu-
soids, one with g1 along x̂ and the other with g2 rotated by 10° from x̂, 
we obtain the moiré spatial interference pattern in Fig. 2a. For a 40° 
rotation, the pattern in Fig. 2b results. Because these gratings now 
provide in-plane momentum along both x̂ and ŷ, we plot reflectivity 
versus in-plane wavevector components kx and ky, taking a fixed-energy 
slice from the full dispersion diagram (Extended Data Fig. 3c). The 
linear polarizer used in Fig. 1 was removed (Methods). The experimen-
tally accessible wavevectors for such a ‘k-space image’ (due to our finite 
collection angle) are within the solid white circles in Fig. 2c, d. The 
measured reflectivity exhibits two pairs of orange arcs, each pair rep-
resenting solutions to k‖ ± gi = kSPP (Extended Data Fig. 3d). Both plots 
(Fig. 2c, d) also include the 2D Fourier transform of the surface profile; 
the Fourier components ±g1 and ±g2 appear as orange spots outside 
the white circle and quantitatively explain the measured arcs. Even for 
only a 10° rotation, which leads to subtle intricacies in the surface pat-
tern (Fig. 2a), the expected diffraction is observed.

Our approach can also exploit different basis functions. Extended 
Data Fig. 7c, d shows a circular sinusoidal grating and a moiré interfer-
ence pattern generated from two such gratings. Functions with vary-
ing local spatial frequencies can also be employed. Figure 2e shows a 
sinusoidal ‘zone plate’ (Methods). In general, such structures can act 
as Fresnel lenses to focus electromagnetic radiation by diffraction, 
representing a unit of holographic information. Here, our zone plates 
have dimensions appropriate for X-ray optics32,33, with the added benefit 
of continuous depth control, highly desirable for this application34.

While the number of spatial components is arbitrary, several impor-
tant symmetries can be generated by combining only a few sinusoids. 
Figure 3a, b shows a periodic pattern created from three sinusoids with 
60° rotation between them. The resulting profile is hexagonal, with 
sixfold rotational symmetry, a typical design for 2D arrays of holes or 
pillars. However, in our structure, the 2D Fourier spectrum is specified. 
The corresponding k-space image (Fig. 3c) reveals six orange arcs from 
photon–SPP coupling. Figure 3d, e shows a surface with 12-fold rota-
tional symmetry created from six sinusoids with 30° rotation between 
them. In k-space, 12 orange arcs appear (Fig. 3f). This profile, which does 
not possess translational symmetry, would be quasiperiodic if infinitely 
extended. Similar photonic quasicrystals using quasiperiodic arrays 

of trenches or holes have been reported for laser applications10,18,35. 
However, optimizing their design is computationally intensive and 
still results in 2D Fourier spectra with many unwanted spatial frequen-
cies. Our structures are designed with simple analytical functions and 
exhibit precise control over the Fourier components.

To demonstrate the utility of our approach, we address a current limi-
tation in photonics. The push for miniaturized optical systems has led 
to waveguides integrated into a single thin layer that exploits diffractive 
optics for in- and outcoupling of light20,36. For these devices, multiple 
wavelengths should ideally be diffracted between free-space beams and 
propagating waveguide modes at a common angle. However, current 
single-spatial-frequency gratings cause them to diffract at different, 
highly specific angles, resulting in bigger, more complicated devices.
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Fig. 2 | Fourier surfaces modulated in two dimensions. a, b, SEMs (45° tilt) of 
moiré patterns in Ag from two superimposed sinusoids: one with g1 along x̂ and 
the other with g2 rotated by 10° or 40° from x̂, respectively. See Extended Data 
Fig. 7. c, d, Measured k-space images (inside solid white circles) for photons 
(570 nm wavelength) reflected from patterns in a and b, respectively. k x and ky 
are normalized by the magnitude of the photon wavevector, k0. Four orange 
arcs appear, caused by decreased reflectivity when photons launch SPPs with 
wavevector kSPP, that is, when k‖ ± gi = kSPP. ±g1 and ±g2 are shown as orange 
points outside the white circles. Their positions are determined from the 2D 
Fourier transform of the surface profiles used to define the structures. In c and 
d, we see that k‖ = −g2 + kSPP forms an orange arc in k-space. e, SEM (45° tilt) of a 
Ag sinusoidal zone plate. For all structural design parameters, see Extended 
Data Table 1.
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With Fourier surfaces, a simple solution is immediately available. 
Three spatial frequencies can be included on a single surface to diffract 
three colours at a common angle. Figure 4a, b shows such a profile, 
designed, implemented and templated in Ag. The three sinusoidal 
components simultaneously couple red, green and blue photons at nor-
mal incidence (Fig. 4c), as seen by the three reflectivity dips in Fig. 4d, 
which arise due to photon–SPP coupling.

Additional applications of optical Fourier surfaces can benefit from 
deeper structures and a diverse material library. We patterned polymers 
of various refractive index (Methods) up to about 300 nm deep. When 
these deeper surfaces are templated into Ag, the resulting Fourier sur-
faces can provide efficient diffraction gratings (Extended Data Fig. 8). 
For a p-polarized beam at normal incidence, we measured 97 ± 5% in 
the +1 and −1 diffraction orders for a single-component sinusoidal 
grating. With two sinusoidal components, a ‘blazed’ Fourier surface 
is obtained that diffracts nearly all intensity into just the +1 diffraction 
order. The polymer profiles can also be transferred into substrates 
via etching, for example silicon (Si; Fig. 4e) or silicon nitride (SiNx; 
Extended Data Fig. 9). With this we could amplify the profile depth8. Like 
the patterned polymer, the etched substrate can provide a multi-use 

template9. Extended Data Fig. 9 shows a titania (TiO2) Fourier surface 
templated from an etched Si substrate.

Thus, ‘wavy’ diffractive surfaces can be provided for a broad spec-
tral range (X-ray to infrared). Templating, extendable to rollable sub-
strates37, enables high-throughput production of many materials 
including active and multilayer solids38,39. Optical wavefronts can be 
manipulated (including direction, phase and polarization40,41) with 
diffractive surfaces that can be accurately placed within or on top of 
elements in integrated photonic devices, allowing miniaturized optical 
systems20,36. Thus, researchers in photonics can exploit the previously 
unavailable capabilities of optical Fourier surfaces to address applica-
tions as well as to explore emerging phenomena.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
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Methods

Fourier-surface design
All surfaces were designed using analytical functions. In general, 1D 
real-space height profiles, f(x), can be obtained from the desired Fourier 
spectrum, F(K), via the 1D inverse Fourier transform:

∫f x F K K( ) =
1

2π
( )e d (1)Kx

−∞

∞
i

K is a spatial-frequency variable and F(K) describes the spatial frequen-
cies (g) contained in the surface profile. Similarly, 2D height profiles, 
f(x, y), follow from the 2D inverse Fourier transform of F(Kx, Ky):

∬f x y F K K K K( , ) =
1

(2π)
( , )e d d (2)x y

K x K y
x y2

∞

−∞

i( + )x y

Kx and Ky are spatial-frequency variables along the x and y axes. For f(x) 
and f(x, y), the origin is placed in the middle of the pattern for both x and 
y. All functions are defined for the pattern in the polymer surface, where 
x and y lie in-plane and z is perpendicular. In these formulas, the height of 
the surface is defined relative to the unpatterned flat surface where z = 0. 
Note that the Fourier spectra in equations (1) and (2), used to calculate the 
infinitely extended real-space surface profiles, neglect finite-size effects. 
The finite dimensions of the experimental profile lead to broadening of 
the Fourier spectra (see Methods section ‘Analytical model’).

For the Fourier surfaces in Figs. 1 and 4 and Extended Data Figs. 1, 2, 
4, 5, 6, 8 and 9, the Fourier spectrum is sufficiently simple (with one, 
two or three Fourier components, assuming infinite size in x, y) that 
the height profile can be written as a sum of sinusoids:

∑f x A g x φ Δ( ) = cos( + ) − (3)
i

i i i

where Ai, gi and φi are the amplitude, spatial frequency, and phase, 
respectively, for component i. Note that in equation (3), the sinusoidal 
surface profiles in the polymer are vertically shifted in z by −Δ. When 
templating is used to transfer the pattern to Ag, the surface profile is 
inverted and vertically shifted in z by +Δ. For clarity, all parameters for 
our polymer surfaces are provided in Extended Data Table 1.

For the Fourier surfaces in Figs. 2a, b, 3a, d, 4e and Extended Data 
Figs. 7, 9, the height profile was given by:

∑f x y A g x θ y θ φ Δ( , ) = cos[ ( cos + sin ) + ] − (4)
i

i i i i i

where θi is the in-plane rotation angle from the x axis for component i. 
The circular Fourier surfaces in Extended Data Fig. 7 follow:

∑f r θ A g φ Δ( , ) = cos( | − | + ) − (5)
i

i i i ir r

where r and θ are the radial distance and polar angle, respectively. r is 
the coordinate in the surface plane and is a function of r and θ. ri is the 
centre of circular component i. The sinusoidal zone plate42 in Fig. 2e 
follows the function:
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L

Δ( ) = sin π − (6)
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where A is an amplitude and L is a characteristic length.

Bitmap generation
The analytical functions defining the Fourier surfaces are converted 
into bitmaps. The overall dimensions in x and y are chosen for the 

structure, and the analytical function is mapped onto a 10 nm × 10 nm 
pixel grid. The normalized depth of the structure in z was assigned 
for each pixel by discretizing the total normalized depth to 256 levels 
(8-bit precision). The physical patterning depth was assigned for each 
pixel by inputting the maximum physical depth of the structure to 
the thermal scanning-probe control software (see Methods section 
‘Fourier-surface fabrication’), which then assigned the physical depth 
for each pixel based on its 8-bit depth level. The entire process flow, 
from analytical mathematical design to pattern transfer to an optical 
material, is depicted in Extended Data Fig. 1.

Materials
1-mm-thick glass microscope slides and 1-mm-thick, 2-inch-diameter 
and 4-inch-diameter Si(100) wafers (1–10 Ω cm resistivity) were pur-
chased from Paul Marienfeld and Silicon Materials, respectively.  
Ag (1/4-inch-diameter × 1/4-inch-long pellets, 99.999%), Au (1/8-inch- 
diameter × 1/8-inch-long pellets, 99.999%), TiO2 sputter targets 
(200 mm diameter, 99.95%), and ultraviolet-curable epoxy (OG142-95 
and OG116-31) were obtained from Kurt J. Lesker, ACI Alloys, FHR Anla-
genbau, and Epoxy Technology, respectively. Tungsten dimple boats 
(49 × 12 × 0.4 mm3) were bought from Umicore. Two polymer resists 
from Allresist GmbH were used: PMMA/MA [AR-P 617, poly(methyl 
methacrylate-co-methacrylic acid), 33% copolymer, 3% dilution in ani-
sol] and CSAR [AR-P 6200, containing poly(α-methylstyrene-co-methyl 
chloroacrylate) in anisol]. For electron-beam lithography, the CSAR 
resist was developed using AR 600-546 from Allresist. Silicon can-
tilevers for thermal scanning-probe lithography with a tip radius of 
~3–5 nm were provided by SwissLitho (SL2015-2-HPL, SL2016-3-HPL, 
SL2018-13-HPL and SL2018-2-MBS). Hydrochloric acid (HCl, 37%), nitric 
acid (HNO3, ≥65%), sulfuric acid (H2SO4, ≥95%), and ammonium fluoride 
+ hydrofluoric acid etching mixture (AF 875-125) were purchased from 
Sigma-Aldrich. Hydrogen peroxide (H2O2, 30%) was obtained from VWR 
Chemicals. Acetone and isopropanol (IPA) were provided by the Binnig 
and Rohrer Nanotechnology Center (BRNC) at IBM Zurich, where the 
templates were fabricated.

Fourier-surface fabrication
A Si wafer was typically used as the sample substrate. It was removed 
from its factory packaging in the cleanroom and used directly. The 
polymer resist layer was spin-coated onto it using a two-step proce-
dure. For PMMA/MA or CSAR, the resist solution was deposited on the 
sample surface and accelerated at 500 rpm s−1 to 500 rpm for 5 s. Then 
the PMMA/MA (CSAR) was accelerated at 2,000 rpm s−1 to 2,000 rpm 
(2,500 rpm) for a total time of 40 s. After spin-coating, the PMMA/MA 
(CSAR) layer was baked at 180 °C for 5 min (150 °C for 1 min). For the 
deeper Fourier surface structures in Extended Data Fig. 8, the PMMA/
MA spin-coating and baking procedure was repeated to double the 
thickness of the resist layer from ~150 nm to ~300 nm.

For thermal scanning-probe lithography, the substrate/polymer 
stack was placed in a NanoFrazor Explore (SwissLitho). A cantilever 
with a sharp tip was loaded into the cantilever holder, which was then 
attached to the NanoFrazor scan head. The tip was brought close to 
the sample and an auto-approach function achieved surface contact.  
The tip position, temperature response and sample tilt were calibrated. 
The temperature at the base of the tip was set to an initial value between 
700 °C and 950 °C, depending on the cantilever model. Calibration 
scans were performed to optimize the patterning depth of the sinusoi-
dal structures. The bitmap defining the desired Fourier surface was then 
loaded into the NanoFrazor software. The tip was scanned across the 
patterning surface on a 10 nm × 10 nm pixel grid. A force pulse (~6 µs) 
was applied at each pixel to match the depth level of the bitmap in 
the polymer resist. As the tip patterned the surface, it simultaneously 
measured the topography as in contact-mode atomic force micros-
copy (AFM). The measured error between the written pattern and 
the desired pattern was passed to a feedback loop such that the write 
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force could be adjusted to reach the desired depth level, if necessary.  
The scan progressed until all pixels in the design were patterned into the 
surface, at which point the tip was available to write the next pattern.

To obtain Ag diffractive surfaces, Ag was thermally evaporated43 
(Kurt J. Lesker, Nano36) onto the patterned polymer film at a pres-
sure of about 3 × 10−7 mbar. A tungsten boat loaded with Ag pellets was 
heated to deposit at a rate of 25 Å s−1. The process was stopped when the 
film thickness was around 750 nm. A glass slide was then affixed with 
ultraviolet-curable epoxy (OG142-95) onto the exposed Ag surface, 
and the glass/epoxy/Ag stack peeled off, revealing a Ag surface with 
the negative of the initial pattern in the polymer surface.

SiNx surfaces were obtained by using a Si/SiO2/SiNx stack as a sub-
strate. A layer of SiO2 2,000 nm thick was thermally grown onto a 
Si wafer, followed by chemical vapour deposition of a layer of SiNx 
200 nm thick. The wafer was diced into 1.5 cm × 1.5 cm pieces for ther-
mal scanning-probe lithography using PMMA/MA as the polymer.  
The pattern in the polymer film was transferred into the underlying 
SiNx substrate via reactive-ion etching (Oxford Instruments, NPG 80) 
using a gas mixture of 50 standard cubic centimetres per minute (sccm) 
CHF3 and 5 sccm O2. The etching was performed at a chamber pressure 
of 55 mTorr, with 100 W radio-frequency power and a SiNx etch rate of 
45 nm min−1 for 5 min, where the depth of the transferred pattern in 
SiNx was approximately the same as the depth in the polymer pattern 
(approximately 1:1 selectivity). Afterwards, the substrate was ultra-
sonicated in acetone, followed by isopropanol, and blown dry with N2.

To obtain Si surfaces for either direct use or for templating, the pat-
tern in the polymer film was transferred into the underlying Si substrate 
via inductively coupled plasma etching (Oxford Instruments, Plasma 
Pro) using a gas mixture of 17.0 sccm SF6, 17.5 sccm C4F8 and 60 sccm 
Ar. The Si etching was done at a chamber pressure of 20 mTorr, with a 
forward power of 50 W, and at a rate of ~25 nm min−1 for 6.33 min, where 
the depth of the transferred pattern in Si was approximately the same 
as the depth in the polymer pattern (approximately 1:1 selectivity). 
After etching, the sample was sonicated for 2 min in acetone and 2 min 
in IPA, followed by 5 min of O2 plasma cleaning at 600 W.

Patterned TiO2 samples were obtained by using patterned Si tem-
plates. A 25-nm-thick Au layer was thermally evaporated onto the 
patterned Si wafer at a pressure of approximately 3 × 10−7 mbar and 
a rate of 10 Å s−1. TiO2 was then radio-frequency-sputtered onto the 
exposed gold surface (von Ardenne, CS 320 S) with 400 W, a chamber 
pressure of 4 × 10−3 mbar, and 14 sccm Ar, for 160 min, resulting in an 
approximately 300-nm-thick film. A glass slide was then affixed with 
ultraviolet-curable epoxy (OG116-31) onto the exposed TiO2 layer, and 
the glass/epoxy/TiO2/Au stack peeled off, revealing a TiO2/Au surface 
with the negative of the initial pattern in the Si surface. Finally, the Au 
layer was removed by immersing the sample in aqua regia (4:1 mixture 
of HCl:HNO3) for 5 min. Afterwards, the sample was rinsed in deionized 
water and blown dry with N2.

Binarized-surface design and fabrication
For each Fourier surface in Fig. 1 with height profile f(x) (see Extended 
Data Table 1), a binarized version was fabricated by electron-beam 
lithography and etching, followed by templating (see Extended Data 
Fig. 4). The binarization followed a published thresholding procedure44. 
This required the electron-beam lithography resist to be exposed  
wherever f x Δ( ) + < 0 . The Si substrate was then etched in these  
locations.

To prepare the samples, 2 × 2 cm chips (diced from a 4-inch-diameter, 
1-mm-thick Si wafer) were cleaned by sonicating for 2 min in acetone 
and 2 min in IPA, followed by 5 min of O2 plasma cleaning at 600 W. 
CSAR (electron-beam lithography resist) was deposited on the sam-
ple surfaces and accelerated at 500 rpm s−1 to 500 rpm for 5 s in a first 
spin-coating step. In a second step, the samples were accelerated at 
2,000 rpm s−1 to 2,000 rpm for a total time of 40 s. After spin-coating, 
the samples were baked at 150 °C for 1 min. The samples were then 

loaded into an electron-beam lithography system (Vistec, NFL 5) and 
patterned by exposing the resist layer where specified by the thresh-
olding procedure44. After exposure, the samples were developed in AR 
600-546 for 1 min, and subsequently rinsed in IPA. The patterns were 
etched to depths approximately matching that of the correspond-
ing Fourier surfaces from Fig. 1 with HBr-based reactive-ion etching 
(Oxford, Plasmalab System 100). The Si etching was done using 40 sccm 
HBr at a chamber pressure of 3 mTorr, with a forward power of 200 W, 
radio-frequency power of 20 W, and at a rate of approximately 30 nm 
min−1 for 2 min. After etching, the resist was removed by subsequent 
sonication in acetone and in IPA, followed by 2 min of O2 plasma cleaning 
at 600 W, a dip in buffered hydrofluoric acid (1:7 mixture of AF 875-125 
and H2O), and rinsing with H2O. The samples were cleaned in piranha 
(1:1 mixture of H2SO4:H2O2) for 15 min, ultrasonicated in H2O and in IPA, 
and blown dry with N2. (Caution: care should be taken with piranha as 
it reacts violently with solvents and other organic materials.) These 
binarized surfaces were then replicated in Ag using the same procedure 
as for the Fourier surfaces.

Surface-topography characterization
The topography of the Fourier surfaces was measured by the scanning 
probe during patterning and independently verified with AFM on the 
templated Ag surface. The topography of our Ag single-sinusoidal  
surface (Fig. 1a, b) is analysed in Extended Data Fig. 2. AFM scans (Bruker, 
Dimension FastScan AFM with a Bruker NCHV-A cantilever) were col-
lected in tapping mode under ambient conditions. The raw data was 
processed by first removing the instrumental high-frequency scan noise 
in the scanning-probe analysis software Gwyddion (version 2.54, http://
gwyddion.net). Next, row alignment and plane-levelling were performed 
in MATLAB (version 2019a, http://ch.mathworks.com/products/matlab.
html) to obtain the corrected data, shown in Extended Data Fig. 2a. 
These data were then analysed by fitting a sinusoidal function (with 
the form shown in Extended Data Table 1 for Fig. 1a; periodic along x,  
constant in y), where the fit parameters and residuals were extracted. 
The amplitude and period of the fitted function were A1 = 25.5 nm  
(2% larger than design value) and Λ = 610 nm (1.7% larger than design 
value), respectively. As we obtained a consistent horizontal distance 
error in both our etched and templated gratings, we attributed this 
error to a distance miscalibration in the thermal scanning probe. The 
RMS error between the design function and measured topography for 
the structure in Fig. 1a was found to be 1.8 nm after this error was taken 
into account. A similar procedure was used to extract RMS errors for 
other Fourier surfaces, as reported in the legends of Fig. 1 and Extended 
Data Fig. 9. See Extended Data Fig. 2 for further details. For the photonic 
diffraction gratings in Extended Data Fig. 8, a slight nonlinearity in the 
patterning of deeper structures was also taken into account.

Optical characterization
The optical-characterization setup is depicted in Extended Data Fig. 3a. 
Ag surfaces were measured with an inverted optical microscope (Nikon, 
Eclipse Ti-U) equipped with a 50× air objective (Nikon, TU Plan Fluor, 
numerical aperture NA = 0.8). A halogen lamp was used to illuminate 
the sample. The lamp filament was imaged onto the back focal plane of 
the microscope objective. After a beamsplitter, the light was focused 
onto the sample and then collected by the same objective. Reflected 
light was transmitted through the beamsplitter and passed through a 
circular aperture in the real-space image plane to isolate the structure 
of interest. The back focal plane was imaged onto the entrance slit of an 
imaging spectrograph (Andor Shamrock 303i) where it was relayed to 
a sensitive digital camera (Andor Zyla PLUS sCMOS) for image acqui-
sition. Reflectivity measurements were obtained for both dispersed 
k-space measurements (Fig. 1c, f, i, Extended Data Fig. 4b, d, f, Extended 
Data Fig. 5b and Extended Data Fig. 6b–i) and k-space images (Fig. 2c, d  
and Fig. 3c, f), by acquiring a background image, a reference image 
and a signal image. The background, reference and signal images were 



recorded by acquiring the counts when no light was incident on the 
camera, when light was reflected from flat Ag on the sample and when 
light was reflected from the pattern of interest, respectively. The final 
reflectivity image was calculated using:

Reflectivity (%)

= 100 × (Signal−Background)/(Reference−Background)
(7)

For the dispersed k-space measurements, a grating (150 lines mm−1 
blazed at 500 nm) was inserted into the imaging path in the spectrom-
eter such that the light was spectrally dispersed along one axis of the 
camera. The spectrometer slit was parallel to kx. A linear polarizer was 
inserted into the collection path to select only p-polarized light, which 
couples to SPPs. Thus, in a single acquisition, the dispersion relation 
(energy versus in-plane momentum along the surface modulation, kx, 
with ky ≈ 0) could be measured. The experimental window is overlaid 
with a schematic of the theoretical SPP dispersion in Extended Data 
Fig. 3b.

For the k-space images, a bandpass filter centred at 570 nm with a 
full-width at half-maximum (FWHM) of 10 nm was placed in the excita-
tion path. The linear polarizer was removed from the detection path 
such that the measurement collected all polarizations equally. The slit 
at the entrance of the imaging spectrograph was opened completely 
and the k-space image was relayed to the camera using a mirror instead 
of a diffraction grating to eliminate stray diffracted light. A schematic 
of this measurement, performed at a narrow range of photon energies 
selected by the bandpass filter, is depicted in Extended Data Fig. 3d.  
A cartoon of the complete light cone and SPP dispersion is depicted 
in Extended Data Fig. 3c.

The reflectivity spectrum in Fig. 4d was obtained by plotting the 
dispersed k-space measurement for the three-component Fourier 
surface in Fig. 4b at a fixed angle of incidence (near normal incidence). 
Spectra were averaged over a collection angle of ±0.25°.

Analytical model
Optical modes bound to a periodic surface have an electric-field profile 
of the form

E r u rk
k r

k( ) = e ( ) (8)−i ⋅

where k is the Bloch wavevector of the mode, and u rk( ) is a function 
with the same periodicity as the surface. We consider a grating pro-
file with modulation in one dimension, like those in Fig. 1, for which all 
surface Fourier components i have an in-plane wavevector g= ^

i ig x .  
The overall periodicity 2π/G of the surface profile can be much longer 
than any of the periodicities g g g{2π/ , 2π/ , …, 2π/ }N1 2  of the N constit-
uent sinusoids:

G g g g= LCM( , , …, ) (9)N
−1

1
−1

2
−1 −1

where LCM denotes the least common multiple. For example, the 
grating in Fig. 1g has an overall design periodicity of 2π/G = 96.6 µm 
and G = 0.0650 µm−1. The full field profile of a mode Ek(r) contains 
all in-plane wavevector components (kx + nG,  ky) with any integer n. 
However, to calculate the plasmonic dispersion and stopbands of our 
Fourier surfaces in Fig. 1, we do not need the full field profile. Instead, 
we can use a relatively simple coupled-mode model with a limited basis, 
which only accounts for first-order coupling between plane waves dif-
fering in wavevector by gi of one of the sinusoids of the grating.

On a flat Ag–dielectric interface, SPP modes have in-plane wavevec-
tor kSPP with magnitude:

k
ω
c

ε ω ε
ε ω ε

=
( )

( ) +
(10)SPP

m d

m d

where ω is the SPP angular frequency, c is the speed of light in  
vacuum and εm is the frequency-dependent relative permittivity of the 
metal. The relative permittivity of the dielectric εd is assumed to be 
frequency-independent. We note that when calculating kSPP for Figs. 2, 3,  
we used εd = 1.061. This value was determined by fitting the SPP dis-
persion for an independent sample. Extracting a relative permittivity 
slightly above 1 was perhaps due to residual polymer on the Ag surface 
after templating. For the structures in Fig. 1, our fabrication process 
had been improved and εd = 1 was extracted and used for modelling.

In Fig. 1, we measure the dispersion of our Fourier surfaces along the 
kx direction. Stopbands in this direction arise whenever 2kSPP = gi for one 
of the sinusoids i in the grating. This occurs at energies:

ħω
hc

n Λ
=

2
(11)i

ieff

w h e r e  ℏ h= /(2π)  w i t h  h  a s  P l a n c k ’s  c o n s t a n t ,  a n d 
n ε ω ε ε ω ε= ( ) /[ ( ) + ]eff m d m d  is the effective refractive index of the SPP 
mode on the flat Ag–dielectric interface. Although the SPP dispersion, 
and any stopbands therein, lie outside the light cone, we can measure 
a stopband if some sinusoid j provides momentum to couple free-space 
photons to SPPs. The stopband will then appear in our reflectivity 
measurement at a photon in-plane wavevector with magnitude:
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To calculate the stopbands and the SPP dispersion for our Fourier 
surfaces more rigorously, we use a coupled-mode model. We cou-
ple  SPPs—surface waves with wavevector component kx,0 = kSPP—to 
surface waves with kx,i = kSPP − gi for all sinusoids i N∈ {1, 2, …, } in the 
surface profile. The coupling can be described by an interaction matrix 
H, which has dimensions (N + 1) × (N + 1). The diagonal elements of the 
matrix are the energies that a surface wave of wavevector component 
kx,i would have on a flat Ag–dielectric interface. We obtain these ener-
gies by evaluating the inverse of equation (10), ω(kSPP), at k k= | |x iSPP , :

H ħω k= (| |) (13)ii x i,

For this, we use the relative permittivity data εm(ω) of template-stripped 
Ag (ref. 43) and εd = 1 for air. The off-diagonal elements of the matrix, Hij, 
describe the interaction between surface waves i and j. For simplicity, we 
consider only coupling involving the SPP wave, which has a wavevector 
component kx,0 = kSPP, and neglect coupling between surface waves with 
i ≥ 1 and j ≥ 1. Thus, the only non-zero off-diagonal elements of H are:

H H ħΓ= = (14)i i i0 0

Here Γi is the (real-valued) rate at which the surface sinusoid i of the 
surface profile couples a surface wave with kx,0 (that is, the SPP on a flat 
Ag–air interface) to a surface wave with kx,i. This rate determines the 
width of the stopband E ħΓΔ ≈ 2i i  owing to the grating component  
i. Extended Data Fig. 6 shows that we can control this by tuning the  
corresponding amplitude Ai of the sinusoid30. For Fig. 1i, we estimated 
values of Γi based on the dispersion data and plugged them into the 
model.

By solving for the eigenvalues of H, we obtain the energies Ei of the 
coupled modes. The eigenvectors vi describe their composition in 
terms of the surface-wave basis functions. For each coupled mode, the 
first component of the eigenvector vi,0 represents its SPP character.

So far, we have treated the coupling matrix H for a single value of kSPP. 
However, to calculate dispersion plots such as those in Fig. 1, we must 
determine the eigenvalues and eigenvectors of H for a range of kSPP. 
Thus, we considered a series of kSPP values, labelled by m ∈ {1, 2, …, M}, 
from 0 and 25 µm−1 in M = 5,001 steps of 0.005 µm−1. At each kSPP,m, the 
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corresponding coupling matrix Hm yields a set of (N + 1) mode ener-
gies Em,i and (N + 1) values vm,i,0 for their corresponding SPP character 
(the coefficient for the contribution of the SPP with kx,0 = kSPP,m to the 
eigenvector of coupled mode j).

Now, in addition to coupling surface waves, we must include the fact 
that each sinusoid l in the surface profile (l ∈ {1, 2, …, N}) can enable  
free-space photons to excite SPPs if   k g ω c| − | ≤ /lSPP  (that is, if the  
in-plane momentum required from the photon is inside the light cone). 
Free-space photons with in-plane wavevector k‖ = (kx, 0) can excite SPPs 
if the momentum from sinusoid l matches coupled mode i with  
substantial SPP character vi,0. We account for photon–SPP 
momentum-matching by considering the effect of grating components 
l again only in first order. Starting with the dispersion calculated in the 
last paragraph (N + 1 energies Em,i at each kSPP,m), we generate N copies 
of this dispersion by shifting the wavevector value to km,l = kSPP,m − gl  
for all l N∈ {1, 2, …, }. These km,l are the k values for which grating com-
ponent l can in principle enable SPP incoupling. Then we copy and 
mirror the entire dispersion in the (k = 0) axis, realizing that the entire 
problem is symmetric under inversion of the propagation direction of 
the modes. We thus obtain 2N copies of our calculated dispersion, 
some of which may fall entirely outside the experimental range of 
wavevectors and energies. We consider that at each point (km,l, Em,i) or 
(−km,l, Em,i), with m M∈ {1, 2, …, },  i N∈ {0, 1, 2, …, } and l N∈ {0, 1, 2, …, }, 
the coupling to SPPs is proportional to Γ vl m i, ,0

2 . This reflects that, for 
first-order coupling, the magnitude of the admixture is proportional 
to the SPP character of the coupled mode. We thus obtain a model 
function for the incoupling V as a function of the photon in-plane 
wavevector component kx and energy ħω of:

ℏ ℏ∑ ∑ ∑V k ω Γ v δ k k δ ω E( , ) = ( ± ) ( − ) (15)x
m

M

i

N

l

N

l m i x m l m i
=1 =0 =0

, ,0
2

, ,

where δ is the Kronecker delta function. Finally, we broaden V by  
convolution with a function:

P k k d( ) = sinc ( /2) (16)x x
2

in the kx direction that accounts for the finite length d = 9 µm of our 
gratings. We also convolute V with a Gaussian function Q ħω( ) with a 
variance of σ2 = (15 meV)2 in the ħω direction to match the experimen-
tal broadening. This arises from a combination of finite instrumental 
resolution, losses and the finite range of ky values for reflected photons. 
The convolved function (V * P * Q) k ħω( , )x  is plotted in Fig. 1c, f, i.

Quantification of diffraction efficiencies
We experimentally quantify the diffraction efficiencies of Fourier 
surfaces (Extended Data Fig. 8) with an optical k-space excitation and 
imaging setup. We illuminate the sample with monochromatic light at 
normal incidence and quantify the fraction of light that is diffracted and 
leaves the sample at off-normal angles. Light from a supercontinuum 
laser source (NKT, Fianium, repetition rate 7.8 MHz) was filtered to a 
linewidth of about 1 nm using a tunable filter box (NKT, LLTF Contrast) 
and was collimated after the output of a single-mode fibre using an 
objective (Nikon, TU Plan Fluor 10×, NA 0.3). After passing through a 
750-nm short-pass filter, a fraction of the beam was directed to a power 
meter using a beam splitter. The remaining beam was sent through 
a reflective neutral-density filter and a linear polarizer (polarization 
direction, s or p, as specified in Extended Data Fig. 8) before being 
focused onto the centre of the back focal plane of a microscope objec-
tive (Nikon, TU Plan Fluor 50 × , NA 0.8) using a lens with focal length 
f = 750 nm (placed a distance f before the back focal plane). In this  
optical configuration the sample of interest in the focus of the micro-
scope objective was illuminated with light from a narrow set of solid 

angles centred around normal incidence. The finite size of the focused 
laser beam on the back focal plane resulted in a defocused Gaussian 
illumination spot on the investigated sample. The light reflected and 
diffracted by the sample was collected through the same microscope 
objective, redirected with a beam splitter and used to image the back 
focal plane of the microscope objective onto a sensitive digital camera 
(Andor, Zyla PLUS sCMOS). A real-space aperture in the relay system of 
the collection path was reduced to a diameter comparable to the side 
length of the Fourier surface. In this optical configuration, the illumina-
tion wavelength λ was varied between 450 nm and 700 nm in steps of 
1 nm while recording one back focal plane image per wavelength step 
with 5 ms acquisition time. This process was done subsequently for 
the Fourier surface under investigation and for flat Ag as a reference. 
A separate image without laser illumination was subtracted from each 
k-space image to remove the background counts of the detector. The 
k-space images were subsequently corrected for power fluctuations 
of the supercontinuum source (as measured with the power meter), 
resulting in two sets of k-space images for the investigated Fourier 
surface and the flat Ag reference, respectively. The k-space images of 
the reference sample showed a bright spot centred around kx = ky = 0 
with summed intensity Iref(λ), corresponding to specular reflection 
of the beam impinging on and exiting from the flat reference surface 
at normal incidence. For Fourier surfaces periodic along the x direc-
tion additional spots were observed centred around kx = gi, ky = 0 with 
i = ±1. The intensity of each spot Ii(λ) was extracted by summing the 
corresponding pixels of the k-space images. The diffraction efficien-
cies were calculated as ηi(λ) = Ii(λ)/Iref(λ), corresponding to the fraction 
of impinging photons diffracted into diffraction order i. We note that 
this formula neglects reflection losses from flat Ag (a few per cent).

Data availability
The data supporting the findings of this study are available from the 
corresponding author on reasonable request.
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Extended Data Fig. 1 | Design and fabrication of Fourier surfaces. a, Design 
of a Fourier surface. The analytical formula for the desired surface profile 
(here, a single sinusoid modulated in 1D) is converted into a grayscale bitmap. 
Each 10 nm × 10 nm pixel has a depth level between 0 and 255 (8-bit). The bitmap 
contains the sinusoidal function in the horizontal direction within the white 
border, which is constant along the vertical direction. The pixels in the white 
border are set to the minimum depth level. b, Process flow showing the 
patterning steps for Ag Fourier surfaces: (i) The hot scanning tip is used to 

create a single sinusoid in the polymer resist, (ii) an optically thick (>500 nm) Ag 
layer is thermally evaporated onto the polymer, (iii) a glass microscope slide is 
affixed to the back of the Ag layer using ultraviolet-curable epoxy, and (iv) the 
glass/epoxy/Ag stack is stripped off the polymer film. Alternative fabrication 
pathways for transferring the Fourier surface pattern to other materials are 
presented in the Methods. c, SEM (30° tilt) of a single-component Fourier 
surface transferred to Ag via templating. The initial analytical design is 
replicated accurately in the final Ag surface.
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Extended Data Fig. 2 | Topography characterization. a, AFM micrograph of 
the measured topography (colour scale) for a single-sinusoidal Ag grating. The 
RMS roughness of the unpatterned flat Ag film is 1.6 nm, extracted from the 
area indicated by the green dashed box. The RMS roughness of the patterned 
flat Ag film is 1.3 nm, extracted from the area indicated by the blue dashed box. 
The area indicated by the red dashed box is used for fitting and analysis of the 
surface profile. b, 2D fit of a sinusoidal function (yellow/brown surface) to 
topography data (blue dots) from the region indicated in the red dashed box in 
a. The amplitude of the fitted function is A1 = 25.5 nm (2% larger than design 
value) with a period of Λ = 610 nm (1.7% larger than design value). Such 
horizontal errors were consistent over many samples and attributed to a 
distance miscalibration in the thermal scanning probe. The RMS error between 

the design function and measured topography was found to be 1.8 nm after this 
horizontal error was taken into account. c, Measured topography (colour scale) 
of the structure in a, plotted only for the fit region (red dashed box in a), scaled 
from the minimum depth value to the maximum depth value and centred at 
zero. The inset shows a line cut (along gx at g y = 0, where gx and g y are the 
components of g along the x and y axes, respectively) from the 2D Fourier 
transform of the measured topography in the fit region, normalized to the peak 
value at g1. The second harmonic at gx/g1 = 2 is barely visible and has an 
amplitude of 3.5% of the peak at gx/g1 = 1, corresponding to a real-space 
amplitude of 0.9 nm. d, Residual error (colour scale) between the data and the 
fitted function, plotted for the fit region as in c. For comparison, the data are 
scaled over the same range as in c, centred at 0.



Extended Data Fig. 3 | Optical measurement of plasmonic Fourier surfaces. 
a, Schematic of the optical setup used for k-space reflectivity measurements. 
Further details are in the Methods. The inset shows a vector diagram of light 
with wavevector k0 incident at angle θ on a Fourier surface pattern with period 
Λ. BS, beamsplitter. CMOS, complementary metal-oxide-semiconductor 
digital camera. b, Schematic of the dispersion diagram (energy versus in-plane 
wavevector component, k x) for free-space photons incident on a sinusoidal 
grating with ky = 0 (as in Fig. 1). By tuning θ, photons have access to the shaded 
region inside the light lines (solid blue lines). The red lines show the SPP 
dispersion, kSPP. Dashed green curves indicate the SPP dispersion displaced by 
the grating spatial frequency g. Inside the light line, these curves represent 
where free-space photons can couple to SPPs, and vice versa (that is, where 

k x ± g = kSPP). A stopband of width ΔE opens when counter-propagating SPPs are 
coupled by g. The blue trapezoidal region depicts the experimentally 
accessible area on the dispersion diagram, limited by the spectral window of 
the spectrometer along E, and the angular window of reflected light collected 
by the microscope objective along k x. c, Schematic of the dispersion diagram 
for free-space photons incident on a surface, plotted for both in-plane 
wavevectors, k x and ky. The light line and SPP dispersion in b are both cones 
(blue and red lines, respectively). d, A slice through the dispersion diagram in c 
at fixed energy. Free-space photons incident on a surface can have wavevectors 
inside the light cone (blue-shaded region). The SPP dispersion is the larger red 
circle. Dashed green circles show solutions to k‖ ± g = kSPP. In this example, 

ggg xx= ^.
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Extended Data Fig. 4 | Further analysis of the Ag Fourier surfaces in Fig. 1.  
a, c, e, Measured (AFM) and targeted surface topographies for the same 
sinusoidal structures as in Fig. 1a, d and g (blue) and their ‘binarized’ versions 
(red). The data for the Fourier surfaces represent half of the scans shown in 
Fig. 1b, e, h. The scan lengths for the binarized versions are 5.9 µm, 6.0 µm and 
5.5 µm, respectively. For each Fourier surface, a binarized profile was obtained 
using a published thresholding procedure (see Methods). These binarized 
structures were then fabricated in a Si substrate using electron-beam 
lithography and etching. Ag replicas were obtained by templating 
(see Methods). The depth scale bars are 50 nm, 65 nm and 60 nm for both 
structures in a, c and e, respectively. b, d, f, Comparison of experimental 

angle-resolved reflectivity spectra measured for the sinusoidal surfaces shown 
in a, c and e (left) and their binarized versions (right). The data for the sinusoids 
are the same as the left sides of Fig. 1c, f, i. The optical responses of the 
binarized gratings are clearly corrupted by the unwanted spatial frequencies in 
the structure. g–i, Normalized line cuts (orange curves) through the 
reflectivity data shown in the left panels in b, d and f at 500 nm, 600 nm and 
600 nm, respectively. The black curves show the predicted reflectivity versus 
the absolute value of the in-plane wavevector, kx  from our model 
(see Methods). The comparison reveals good agreement between the model 
and the data without any adjustable parameters (other than the normalization). 
For all structural design parameters, see Extended Data Table 1.



Extended Data Fig. 5 | Control of ‘dark’ band edges in two-component 
sinusoidal gratings. a, Comparisons of the measured (light blue points) and 
targeted surface topographies (dark blue lines) in the polymer surface, 
measured during patterning. Scan lengths are 11.5 µm. The left grating has the 
height profile f x A gx A gx φ Δ( ) = cos( + π) + ( /2)cos(2 + ) −1 1 2  with φ2 = π. The 
grating on the right has the same f(x) except φ2 = 0. b, The measured reflectivity 

in k-space (as in Fig. 1) for Ag gratings templated from the structures in a. In 
both the left and right gratings, a stopband opens near 1.9 eV, but the choice of 
phase can control whether an optically dark state exists at the lower (left) or 
upper (right) band edge. The band edge with the optically dark state is marked 
with white arrows. For all structural design parameters, see Extended Data 
Table 1.
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Extended Data Fig. 6 | Control of stopband width in two-component 
sinusoidal gratings. a, Comparisons of the measured (light blue points) and 
targeted surface topographies (dark blue lines) in the polymer surfaces, 
measured during patterning, for structures exhibiting a single stopband. Scan 
lengths are 14.5 µm and the left vertical scale bar is 100 nm for all scans. From 
top to bottom: a series of two-component sinusoidal gratings, where 

A1 = 18.5 nm, Λ1 = 620 nm, A2 is varied and Λ2 = 230 nm. A2 has values of 0 nm, 
2.5 nm, 5 nm, 10 nm, 15 nm, 18 nm, 20 nm and 25.1 nm. b–i, Measured plasmonic 
dispersion diagrams for Ag gratings templated from the profiles in a, from top 
to bottom, respectively. The width of the stopband increases because A2 is the 
amplitude of the Fourier component responsible for creating the plasmonic 
stopband. For all structural design parameters, see Extended Data Table 1.



Extended Data Fig. 7 | Fourier surface patterns. a, Measured topography 
(obtained during patterning) of the polymer film (PMMA/MA; see Methods) 
used to template the structure in Fig. 2a. The two spatial-frequency vectors g1 
and g2 that define the surface profile are overlaid on the pattern. Here, g1 and g2 
have the same magnitude g1 = g2 = 2π/600 nm, and g2 is rotated −10° from g1, 
where g1 lies along xx̂. b, As in a, but the template corresponding to the structure 
in Fig. 2b. Again, g1 and g2 have the same magnitude g1 = g2 = 2π/600 nm, but g2 is 

rotated −40° from g1, where g1 lies along xx̂. c, SEM (45° tilt) of a circular 
sinusoidal Ag grating with Λ = 600 nm. d, SEM (45° tilt) of two superimposed 
circular sinusoidal gratings, as in c, each with Λ = 600 nm. The centre of one 
grating is translated +150 nm and the other −150 nm in yŷ from the origin in the 
middle of the pattern. The spatial interference results in a moiré pattern with 
broken circular symmetry. For all structural design parameters, see Extended 
Data Table 1.
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Extended Data Fig. 8 | Efficient diffraction from photonic Fourier surfaces. 
a, Comparison of the measured (AFM) and targeted surface topography 
(accounting for a slight distance miscalibration and depth nonlinearity in the 
thermal scanning probe) for a deeper sinusoidal Ag grating designed for 
efficient optical diffraction. The scan length is 18.5 µm. b, Measured 
diffraction efficiency as a function of photon wavelength for the grating profile 
shown in a, for p-polarized illumination at normal incidence. The inset 
illustrates how incident photons (black arrow with wavevector k and electric 
field E indicated) diffract symmetrically into the +1 (red arrow) and −1 (green 
arrow) diffraction orders. The red and green curves correspond to the +1 and −1 
diffracted intensities, respectively, normalized to the intensity reflected from 

an unpatterned flat reference spot on the same Ag sample. The sum of the red 
and green curves (blue line) peaks at about 97%. Owing to fluctuations in the 
collected diffraction intensity, the measured efficiencies have an estimated 
error of ±5%. We also note that our measurement does not account for 
reflection losses in the Ag (a few per cent). c, As in a, but for a two-component 
sinusoidal Ag grating where the relative phase between the two components is 
chosen to break the mirror symmetry of the structure about the y–z plane. d, As 
in b, but now the broken symmetry causes nearly all of the incident light to be 
diffracted into the +1 diffraction order (red curve) for a given wavelength 
range. e–h, As in a–d, but for s-polarized illumination at normal incidence. For 
all structural design parameters, see Extended Data Table 1.



Extended Data Fig. 9 | SiNx and TiO2 Fourier surfaces. a, Comparison of the 
measured (AFM) and targeted surface topography (accounting for a slight 
distance miscalibration in the thermal scanning probe) for a single sinusoid in 
SiNx, transferred via reactive-ion etching (see Methods). Scan length is 11.3 µm. 
b, SEM (30° tilt) of the same structure in a. The final profile in SiNx has a 
measured RMS error of 2.5 nm using the same methodology as in Extended 
Data Fig. 2. c, As in a, but for a three-component SiNx grating. Scan length  

is 14.8 µm. d, As in b, but for the structure in c. The final profile in SiNx has a 
measured RMS error of 3.9 nm using the same methodology as in Extended 
Data Fig. 2. e, SEM (30° tilt) of a 12-fold rotationally symmetric quasicrystal, as 
in Fig. 3d, transferred from the patterned polymer into Si via inductively 
coupled plasma etching (see Methods). f, SEM (30° tilt) of the pattern in e 
transferred into a TiO2 thin film via template stripping (see Methods). For all 
structural design parameters, see Extended Data Table 1.
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Extended Data Table 1 | Design parameters for Fourier surfaces

Design parameters for all Fourier surfaces demonstrated in this work. The functions are defined for the design to be patterned in the polymer surface, where x and y lie in-plane and z is per-
pendicular (pointing away from the substrate). A right-handed coordinate system is used with the origin placed in the middle of the pattern in both the x and y directions. In these formulas, the 
height of the surface is defined relative to the unpatterned flat surface where z = 0. All Ai and Δi (Λi) have been rounded to the nearest 0.1 nm (1.0 nm). Analysis of the measured topographies 
for templated Ag gratings shows that the Λi values are consistently about 2% larger than the design value (Extended Data Fig. 2), attributed to a distance miscalibration in the thermal scanning 
probe. See Methods.
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