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2Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France

CONTENTS

Supplementary Methods 2
A. Nonlinear dimensionality reduction using neural-network-based autoencoders 2
B. Clustering 3
C. Dimensionality reduction in the Wahnström mixture 3

Supplementary Note 1: Method Robustness 4
A. Different trainings 4
B. Autoencoder architecture 4
C. Bottleneck dimensionality 4
D. Input dimensionality 6

Supplementary Note 2: Comparison to supervised methods for linking structure and dynamics 6

Supplementary Note 3: Dynamic propensity correlations for small particles 7

Supplementary Note 4: Local averaging of the structural order parameter 7
A. Correlations for different cutoff radii 7
B. Length scale 8

Supplementary Note 5: Correlations in the trained order parameters 8

Supplementary Note 6: Bond order parameters in the two clusters of small particles 9

Supplementary Note 7: Mode coupling theory fits 9

Supplementary Note 8: SANN vs. cutoff in Kob-Andersen 10

Supplementary Note 9: Pearson vs. Spearman correlation 11

Supplementary References 11



2

SUPPLEMENTARY METHODS

In this paper, we employ an unsupervised machine
learning (UML) method to classify particles into different
groups based on their local environment. As mentioned
in the Methods section, we describe the local environ-
ment of particle i in terms of a vector Q(i) of bond order
parameters. This vector has length d = 8. As clustering
particles with similar environments is difficult in such a
high-dimensional space, we reduce the dimensionality of
this vector using a neural-network-based autoencoder. A
sketch of such an autoencoder is shown in Supplementary
Figure 1.

Essentially, the autoencoder is a neural network
trained to reproduce its input as its output. The neural
network is especially designed to contain a “bottleneck”
with a dimensionality lower than the input and output
vectors, such that the network is forced to compress the
information, and subsequently decompress it again. Af-
ter training the autoencoder (which can be done on a
single simulation snapshot), we only retain the encoding
part of the network, and use it as our dimensionality re-
ducer (as shown in Fig. 1 of the main text). This assigns
to each particle a lower-dimensional vector which can be
used to group particles with similar environments.

In order to cluster together similar environments in
the low-dimensional subspace found by the encoder, we
use Gaussian mixture models (GMMs) as implemented
in scikit-learn[1]. This allows us to separate the particles
into separate clusters which differ by their local struc-
ture. In all cases, we found a separation into two clusters
to be optimal. Based on the resulting classification, we
assign to each particle a probability Pred of belonging to
a specific one of the two clusters. Note that in principle,
the two clusters carry no inherent meaning. However,
in order to make our figures consistent, we choose (us-
ing hindsight) the red cluster to correspond to the more
mobile particles in the system.

In the following, we describe in more detail both the
dimensionality reduction and the clustering procedures,
which closely follow the method introduced in Ref. [2].
Note that, for all systems analysed in this work, we per-
form a separate analysis for the two species of particles.

A. Nonlinear dimensionality reduction using
neural-network-based autoencoders

In order to reduce the dimensionality, i.e. extract the
relevant information, of the vectors Q(i), we use neural-
network-based autoencoders [3–7]. An autoencoder is a
neural network that is trained to perform the identity
mapping, where the network inputs, Q(i) ∈ Rd, are ap-

proximately reproduced at the output layer, Q̂(i) ∈ Rd.
The network may be viewed as consisting of two parts:
an encoder network, which performs a nonlinear projec-
tion of the input data onto a low-dimensional subspace
(the bottleneck), Y(i) ∈ Rc with c < d, and a decoder

Supplementary Figure 1: Architecture of a neural-network
based autoencoder. The encoder network (highlighted in
blue) finds a low dimensional representation of the input, from
which the decoder reconstructs an approximation of the input
as output.

network that attempts to reconstruct the input data from
the low-dimensional projection. This architecture is rep-
resented in Supplementary Figure 1.

In this paper, we train the autoencoder using the data
associated with the N different local environments from
a single snapshot, where N is the number of particles
in the simulation. By training the autoencoder to per-
form the input reconstruction task over this set of N
training examples, the encoder is forced to learn a low-
dimensional nonlinear projection that preserves the most
relevant features of the data and from which the higher-
dimensional inputs can be approximately reconstructed
by the decoder.

The number of input and output nodes, d, is specified
by the dimension of the input vectors. Nonlinearity is
achieved by providing both the encoder and the decoder
with a fully-connected hidden layer with a nonlinear acti-
vation function. In this work, we set the number of nodes
in the hidden layers to 5d and use a hyperbolic tangent
as the activation function. For the bottleneck and output
layers, instead, a linear activation function is used.

The internal parameters of the autoencoder, i.e.
weights W ≡ {wj} and biases B ≡ {bk}, which are ini-
tialized with the normalized initialization proposed by
Xavier in Ref. [8], are optimized during the training
by iteratively minimizing the reconstruction error of the
input data over a training set of N training examples.
Specifically, we consider the mean squared error with the
addition of a weight decay regularization term[7] to con-
trol the magnitude of the network weights

E(W,B; {Q(i)}) =
1

N

N∑
i=1

∥∥∥Q(i)− Q̂(i)
∥∥∥2 + λ

M∑
j=1

w2
j ,

(1)
where M is the total number of weights, whose value
depends on the dimension of the network, and we set
λ = 10−5. The function in Supplementary Equation 1 is
minimized using mini-batch stochastic gradient descent
with momentum[7, 9, 10].

The optimal number of nodes in the bottleneck layer, c,
which defines the unknown relevant dimensionality of the
input data, can be determined by computing the fraction
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Supplementary Figure 2: a Scatterplot of the local descriptors of all large particles in the Wahnström after dimensionality
reduction. The points are colored according to their value of Pred. b Same scatterplot, with a representation of the two
Gaussians found by the clustering. c Same scatterplot, but with points colored according to the dynamic propensity measured
at the time with the maximum correlation. Note that the particles are colored according to their deviation from the mean
dynamic propensity, in units of the standard deviation σ.

of variance explained (FVE) by the reconstruction,

FVE = 1−

∑N
i=1

∥∥∥Q(i)− Q̂(i)
∥∥∥2∑N

i=1

∥∥Q(i)− Q̄
∥∥2 , (2)

where Q̄ is the mean input vector. Fig. 2a of the main
text shows the FVE as a function of c for the three sys-
tems analyzed in this work. Here, we choose the optimal
value of c as the smallest value for which the FVE is at
least 0.75, i.e. at least 75% of the variance of the original
data is explained by the autoencoder’s reconstruction.
As shown in Fig. 2a, this condition is satisfied with a
choice of c = 2 both for the hard sphere and Wahnström
systems, while a dimensionality of c = 4 was necessary
for the Kob-Andersen system.

Once the autoencoder is trained, the encoder network
(highlighted in blue in Supplementary Figure 1) alone
is retained in order to perform the nonlinear mapping of
the input vectors Q(i) onto the low-dimensional subspace
defined by the bottleneck layer, Y(i).

B. Clustering

GMM is a probabilistic model that assumes that the
observed data are generated from a mixture of a fi-
nite number of Gaussian distributions with unknown
parameters. The optimal values of these parameters
are found iteratively with the expectation-maximization
(EM) algorithm[11] in order to create a probability den-
sity function that agrees well with the distribution of the
data. The number of Gaussian components in the mix-
ture, NG, is usually found by minimizing the Bayesian
information criterion (BIC)[12], which measures how well
a GMM fits the observed data while penalizing models
with many parameters to prevent overfitting. Fig. 2b
of the main text shows that the BIC has a minimum at
NG = 2 for all the three systems and for both species of

particles, indicating that a separation into two clusters is
optimal for these systems.

The output of a trained GMM is a list of probabilities,
Pj(i), corresponding to the posterior probabilities of the
i-th observation to arise from the j-th component in the
mixture model. Here, we arbitrarily label the two clusters
as “red” and “white” and refer to these probabilities as
Pred(i) and Pwhite(i) = 1− Pred(i).

C. Dimensionality reduction in the Wahnström
mixture

In order to demonstrate the effect of the dimension-
ality reduction, we show in Supplementary Figure 2a a
scatterplot of all local environments of large particles in
the Wahnström system at density ρ∗ = 0.81 and temper-
ature T ∗ = 0.7. For each particle, the encoding part of
the autoencoder has been used to reduce the dimension-
ality of the vector Q to two dimensions. As a result, the
information retained by the autoencoder can be plotted
as a point in 2D space for each particle. Using the Gaus-
sian Mixture Model, we classify this set of points into
two clusters (white and red), corresponding to two Gaus-
sian distributions of points (Supplementary Figure 2b).
The connection to dynamics can also be clearly visual-
ized in this reduced space, by coloring particles according
to their dynamic propensity (Supplementary Figure 2c).
This leads to a clear gradient in coloring, indicating that
the faster particles (red) lie predominately in the top left
cluster, while the slow particles lie in the bottom right
one.
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SUPPLEMENTARY NOTE 1: METHOD
ROBUSTNESS

A. Different trainings

The training of the autoencoder is performed with a
stochastic optimization algorithm and, as a consequence,
the learned projection of the input data differs for every
particular training. Although the FVE is an excellent
indication of the quality of the learned projection, it is
not a priory clear how strongly the final results depend
on the particular projection found by the encoder.

To explore this, we performed multiple times the anal-
ysis for the large particles of the Wahnström system
at reduced density ρ∗ = 0.81 and reduced temperature
T ∗ = 0.7. Every time, we trained a new autoencoder
(with the same architecture and a different random seed),
and subsequently performed a new clustering. Finally, we
compared the Spearman’s rank correlation between the
dynamic propensities of the particles and their member-
ship probabilities Pred obtained for different trainings of
the UML method.

Supplementary Figure 3 shows that the results ob-
tained for three different trainings are essentially the
same, indicating that the method is robust to changes
in the training.

B. Autoencoder architecture

In all the analysis performed in this work, we used the
same autoencoder architecture, i.e. one hidden layer of
dimension 5d in both the encoder and the decoder parts

Supplementary Figure 3: Spearman’s rank correlation be-
tween the particles’ dynamic propensityDi and their member-
ship probability Pred(i) obtained with three different trainings
of the UML method for the large particles of the Wahnström
system.

Supplementary Figure 4: FVE as a function of c obtained
with different autoencoder architectures for the large particles
of the Wahnström system.

of the network. This choice is somewhat arbitrary and
was determined empirically without a thorough optimiza-
tion.

In this section, we compare the results obtained with
different autoencoder architectures with either a larger
hidden layer, or multiple hidden layers. We specify the
number and the dimensions of the hidden layers with a
tuple of the form (h1, h2, . . . ), whose dimension corre-
spond to the number of hidden layers, and whose com-
ponents indicate the specific size of the layers.

Supplementary Figure 4 shows the FVE as a function
of c obtained with different architectures for the large
particles of the Wahnström system at density ρ∗ = 0.81
and temperature T ∗ = 0.7. The results are approxi-
mately equal for all the architectures considered, indi-
cating that there is no advantage in using a deeper au-
toencoder.

C. Bottleneck dimensionality

As explained in the Supplementary Methods, we
choose the optimal dimensionality of the bottleneck, c,
as the smallest value for which the FVE is at least 0.75.
This choice guarantees that at least 75% of the variance
of the original data can be explained by the input recon-
struction, meaning that only a small part of the original
information is discarded by reducing the dimensionality.
However, 75% is an arbitrary choice, and it is not ob-
viously clear how the final results might depend on this
choice.

To answer this question, we performed a new analy-
sis of the three main snapshots presented in the paper
with a different choice of the bottleneck size, c. For each
value of c considered, we trained a new autoencoder and
subsequently performed a new clustering. A comparison
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Supplementary Figure 5: Spearman’s rank correlation between the particles’ dynamic propensity Di and their membership
probability Pred(i) obtained with a different dimensionality of the bottleneck, c, for a-c large and d-f small particles in the
hard sphere (a, d), Wahnström (b, e), and Kob-Andersen (c, f) systems at the highest degree of supercooling.

Supplementary Figure 6: Spearman’s rank correlation between the particles’ dynamic propensity Di and their membership
probability Pred(i) obtained with a different dimensionality of the input vectors, d, for a-c large and d-f small particles in the
hard sphere (a, d), Wahnström (b, e), and Kob-Andersen (c, f) systems at the highest degree of supercooling.
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of the final results obtained with c = 1, 2, 3, 4 is shown
in Supplementary Figure 5. In all cases the results are
almost unaffected by changes in the chosen value of c.

D. Input dimensionality

As explained in the methods section of the main text,
our description of the local environment is encoded into
a vector of d = 8 BOPs, q̄l with l = 1, 2, . . . , d, which is
then used as the input of the UML method. One could
in principle consider a larger or smaller set of BOPs with
the obvious consequences of having a more or less com-
plete description of a particle’s local environment. In
general, using a smaller set of BOPs has the risk that
one might miss the relevant structural differences in the
system, while including more BOPs should give a better
description of the structure and, hence, a better classifi-
cation. In our previous study [2], where we applied the
same UML approach to identify different crystal phases
in colloidal systems, we found a choice of d = 8 to be
sufficiently large for all the systems examined. In this
study, however, it is not obviously clear how the results,
in particular the correlations with the dynamics, would
be affected by a different choice of d.

To explore this, we repeated the analysis of the three
main snapshots presented in the paper with different
choices of d: d = 4, 6, 8, 12, 16. For each value consid-
ered, we trained a new autoencoder and subsequently
performed a new clustering. Additionally, in every case
we determined the optimal dimensionality of the bottle-
neck, c, as the smallest value with a FVE of at least 0.75.
Note that, with this choice, c increases with d. The re-
sults for the large and small particles of the three systems
are shown in Supplementary Figure 6.

For all systems we find a choice of d = 8 to be nearly
optimal for both species of particles. Specifically, for the
hard sphere and Wahnström systems, the correlations get
worse using d < 8, clearly indicating that at least part
of the relevant information that correlates with the dy-
namics is encoded in BOPs with higher l. Additionally,
increasing d leads to essentially the same or even worse
correlations than d = 8, indicating that the BOPs with
l > 8 capture structural differences that poorly corre-
late with the dynamics. For the Kob-Andersen system,
instead, the correlations are only weekly affected by a
different choice of d.

SUPPLEMENTARY NOTE 2: COMPARISON
TO SUPERVISED METHODS FOR LINKING

STRUCTURE AND DYNAMICS

As shown in the main text, we find significant corre-
lations between the structural heterogeneities found by
the UML order parameter Pred and the dynamical het-
erogeneities encoded in the dynamic propensity. In order
to obtain an estimate of how much dynamical informa-
tion is retained during the dimensionality reduction, it

Supplementary Figure 7: Comparison of the Pearson’s
correlation coefficient between different order parameters and
the dynamic propensity. We compare our results on the Kob-
Andersen mixture to previous results taken from Ref. [13].
The methods explored there include three supervised ma-
chine learning methods: graph neural networks (GNN), con-
volutional neural networks (CNN), and support-vector ma-
chines (SVM) [14], which are all trained explicitly to fit dy-
namic propensity data. In addition, Ref. [13] examined three
physics-based order parameters, based on soft modes [15], the
Debye-Waller factor [16], and the potential energy [17, 18].
We compare these results to the prediction given by our UML
order parameter Pred, the locally averaged P̄red, and a simple
neural network (NN) taking the same vector Q as input as
our autoencoder and fitted to the dynamic propensity.

is interesting to compare these correlations to the results
of supervised machine learning techniques. These super-
vised machine learning techniques explicitly fit dynamical
data based on a input set of structural features.

For the Kob-Andersen mixture, Ref. 13 provides an
excellent set of benchmarking data for various temper-
atures. Specifically, they compare the performance of
state-of-the-art supervised ML techniques for predicting
dynamic propensity based on structure. This includes
the support-vector machine (SVM) approach introduced
in Ref. [14], as well as more advanced machine learn-
ing methods: convolutional neural networks (CNN) and
graph neural networks (GNN). As shown in Supplemen-
tary Figure 7, these algorithms all provide better predic-
tions of the dynamic propensity than our Pred and its
locally averaged version P̄red. This is expected: explic-
itly drawing on dynamical data should always allow for a
better fit than relying purely on structural information.
It is however, interesting to note that P̄red does outper-
form all three of the physical order parameters used in
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Supplementary Figure 8: Correlation between the locally averaged P̄red and dynamic propensity for small particles for (a)
hard spheres, (b) Wahnström and (c) Kob-Andersen. Note that the averaging radius for P̄red is 2σA in all cases.

Ref. [13] as benchmarks (also plotted in Supplementary
Figure 7), which are based on soft modes in the system
[15], the local Debye-Waller factor [16], and the potential
energy [17, 18].

One key factor in the ability of a (supervised or un-
supervised) machine-learned order parameter to predict
dynamic propensity is its input data. For our UML pa-
rameter, we use a relatively small set of eight bond-order
parameters, and it is interesting to see how well a su-
pervised learning algorithm performs with such an input.
To test this, we performed a supervised machine learning
analysis on our state points included in Supplementary
Figure 7. Specifically, we trained a standard neural net-
work (3 hidden layers, with a width of 2d each), to fit
the dynamic propensity of each particle in the snapshot
based on the input vector Q. The result is shown as the
black dashed line in Supplementary Figure 7. From this,
we can make two observations. First, the correlations for
Pred are only slightly lower than those for the NN, indi-
cating that the UML approach retains the vast majority
of the dynamical data encoded in the full set of bond or-
der parameters. Second, for Kob-Andersen, the small set
of bond order parameters is not a great predictor for dy-
namic propensity: the NN scores significantly worse than
e.g. the SVM approach, which used 440 hand-crafted
structural features as input [13, 19]. Based on this, it is
possible that a larger set of input data per particle could
also improve our UML approach, although we leave this
for future work.

SUPPLEMENTARY NOTE 3: DYNAMIC
PROPENSITY CORRELATIONS FOR SMALL

PARTICLES

In the main text, we report the correlation between
Pred and dynamic propensity for the large particles in all
three of our glass forming models at different degrees of
supercooling. For completeness, in Supplementary Fig-

ure 8 we show the same data for the small particles, where
we observe approximately the same results.

SUPPLEMENTARY NOTE 4: LOCAL
AVERAGING OF THE STRUCTURAL

ORDER PARAMETER

In the main text, we locally average the structural or-
der parameter found by the UML method, Pred, over a
spherical local region of radius rc = 2σA for all systems.
Note that, as our method is purely based on structural
information, this radius was not optimized in order to
maximize the correlations with the dynamics.

In this section we explore how the choice of such a
radius influences the correlations with the dynamics, and
whether we can extract a growing length scale with the
degree of supercooling of the system.

A. Correlations for different cutoff radii

Here, we consider the three main snapshots analyzed
in the main text. For each snapshot, we compute the
locally averaged P̄red using three different cutoff radii,
rc/σA = 1, 2, 3, and see how the Spearman correlation
with the dynamic propensity is influenced by this choice.
A comparison of the correlations obtained for the three
systems is shown in Supplementary Figure 9.

In general, we find that the maximum in the correla-
tion shifts to longer times by increasing rc. Moreover, in
all cases, the correlation improves going from rc/σA = 1
to rc/σA = 2. In particular, for both species of parti-
cles in the hard sphere system and for the large parti-
cles of the Wahnström system the correlation gets worse
for rc/σA = 3. In the remaining cases (small particles
of the Wahnström system and both species of particle in
the Kob-Andersen system), we find very small differences
between rc/σA = 2 and rc/σA = 3.
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Supplementary Figure 9: Spearman’s rank correlation between the particles’ dynamic propensity Di and their locally
averaged membership probability P̄red(i) obtained with a different averaging cutoffs, rc, for a-c large and d-f small particles in
the hard sphere (a, d), Wahnström (b, e), and Kob-Andersen (c, f) systems at the highest degree of supercooling.

B. Length scale

In order to explore whether we can extract a grow-
ing length scale with the supercooling of the system, we
now consider the three systems at different degrees of
supercooling, i.e. different packing fraction η for hard
spheres, and different temperature T ∗ for the Wahnström
and Kob-Andersen systems.

For each system, we optimize the cutoff radius by max-
imizing the correlations of P̄red with the dynamic propen-
sity. Specifically, we compute P̄red using different radii
(rc/σA = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0), and choose the
optimal radius r∗c as the one for which the maximum
in the correlation between P̄red and the dynamic propen-
sity is the highest. Supplementary Figure 10 shows the
results of this analysis for the three systems.

For the Wahnström and especially for the Kob-
Andersen systems we clearly find that the optimal cutoff
increases with the degree of supercooling. This behaviour
is less pronounced and more irregular for the hard-sphere
systems, which might be caused by the relatively small
system size considered for such systems (only N = 2000
particles compared to the N = 64000 particles of the

Wahnström and Kob-Andersen systems). Nonetheless,
the largest optimal cutoff is always found at the deepest
supercooling.

It should be noted that this length scale is not a purely
structural one as we find the optimal r∗c by comparing to
dynamical data. As a result, it seems likely that the
optimal r∗c is linked to the dynamical correlation length
of the system rather than being indicative of a growing
static length scale.

SUPPLEMENTARY NOTE 5:
CORRELATIONS IN THE TRAINED ORDER

PARAMETERS

The next question we want to address is whether our
trained order parameter shows signs of a growing struc-
tural correlation length in our systems. To investigate
this, we calculate the radial autocorrelation function as-
sociated with Pred, defined as:

Cred(r) =

∑N
i 6=j pipjδ(r + ri − rj)∑N
i 6=j δ(r + ri − rj)

, (3)
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Supplementary Figure 10: Cutoff distance r∗c that maximises the correlations with the dynamic propensity as a function of
the degree of supercooling for the a hard sphere, b Wahnström, and c Kob-Andersen systems.

Supplementary Figure 11: Radial auto-correlation function Cred associated with the trained order parameter at different
degrees of supercooling for a hard sphere, b Wahnström, and c Kob-Andersen systems.

where ri is the position of particle i, and the normalized
order parameter pi of each particle is defined as

pi =
Pred(i)− 〈Pred〉√
〈Pred〉2 − 〈Pred〉2

, (4)

with 〈Pred〉 the average value of Pred taken over all par-
ticles.

The resulting correlation functions for all three systems
are shown in Supplementary Figure 11. While we do ob-
serve some increase in overall correlations as each system
is supercooled, the range over which these correlations
exist does not grow appreciably. This is in contrast to
the growing dynamical length scale associated with r∗c in
Supplementary Figure 10.

SUPPLEMENTARY NOTE 6: BOND ORDER
PARAMETERS IN THE TWO CLUSTERS OF

SMALL PARTICLES

In the main text, we report the mean value of all bond
order parameters q1, · · · , q8 for both red (more mobile,
Pred > 0.5) and white clusters (Pred < 0.5) of large par-
ticles in all three of our glass forming models. For com-
pleteness, in Supplementary Figure 12 we show the same
data for the small particles, where we observe approxi-
mately the same results.

SUPPLEMENTARY NOTE 7: MODE
COUPLING THEORY FITS

For each of our model glass formers, we extract
the mode coupling theory (MCT) critical temperature
(TMCT ) or packing fraction (ηMCT ) by performing stan-
dard MCT fits to the scaling of the structural relaxation
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Supplementary Figure 12: Mean values of the BOPs for the small particles in the two clusters identified by the unsupervised
learning in a hard spheres, b Wahnström, and c Kob-Andersen systems. Bars are the standard deviations.

γ T ∗
MCT , ηMCT

WS 2.07 ± 0.09 0.652 ± 0.004

KA 2.5 ± 0.3 0.42 ± 0.01

HS 3.0∗ 0.5837 ± 0.0007

Supplementary Table I: MCT fit parameters (Supplemen-
tary Equation 5). For the exponent γ of the HS case, we
followed Ref. 20 and used a fixed value.

time τα as a function of temperature (or packing frac-
tion):

τα ∝
1

εγ
(5)

where ε is the distance from the MCT critical point, i.e.
ε = T − TMCT for Kob-Andersen and Wahnström and
ε = ηMCT − η for binary hard spheres. The fits are
displayed in Supplementary Figure 13 and the resulting
fit parameters are presented in Supplementary Table I.

SUPPLEMENTARY NOTE 8: SANN VS.
CUTOFF IN KOB-ANDERSEN

In order to describe the local environment of each par-
ticle i in terms of BOPs, needed for Q(i), we require a
definition of what neighbors we include in the bond order
calculation. For both hard spheres and Wahnström, we
used the definition of nearest neighbour from the solid
angle nearest neighbor (SANN) algorithm [21]. This al-
gorithm is known to work well for hard spheres, and as
Wahnström is very simliar, we expected it to work well
here as well. For Kob-Andersen, we also initially used
SANN, but later found that using a tuned fixed cutoff
radius worked better. In the following we compare the
results of SANN and our cutoff of 1.2 σA. In particular,
we analyse a snapshot of a glassy Kob-Andersen mixture
at density ρ∗ = 1.2 and temperature T ∗ = 0.5.

Supplementary Figure 13: Fits used to extract the mode
coupling temperatures and packing fraction in Table I. The
points are measurements of the structural relaxation time τα
from our simulations, and the dashed lines are fits following
Eq. 5.

Supplementary Figure 14 shows a comparison of the
Spearman’s rank correlation between the particles’ dy-
namic propensity Di and their membership probability
Pred(i) obtained by using either SANN or a fixed a cutoff
radius.
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Supplementary Figure 14: Comparison of the Spearman’s
rank correlation between the particles’ dynamic propensityDi
and their membership probability Pred(i) obtained by using
either SANN or a cutoff radius of rc = 1.2σA for both large
and small particles.

SUPPLEMENTARY NOTE 9: PEARSON VS.
SPEARMAN CORRELATION

All our results are presented in terms of the Spear-
man’s rank correlation between the structural order pa-
rameter found by the UML method and the dynamic
propensities of the particles. The Spearman’s rank cor-
relation is a measure of how strongly the relationship
between two variables can be described by a monotonic
function (whether linear or not).

However, most of the other works, where supervised
machine learning is used to predict the dynamics of par-
ticles in glassy systems, use instead the Pearson correla-
tion as a measure of the performance of their methods,
which complicates a direct comparison.

Note that our UML method develops an order param-
eter that is purely based on local structure and does not
rely on any dynamical information. As such, there is
no obvious reason to believe that Pred and the dynamic
propensity should be linearly related, which is why we de-
cided to use the Spearman’s rank correlation. Nonethe-
less, we find that two types of correlations are very similar
for all systems analyzed. As an example, Supplementary
Figure 15 shows a comparison of the Pearson and Spear-
man’s rank correlations between P̄red (averaged over a lo-
cal neighborhood of radius rc/σA = 2) and the dynamic
propensity for the large particles of the three main snap-
shots analyzed in the paper.
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Supplementary Figure 15: Comparison of the Pearson and Spearman’s rank correlations between P̄red and the dynamic
propensity for the large particles of the a hard sphere, b Wahnström, and c Kob-Andersen systems.


