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Uniaxial rods in a nematic phase diffuse preferentially in the direction parallel to the nematic director n̂. The
nematic director field n̂(r) of a chiral twist-bend nematic (NTB) phase of achiral banana-shaped particles, recently
discovered experimentally, displays a heliconical twist of given handedness and periodicity. Using simulations,
we investigate the long-time macroscopic diffusion in NTB phases, and find that the predilection of curved rods to
diffuse in the direction of the twisting n̂(r) yields a fascinating chiral dynamics along helices, even though achiral
curved rods display Brownian motion with a nontrivial rototranslational coupling. We devise a machine learning
protocol to characterize the helicoidal particle trajectories, finding that their pitch and radius are determined by
the pitch and conical angle of the NTB phase thereby connecting its structural and dynamical properties.
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Liquid crystals are phases of matter that combine prop-
erties from both solid and liquid phases. They may flow,
such as liquids but display degrees of orientational and/or
translational order that resemble those of crystalline solids.
In nematic liquid crystals, the positions of molecules are ran-
dom, but their axes are, on average, oriented along a common
nematic director n̂. Due to the ease to manipulate this director
with electric fields, nematic liquid crystals have revolution-
ized the way we display information with devices ranging
from organic light emitting diodess to liquid crystal displays
in smart phones, laptop screens, and flat-panel TVs [1–5].
Very recently, a fascinating chiral nematic phase has been
discovered in which the orientation of achiral banana-shaped
bent-core mesogens twists and bends at a very small length
scale [6–18]. This twist-bend nematic (NTB) phase is char-
acterized by an oblique heliconical winding of the nematic
director field n̂(z) = sin(θ0) cos(qz)êx + sin(θ0) sin(qz)êy +
cos(θ0)êz with q = 2π/p as the wave number of the heli-
conical twist, θ0 as the the conical angle, and p as the the
pitch length [see Fig. 1(b)] [19,20]. The fluidlike behavior
as well as the short length scale of the periodic modulations
of the director makes this phase sensitive to external fields
and highly promising for ultrafast optoelectronic applications.
Understanding the effect of the macroscopic chiral symmetry
breaking on the transport properties of the NTB phase is, hence,
not only interesting from a fundamental point of view, but also
crucial for future technological applications.

To study the dynamics in an NTB phase one requires a
model system that stabilizes this peculiar liquid crystal phase.
Despite numerous efforts, simulations that succeeded to stabi-
lize an NTB phase are scarce [21–23]. We recently discovered
that an NTB phase can be stabilized in systems of curved hard
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rods [18]. In this Rapid Communication, we use this model
to study the long-time translational diffusion in NTB phases
of various handedness, pitch, and conical angle and compare
it with the macroscopic transport properties of isotropic and
nematic phases.

To this end, we require a simulation method that mimics
Brownian dynamics. In the limit of very small displacements,
MC methods have been shown to correctly mimic Brownian
motion [24–28]. These DMC methods have been mostly ap-
plied to uniaxial particles with an infinite-fold rotational axis
without any coupling between translational and rotational mo-
tions. We note that DMC has also been applied to investigate
the dynamics of colloidal cuboids, but such a rototransla-
tional coupling was neglected [29]. Here, we devise a DMC
method for biaxial particles that display Brownian motion
with a nontrivial rototranslational coupling at infinite dilution.
Despite being valid for particles of arbitrary shape, we will
discuss the method for our curved rods for simplicity. We
consider a curved rod with position and orientation described
by a six-dimensional vector x = (r, ω) = (x, y, z, α, β, γ ),
where x, y, and z are the center-of-mass coordinates with
respect to a fixed laboratory reference frame, and α, β, and
γ are the Euler angles. Brownian motion is characterized by
correlations between translational and/or rotational displace-
ments at infinite dilution linear in time with the 6 × 6 real
symmetric diffusion tensor D0, i.e., 〈�x(t )�xT (t )〉 = 2D0t .
For uniaxial particles, D0 = diag(D0,1, . . . , D0,6) is diagonal
if the rotation axis is chosen along one of the axes of the
molecular frame. In the DMC integration scheme of Ref. [24],
a trial move xo → xn = xo + δ simultaneously modifies all
degrees of freedom of a randomly selected particle with xn

and xo denoting the new and old configurations, respectively,
and δ is the particle displacement. The ith component of δ

is uniformly sampled within the interval [−�xi,�xi], and
�xi is tuned according to the ith diagonal element of D0 as
�xi = √

2D0,iδtMC, where δtMC is the MC time step [30]. As
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FIG. 1. (a) Sketch of a hard curved spherocylinder (HCS) of diameter d , length L, and radius of curvature R. (b) Typical simulation
configuration of a right-handed NTB phase of HCSs with a sketch of the heliconical precession of the nematic director field. (c) Typical
trajectories of HCSs in an NTB phase from dynamic Monte Carlo (DMC) simulations, showing a peculiar helicoidal Brownian dynamics.
Different colors denote different particle trajectories.

a result, a MC cycle can be related to the Brownian dynamics
timescale [24]. To generalize this method to biaxial particles
with a rototranslational coupling, as our curved rods, we first
diagonalize the diffusion tensor at infinite dilution D0 via
D′

0 = QT D0Q, with QT being a change of basis matrix. In
this new basis, D′

0 = diag(D′
0,1, . . . , D′

0,6) is diagonal, and
we can apply the DMC scheme attempting a displacement
δ′ whose ith component δ′

i is uniformly sampled within the

interval [−�x′
i,�x′

i] with �x′
i =

√
2D′

0,iδtMC. Transforming

δ′ back to the original basis, we obtain the trial move xo →
xn = xo + Qδ′. This integration scheme correctly mimics the
Brownian motion of particles with rototranslational coupling
in their diffusion [30]. In particular, the rototranslational cou-
pling is expected to play a role at sufficiently low density and
should be less relevant in denser states where the diffusion of
single particles is mainly determined by crowding and macro-
scopic order. At intermediate densities corresponding to the
stability regime of the NTB phase, both the rototranslational
coupling and the crowded environment are expected to affect
the long-time diffusive behavior of a particle. Additionally,
we expect the rototranslational coupling to be relevant in
the phase switching dynamics of exotic biaxial particles and
the associated response time, e.g., switching from uniaxial to
biaxial [31] or twist- and splay-bend [32] nematic phases upon
application of an external field.

We study the dynamics of HCSs with diameter d , length
L = 10d , and radius of curvature R = 9.5d , see Fig. 1(a).
Each HCS is modeled as a rigid chain of Ns = L/d equally
spaced spheres of diameter d . We use standard NPT -MC
simulations to equilibrate systems of NHCS = 2048 HCSs at
varying packing fractions η = NHCSv0/V in the isotropic (I),
uniaxial nematic (N), and NTB phases, with v0 and V as the
particle and box volume, respectively. The phase behavior of
this system exhibits an I-N transition at ηIN = 0.37 ± 0.01
and an N-NTB transition at ηNNTB = 0.43 ± 0.01 [18]. The
global nematic director is taken to be along the z axis of
the laboratory frame. The diffusion tensor of HCSs at in-
finite dilution D0—calculated via the open-source software
HYDRO++ [33]—is nondiagonal, implying that HCSs exhibit
a rototranslational coupling [34–38]. In particular, their main
mode of diffusion is a translation along the long particle axis
coupled with a rotation [30]. In order to investigate how the
rototranslational coupling affects the macroscopic transport
in the various phases, we employ D0 in our DMC method

and measure the mean square displacements MSDα along
the α axis, with α = x, y, z (see Fig. 2), and the long-time
translational diffusion coefficients Dα as MSDα (t ) ∼ Dαt in
equilibrated systems at fixed η (see Fig. 3). In the I phase,
the diffusion coefficients are equal within our statistical accu-
racy in all directions. Upon increasing the density, the overall
dynamics gets slower and the diffusion coefficients decrease.
We observe a drastic change at the I-N phase transition, where
the system becomes anisotropic. The diffusion in the direction
of the nematic director becomes faster than perpendicular
to it, i.e., Dz > Dxy with Dxy = (Dx + Dy)/2, in agreement
with previous papers [39,40]. The anisotropy of the diffu-
sion Dz/Dxy, is weakened at the N-NTB transition [30] as the
tendency of curved rods to diffuse along the local nematic
director leads to a preferred direction of motion which is
oblique in the NTB phase as n̂(z) forms an angle θ0 with the z
axis.

Even though the main mode of Brownian diffusion of
achiral curved rods is a coupled translation and rotation, we

FIG. 2. Mean square displacements (MSDs) of HCSs with length
L = 10d and curvature R = 9.5d along the (a) x, (b) y, (c) z axes,
and (d) total MSD for various packing fractions η as reported in the
legend. All MSDs show a long-time diffusive behavior [MSDα (t ) ∼
Dαtγ with γ = 1, for α = x, y, z] of HCSs. The slope γ = 1 corre-
sponding to diffusive behavior is shown as a reference.
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FIG. 3. Diffusion coefficients Dα with α = x, y, z and total diffu-
sion coefficient D of HCSs with length L = 10d and curvature R =
9.5d as a function of η. In the N phase, the dynamics is anisotropic
with a faster diffusion along the nematic director. The anisotropy per-
sists in the NTB phase, although weakened by an oblique helicoidal
nematic director field [30]. The lines are guides to the eye. Some
error bars are smaller than the symbols and, thus, not visible.

find that they display a fascinating chiral helicoidal dynamics
with the same handedness as the host phase as evident from
the exemplary center-of-mass trajectories of HCSs in an NTB

phase shown in Fig. 1(c), which is due to the predilection
of curved rods to diffuse in the direction of the twisting ne-
matic director field. Quantitatively assessing the properties of
this dynamics is challenging. Most of the quantities usually
employed to analyze transport properties, such as MSDs, dif-
fusion coefficients, and Van Hove functions, average out the
unique features of this single-particle dynamics. One might
be tempted to fit the trajectories with the equation of a helix
to obtain an estimate of the radius RD and pitch pD of the
chiral diffusion, but the diffusive dynamics on the xy plane
suggests that the curved rods are not constrained to diffuse
along a single helicoidal trajectory. This naive picture would,
indeed, result into a cage-trapping plateau in the transverse
MSDs at ∼R2

D as the x and y positions would be constrained
within the range [−RD, RD]. More importantly, the ergodicity
hypothesis would be violated if the particle dynamics was
restricted to a single helicoidal path. This suggests a more
involved scenario in which each curved rod diffuses along
different helices at different times, each with its own center
and perhaps even with its own pitch and radius. Identifying the
various helicoidal parts of a particle trajectory is, therefore,
fundamental.

A simple cluster analysis of the raw particle trajecto-
ries would fail because of the nonlinearity of the helicoidal
paths—different points might be far in Euclidean space and
yet belong to the same helix. The nonlinearity of the dynamics
also makes linear dimensionality reduction methods, such as a
principal component analysis, which would successfully pick
up the anisotropy of the diffusion in a uniaxial N phase,
ineffective. Recently, nonlinear dimensionality reduction al-
gorithms have been successfully applied to characterize the
low-dimensional dynamics of high-dimensional systems [41].
For example, the diffusion maps (DMs) method [42], an
unsupervised manifold learning algorithm that extrapolates
from a data set the underlying nonlinear manifold from which
it is sampled—i.e., a topological space of dimensionality
lower or equal to the data sets dimensionality—has been

FIG. 4. Exemplary clustering and fit of an helicoidal trajectory
via the DMs and the hierarchical agglomerative clustering (HAC)
method. The trajectory {ri = (xi, yi, zi )} in the 3D Euclidean space
(a) is used as the input for DMs, which yields a true dimensionality of
the trajectory between 1 and 2. The two principal components result-
ing from the DM’s analysis are used to reparametrize the trajectory
as {ri → �i = (�2,i, �3,i )}, obtaining a two-dimensional trajectory
(b) to which HAC is applied, resulting in clusters of points as denoted
by different colors (c). The same clustering is transported to the
original 3D trajectory (d) where different clusters can be fitted with
the equation of a helix of radius RD and pitch pD. These fits are shown
as lines denoted by the same color as the fitted cluster.

employed to unveil the low-dimensional coarse graining of
high-dimensional trajectories [43–46]. Here, we exploit DMs
to distinguish dynamically distinct parts of a single-particle
trajectory consisting of data points {ri = (xi, yi, zi )} in three
dimensions (3D). Applying DMs to such a data set enables
us to find the true dimensionality, say d , of the trajectory and
a reparametrization {ri → �i = (�2,i, �3,i, . . .)} which clus-
ters points that are close along the d-dimensional manifold
thereby getting rid of the variance of the data orthogonal to
the manifold [30].

Exemplarily, we consider the trajectory {ri = (xi, yi, zi )}
containing the coordinates of a HCS in the 3D space as shown
in Fig. 4(a). Applying DMs to this trajectory, we find a dimen-
sionality between 1 and 2, which we attribute to the multiple
one-dimensional (1D) helicoidal parts composing the full tra-
jectory. We, hence, consider only the two leading components
of the reparametrization, and represent the trajectory in the
two-dimensional space {�i = (�2,i, �3,i )} [Fig. 4(b)]. The
nonlinear transformation ri → �i does not provide any phys-
ical insight on the trajectory. However, points �i that are close
in the reparametrized space are close along the helicoidal
manifolds in the 3D Euclidean space. Hence, a HAC [30,47]
on the reparametrized trajectory {�i} yields clusters of points
that are close along these manifolds [Fig. 4(c)]. Remarkably,
the respective clusters correspond to the helicoidal segments
[Fig. 4(d)] composing the trajectory in real space. Subse-
quently, the various helicoidal segments of a trajectory in real
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FIG. 5. Probability distribution function of (a) pitches pD and (b) radii RD of the helicoidal dynamics of HCSs of different length L,
curvature R, and packing fraction η. Positive and negative pitches indicate right and left handedness, respectively. The vertical lines indicate
the pitch of the corresponding pseudohelices as predicted by P = p and R = |p| tan θ0/2π . (c) Radius RD versus the pitch pD of the helicoidal
dynamics. The lines correspond to the linear relationship R = P tan θ0/2π .

space can be fitted with the equation of a helix to obtain the
radius RD and pitch pD of the helicoidal dynamics. Applying
this procedure to particle trajectories of various NTB phases of
HCSs with a particle length, particle curvature, and packing
fraction (L, R, η) = (10d, 9.5d, 0.46), (14d, 16d, 0.45), and
(16d, 11d, 0.37), we find probability distributions of pitches
pD and radii RD of the helicoidal dynamics as shown in Fig. 5.

In order to unveil the relationship between the structural
and the dynamical properties of the NTB phase, we introduce
the concept of pseudohelices. As already discussed, curved
rods in a NTB phase diffuse preferentially in the direction
parallel to the nematic director field n̂(z), which not only
enforces a chirality of the single-particle dynamics, but also
implies that the average particle trajectories are tangent to
n̂(z). Intriguingly, the manifolds tangent to the nematic direc-
tor field n̂(z) of a NTB phase with pitch p and conical angle θ0

are helices with a pitch P = p and radius R = |p| tan θ0/2π

but with different centers [30]. We refer to these helices
as pseudohelices generalizing the concept of pseudolayers,
well established for cholesteric phases, i.e., planes to which
particles are locally tangent [48–51]. For each NTB phase,
we calculate the pitch P and radius R of the pseudohelices
and denote them as vertical lines in Fig. 5. Remarkably, the
measured probability distributions of pitches pD and radii RD

of the helicoidal trajectories are clearly peaked at these val-
ues, confirming that pseudohelices correspond to the average
particle trajectory as curved rods follow the chiral twist of the
director n̂(z) in their diffusion thereby connecting the struc-
tural and dynamical properties of the NTB phase. Combining
the expressions for the pitch P and radius R of a pseudohe-
lix, we find the linear relationship R = P tan θ0/2π , which
describes well our simulation data in Fig. 5(c).

In conclusion, we investigated the macroscopic transport
properties of the constituent particles in NTB phases using a

DMC method that accounts for the rototranslational coupling
in the diffusion of biaxial particles. Our Rapid Communi-
cation shows that the long-time diffusion in the direction
parallel to the global nematic director slows down with in-
creasing density but also upon increasing the conical angle.
In addition, we studied the dynamics of single curved rods
to gain insight in the macroscopic transport properties on
a microscopic level. We find that curved rods diffuse along
nonlinear 1D manifolds embedded in the 3D Euclidean space.
Using a nonlinear dimensionality reduction method, we iden-
tify these manifolds with pseudohelices with the same pitch
and handedness as the macroscopic NTB phase thereby linking
its structural and dynamical properties and demonstrating that
the macroscopic chiral symmetry breaking enforces a chiral
helicoidal dynamics at the single-particle level. Our devised
DMC method to simulate Brownian particles with a nontrivial
rototranslational coupling and the dimensionality reduction
method to project particle trajectories onto a low-dimensional
manifold can be generalized to study the dynamics of arbitrar-
ily shaped particles on various manifolds, e.g., the long-time
diffusion in splay-bend nematics [18]. Furthermore, our Rapid
Communication provides an insight into the macroscopic
transport properties and reveals a link between the structural
and the dynamical properties in NTB phases, which are both
relevant for applications that rely on the type and speed of
the macroscopic diffusion, e.g., fast-switching optoelectronic
NTB-based devices [52,53], separation of enantiomers in chiral
NTB phases [34,54], etc.
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methods. This project has received funding from the European
Union’s Horizon 2020 Research and Innovation Programme
under Grant Agreement No. 676045.
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