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I. THE GENERALISED DYNAMIC MONTE CARLO METHOD FOR HARD

CURVED SPHEROCYLINDERS

We consider a single Monte Carlo (MC) step of our generalised Dynamic Monte Carlo

(DMC) method for a system of hard curved spherocylinders with diffusion tensor at infinite

dilution D0 = QD′0Q
T , where D′0 is the diagonalized D0 tensor and QT is a change of

basis matrix. We randomly select a curved rod and generate a vector δ′ with components δ′i

sampled from a uniform distribution in the interval [−∆xi,∆xi] with ∆xi =
√

2D′0,iδtMC .

We propose a displacement ∆x = Qδ′ of the 6-dimensional particle state x, comprising

both translational and rotational degrees of freedom. If the move ∆x = Qδ′ is accepted,

the correlation between translational and rotational displacements is given by the cross-

correlation matrix

〈∆x∆xT 〉 = 〈(Qδ′)(Qδ′)T 〉 = Q〈δ′δ′T 〉QT . (1)

Since 〈δ′δ′T 〉 is the self cross-correlation matrix of the vector δ′, and the components of δ′

are stochastically independent, we find

〈δ′δ′T 〉 =


〈δ′21 〉 0

. . .

0 〈δ′26 〉

 . (2)

In the case the components of δ′ are sampled from a uniform distribution in [−∆xi,∆xi],

it is easy to derive that 〈δ′2i 〉 = ∆x2i /3 = 2D′0,iδtMC/3, and 〈δ′δ′T 〉 = (2δtMC/3)D′0, where

D′0 = QTD0Q. Hence

〈∆x∆xT 〉 = (2δtMC/3)QD′0Q
T = (2δtMC/3)QQTD0QQT . (3)

Since Q is an orthonormal matrix, Q−1 = QT , and the cross-correlation of the particle

displacements after one accepted DMC move finally reads

〈∆x∆xT 〉 = (2δtMC/3)D0, (4)

which corresponds to the cross-correlation of the Brownian dynamics

〈∆x∆xT 〉 = 2D0t (5)

for t = δtMC/3.
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Taking into account the acceptance ratio A of the DMC moves, crucial to compare dy-

namics across different conditions and/or systems, and generalising to systems of NHCS

identical hard curved spherocylinders, we obtain the time rescale t = ACMCδtMC/3, where

CMC is the number of DMC cycles. The arbitrary Monte Carlo unit of time δtMC can be

used to tune the time resolution of the DMC simulations. In this work δtMC is always equal

to 0.1τ , where τ = σ3µ/kBT , with σ the unit of length, and µ and T the viscosity coefficient

and the temperature of the solvent respectively.

FIG. S1. (a) Sketch of a hard curved spherocylinder of length L = 16d and radius of curvature

R = 11.5d with molecular reference frame (in orange) coincident with the laboratory reference

frame (in black). The particle body lies in the yz plane of the molecular reference frame, and the

xy and yz planes are planes of mirror symmetry. The center-of-mass of the curved rod coincides

with the center of the molecular reference frame. (b) Sketch of a hard curved spherocylinder and

its molecular reference frame after a displacement via the main mode of diffusion.

II. DIFFUSION TENSOR OF HARD CURVED SPHEROCYLINDERS

We consider a HCS of length L = 16d and radius of curvature R = 11.5d, lying in the

yz plane of its molecular reference frame as sketched in FIG. S1 (a), with its center-of-mass
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in the origin of the molecular reference frame. The diffusion tensor, as calculated via the

Hydro++ software package [1], reads

D∗0 =


Dtt

0

D̃tt

Dtr
0

D̃tr

Drt
0

D̃rt

Drr
0

D̃rr

 =



0.014 0 0 0 0 −0.00019

0 0.014 0 0 0 0

0 0 0.019 −0.00019 0 0

0 0 −0.00019 0.00032 0 0

0 0 0 0 0.00031 0

−0.00019 0 0 0 0 0.0017


, (6)

where Dtt
0 , Dtr

0 = (Drt
0 )T , and Drr

0 are the translational, roto-translational and rotational

parts of the diffusion tensor, respectively, and D̃tt = σ2/τ , D̃tr = D̃rt = σ/τ , and D̃rr = 1/τ .

Note that all the terms have been rounded to the second significant decimal and all terms

smaller than 10−6 have been neglected for simplicity. Note that the diffusion tensor of

Eqn. 6 respects the symmetry expected for particles with two mutually orthogonal planes

of symmetry (the xy and yz planes) [2].

Diagonalization of D∗0 yields the following transformation matrix Q∗ and diagonal diffu-

sion tensor D′∗0

Q∗ =



1.0 0.015 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 1.0 0.010 0.0 0.0

0.0 0.0 −0.010 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0

−0.015 1.0 0.0 0.0 0.0 0.0


, (7)

D′∗0 =



0.014 0.0 0.0 0.0 0.0 0.0

0.0 0.0017 0.0 0.0 0.0 0.0

0.0 0.0 0.019 0.0 0.0 0.0

0.0 0.0 0.0 0.00032 0.0 0.0

0.0 0.0 0.0 0.0 0.014 0.0

0.0 0.0 0.0 0.0 0.0 0.00031


, (8)

where again all terms have been rounded to the second significant decimal and all terms

smaller than 10−6 have been neglected. In the generalised DMC framework, each eigenvalue

of D∗0 corresponds to the diffusion coefficient of a natural coordinate corresponding to a
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certain mode of diffusion. Hence, the highest eigenvalue identifies the fastest natural mode

of diffusion. In the current case, the highest eigenvalue is D′∗0,c = 0.019, corresponding to

the eigenvector

Ψ∗c =



0.0

0.0

1.0

−0.010

0.0

0.0


(9)

i.e. to a negative correlation between a displacement along z and a rotation around the x

axis which, as sketched in FIG. S1 (b), corresponds to a sliding of the curved spherocylinder

following its curved profile.

FIG. S2. Anisotropy Dz/Dxy of the diffusion HCSs with length L = 10d and curvature R = 9.5d

as a function of η. The anisotropy of the dynamics is weakened at the N -NTB transition because

of the obliqueness of the nematic director in the NTB phase. The lines are guides to the eye.

III. ANISOTROPY OF THE DIFFUSION

In FIG. S2 we report the anisotropy Dz/Dxy of the diffusion longitudinal and perpen-

dicular to the z axis, with Dxy = (Dx + Dy)/2, as a function of packing fraction η in a

system of hard curved spherocylinders with diameter d, length L = 10d, and radius of cur-

vature R = 9.5d, with a I-N transition at ηIN = 0.37 ± 0.01 and an N -NTB transition at

ηNNTB
= 0.43± 0.01.
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In the I phase the dynamics is isotropic, i.e. Dx = Dy = Dz, and Dz/Dxy = 1. At the I-

N transition the system becomes anisotropic as curved rods align along a common nematic

director n̂ ‖ z. In turn, the single-particle diffusion becomes anisotropic, Dz/Dxy ∼ 3.5

times faster along the nematic director than perpendicular to it. The anisotropy is weaker

in the NTB phase, where Dz/Dxy ∼ 2.5, due to the obliqueness of the local nematic director

with respect to the z axis.

FIG. S3. Example of
∑

i

∑
j Aij(ε) as a function of the Gaussian kernel bandwidth ε. The vertical

line corresponds to ε = exp(6), which lies in the linear region of the characteristic sigmoid curve∑
i

∑
j Aij(ε) for all the analysed trajectories.

IV. DIFFUSION MAPS AS AN UNSUPERVISED DIMENSIONALITY REDUC-

TION METHOD

The Diffusion Maps (DMs) method is based on the assumption that random walks con-

structed over a data set have higher probability to diffuse to data points that are ”kinetically”

close. The data set is then non-linearly reparametrized in a low-dimensional representation

that clusters data connected by many kinetic pathways.

To implement DMs, one should first quantify the distance between two data points ri and

rj at time i and j. The choice of this metrics is not trivial, strongly affects the effectiveness of
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DMs, and depends dramatically on the system. As our ”data set” is a real-space trajectory,

a natural choice would be the Euclidean norm ||ri − rj||. However, configurations close

in time are more likely to be kinetically connected and to be part of the same helicoidal

path. As the trajectory {ri} is already ordered in time, we include the temporal information

simply by employing the metrics Pij = ||ri − rj||+
√

(i2 − j2).

From the matrix P we build the matrix A as a convolution of P with a Gaussian kernel

of bandwidth ε, i.e.

Aij = exp

(
−
P 2
ij

ε

)
. (10)

An appropriate choice of ε is fundamental to ensure the full connectivity of the random walk

that is being built on the data set. To tune the value of ε,
∑

i

∑
j Aij(ε) is calculated as

a function of ε, resulting in a characteristic sigmoid curve in a log-log representation (see

FIG. S3). Suitable values of the kernel bandwidth are the ones corresponding to a linear

region of this sigmoid [3]. In this work, ε = exp(6) results to be a suitable value for all the

trajectories analysed.

In addition, an estimate of the data set dimensionality, namely the dimensionality of the

underlying manifold from which the data is actually sampled, can be inferred as twice the

slope of the linear region of the sigmoid curve [3]. In this work, the data set dimensionality

fluctuates between 1 and 2 for all the trajectories analysed, confirming that the trajectories

explore a manifold of lower dimensionality than the 3D Euclidean space they are embedded

in.

The matrix A is then row-normalized, yielding the transition matrix M of a Markov

process over the data set. The eigenvectors Ψi corresponding to the largest eigenvalues

of M provide the leading modes of this Markov process. Neglecting the trivial stationary

mode of eigenvalue λ1 = 1 and eigenvector Ψ1, a reparameterization of the original dataset

is obtained as ri → Ξi = (Ψ2,i,Ψ3,i, . . . ).

V. CLUSTERING OF PARTICLE TRAJECTORIES TO IDENTIFY DISTINCT

HELICOIDAL PATHS

Using diffusion maps, a 3-dimensional particle trajectory consisting of data points ri =

(xi, yi, zi) with i = 1, . . . ,M is mapped onto a 2-dimensional trajectory Ξi = (Ψ2,i,Ψ3,i).

We apply the Hierarchical Agglomerative Clustering (HAC) method [4] on the unfolded 2D
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trajectory. HAC is a bottom-up clustering approach: all data are initially assigned to a

different cluster, and the clusters are then gradually merged. The merging of clusters is

stopped when a pre-determined number of clusters Nc is reached. To decide which clusters

have to be merged at each iteration, a measure of the similarity of the clusters, i.e. a

so-called linkage criterion, is required. To this end, we first define the distance d(Ξi,Ξj)

between two data points Ξi and Ξj. As a metrics, we simply use the Euclidean distance in

the 2-dimensional space

d(Ξi,Ξj) =
√

(Ψ2,i −Ψ2,j)2 + (Ψ3,i −Ψ3,j)2. (11)

We then determine the dissimilarity D(A,B) between two clusters A and B

D(A,B) =
1

|A||B|
∑
i∈A

∑
j∈B

d(Ξi,Ξj), (12)

where |A| and |B| are the cardinalities of clusters A and B, respectively. At each iteration,

the two least dissimilar clusters, i.e. with the smallest distance D(A,B), are merged.

The optimal choice of Nc is the minimal number of clusters that yields the best fit of

the helicoidal trajectories, i.e. such that using Nc + 1 clusters does not entail a significant

improvement of the quality of the fit, quantified as theR2 of the fit. In order to systematically

determine the optimal Nc according to this criterion, we employ the L-method by Salvador

and Chan [5] to locate an elbow in R2 as a function of Nc. We perform the clustering with

various number of clusters {Nc} = {1, 2, . . . , 10}, and fit the resulting clusters as discussed

in the main paper. We measure for each Nc the total R2 on the fits. Given R2(Nc),

we find the division point e of {Nc} in left and right subsets {N l
c} = {1, . . . , e − 1} and

{N r
c } = {e, . . . , 10} which yields the best linear fits of R2(N l

c) and R2(N r
c ), thereby locating

the elbow of R2(Nc) as shown in FIG. S01. We then use Nc = e+2 as the number of clusters.

VI. DERIVATION OF THE PSEUDOHELICES PITCH AND RADIUS

In the main paper, we define pseudohelices as manifolds p(z) to which the nematic

director field n̂(z) = nx(z)êx + ny(z)êy + nz(z)êz of the NTB phase is tangent at any z,

namely p′(z) = νn̂(z), with ν a constant norm ‖p′(z)‖ = ν. We can thus obtain the
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FIG. S4. Examples of (a) R2 and (b) Mean Squared Residuals (MSR) on the fits of the distinct

helicoidal paths of particle trajectories of HCSs as a function of the number of clusters Nc. The

L-method by Salvator and Chan [5] is applied to locate the elbow e of the function R2(Nc) by

determining the partition of R2(Nc) which yields the best pair of linear fits, as shown in (a).

equation p(z) of a pseudohelix by integration of the nematic director field n̂(z)

p(z) =



px(z) = x0 + ν

∫ z

x0

dz′ nx(z)

py(z) = y0 + ν

∫ z

y0

dz′ ny(z)

pz(z) = z0 + ν

∫ z

z0

dz′ nz(z)

, (13)

which, for an NTB phase with pitch p and conical angle θ0 reads

p(z) =



px(z) = x0 + ν

∫ z

x0

dz′ sin θ0 cos (q(z − z0))

py(z) = y0 + ν

∫ z

y0

dz′ sin θ0 sin (q(z − z0))

pz(z) = z0 + ν

∫ z

z0

dz′ cos θ0

. (14)

The integral of Eq. 14 yields an infinite number of identical manifolds with different starting

points r0 = (x0, y0, z0). If we consider, for example, the manifold passing through the origin,
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i.e. we set r0 = (0, 0, 0), we obtain

p(z) =


px(z) =

ν

q
sin θ0 sin (qz)

py(z) = −ν
q

sin θ0 cos (qz)

pz(z) = ν cos θ0z

. (15)

But pz(z) must be equal to z, yielding ν = 1/cosθ0 and

p(z) =


px(z) =

1

q
tan θ0 sin (qz)

py(z) = −1

q
tan θ0 cos (qz)

pz(z) = z

, (16)

i.e. the equation of a helix of pitch P = p and radius R = |p| tan θ0/2π.
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