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ABSTRACT
Simple models for spherical particles with a soft shell have been shown to self-assemble into numerous crystal phases and even quasicrys-
tals. However, most of these models rely on a simple pairwise interaction, which is usually a valid approximation only in the limit of small
deformations, i.e., low densities. In this work, we consider a many-body yet simple model for the evaluation of the elastic energy associated
with the deformation of a spherical shell. The resulting energy evaluation, however, is relatively expensive for direct use in simulations. We
significantly reduce the associated numerical cost by fitting the potential using a set of symmetry functions. We propose a method for selecting
a suitable set of symmetry functions that capture the most relevant features of the particle’s environment in a systematic manner. The fitted
interaction potential is then used in Monte Carlo simulations to draw the phase diagram of the system in two dimensions. The system is found
to form both a fluid and a hexagonal crystal phase.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015606., s

I. INTRODUCTION

Spherical colloids with a strong short ranged repulsion, such
as hard spheres, generally only self-assemble into close packed crys-
tals. For instance, the only truly crystalline phases exhibited by
hard spheres in two and three dimensions are hexagonal and face-
centered-cubic (FCC) crystals, respectively. One easy way to deviate
from this restricted set of phases is to add a “soft” repulsion between
the particles—for instance, a star polymer,1,2 a colloid covered by a
thick polymer layer,3,4 or a microgel particle.5–9 These “deformable”
particles are known to self-assemble into a variety of crystal struc-
tures, including open-crystal lattices,1,10 Frank–Kasper phases,11–14

and even quasicrystals.15–18

For simplicity, much of the modeling of such particles has
made the approximation that the interaction between the particles
is pairwise. However, in the regimes where intriguing crystal phases
form, the particles are often densely packed and strongly deformed.
In this limit, many-body interactions are expected to come into

play. A number of recent works have explored models that include
these interactions, e.g., the liquid-drop model by Riest et al.,3,19 the
spring-network model by Šiber and Ziherl,20 and the model for
ligand-coated nanoparticles by Pansu and Sadoc.21

In practice, however, these models are cumbersome for use in
computer simulations, due to the expensive calculations involved in
determining the shape of the deformed particle. Partially due to this
limitation, most self-assembly studies on more sophisticated models
of deformable colloids cannot fully address the role of temperature
and focus mainly on ground state structures.19,21 A possible solu-
tion to this problem is to find a model that can fit very accurately
the original interaction at a fraction of the original computational
cost.

In recent years, machine learning (ML) techniques have
become a powerful tool to approximate complex many-body inter-
actions and predict the properties of molecules and materials
based on a few reference calculations.22–24 Most of these tech-
niques have been developed to speed up ab initio molecular
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dynamics simulations, where the energy and forces are evalu-
ated with very costly electronic structure methods. However, these
methods show significant promise also for complex soft-matter
systems.

In order to efficiently interpolate between reference structures,
these ML methods usually take as their input some descriptors of
the particle’s environment rather than the conventional Cartesian
coordinates. The role of these descriptors is to encode the relevant
physical features of a particle’s environment, while satisfying all the
symmetries of the problem: invariance with respect to translations,
rotations, and permutations of particles of the same species.25–28

Examples include the Smooth Overlap of Atomic Positions (SOAP)
framework26 and the symmetry functions (SFs) proposed by Behler
and Parrinello.25,29 The former is usually used in combination with
Gaussian process regression,30–32 while the latter have been used in
combination with artificial neural networks.25,33–38

A crucial step in the optimization of these ML schemes is the
selection of a suitable set of descriptors that provide a good bal-
ance between efficiency and accuracy. In terms of accuracy, this set
must be able to capture all the features of the particle’s environments
that are relevant for the prediction of the energy. In terms of effi-
ciency, however, it is desirable to limit the number of descriptors
as much as possible. Depending on the family of descriptors and on
the regression scheme employed, different selection procedures have
been proposed.39–42 Most of these procedures, however, are designed
to work in combination with nonlinear regression schemes, such as
artificial neural networks. Only recently, more attention has been
given to simpler linear techniques.42

In this work, we approximate the energy of a particle in our
model with a linear combination of the SFs of Behler and Par-
rinello.25,29 To this end, we introduce a simple and efficient iterative
procedure for the selection of a suitable set of SFs. This procedure
finds a good balance between the computational cost and the accu-
racy of predictions. Moreover, it provides by definition an excellent
indication of whether linear regression or more complex nonlinear
schemes are necessary for the problem at hand.

As a testing ground for this method, we choose a variation
of the model for ligand-coated nanoparticles introduced by Pansu
and Sadoc.21 Inspired by some of the ideas in their work, here, we
introduce a many-body model to describe the deformation of spher-
ical particles with a soft shell. In contrast to Ref. 21, we consider
the particle’s shell as a spherical surface of a fixed diameter σ, i.e.,
it cannot stretch. Only upon contact of two or more particles do
the shells undergo an inward radial deformation. As a result, our
model interaction is purely repulsive and accounts only for a pos-
sible compression of the particles’ shell. As in Ref. 21, the surface
of the shell is discretized in terms of a large number of small sur-
face elements that are connected by harmonic springs to the inter-
nal core of the particle. With this construction, the energy associ-
ated with the shell’s deformation can be expressed as a sum of the
energy contributions of the surface elements that are involved in the
deformation.

Despite its simplicity, however, the energy evaluation of our
model is relatively expensive for direct use in simulations. Par-
tially due to similar limitations, Ref. 21 only looked at energetically
favored structures, i.e., the zero temperature limit. However, while
this model is computationally expensive, it is not so expensive that
small scale finite temperature simulations are intractable, especially

in a quasi-two-dimensional geometry. Hence, it is an excellent test
case for a method for fitting interaction potentials.

As we will see, by approximating our model interaction as a lin-
ear combination of SFs, we are able to speed up the energy evaluation
by at least two orders of magnitude. This significant reduction in the
computational cost allows us to explore the phase behavior of the
model at finite temperature in two dimensions by means of Monte
Carlo (MC) simulations.

The remainder of the paper is organized as follows. In Sec. II,
we describe our model in detail. In Sec. III, we first introduce the SFs
employed and the fitting procedure, and then discuss the results and
the reliability of the fit. In Sec. IV, we present the phase behavior of
the model in two dimensions. A final discussion follows in Sec. V.

II. THE MODEL
In this paper, we explore the self-assembly of spherical

deformable colloids on a two-dimensional plane. We model our
deformable colloidal particles as spheres of diameter σ consisting
of an internal spherical hard-core of diameter σ/2 and an external
deformable shell, whose centers are confined to two dimensions.
When the shells of two particles overlap, they undergo an elastic
radial deformation. This deformation causes the regions of the shells
involved in the overlap to collapse onto their disk of intersection. In
order to model the elastic energy associated with the deformation
of the shell, we discretize its surface by decorating it with a large
number Np of approximately equidistributed points. The positions
of such points are generated with the algorithm in Ref. 43. To each
point k on the surface, we associate a weight, wk, corresponding to
the surface area of its Voronoi cell. This construction is shown in
Fig. 1(a).

When a portion of the shell is deformed due to an overlap with
another particle, each point on that portion is pushed radially onto
the disk of intersection between the two particles. This is shown
in Fig. 1(b), where we highlight the part of the surface involved in
the deformation with a darker color and show the explicit deforma-
tion δr⃗k of the kth point on the surface. Given this construction, the
elastic energy associated with the shell’s deformation of a particle i
can be approximated by a weighted sum of the elastic deformation

FIG. 1. (a) Graphical representation of the surface of a particle’s external shell
showing the Np = 200 points placed on the surface and the associated Voronoi
cells. (b) Visualization of the deformation of a portion of the shell due to an overlap
with another particle. The deformed portion of the surface and the disk of intersec-
tion are highlighted in a darker color. The deformation δr⃗k of the kth point on the
surface is shown explicitly.
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energies associated with each point on its surface,

Ui = Kui =
K
2

Np

∑

k=1

wk

σ2 (
δrk
σ
)

2

, (1)

where δrk = ∥δr⃗k∥ and K is a constant with the dimension of an
energy. Because of the discretization, the energy in Eq. (1) is clearly
dependent on the value of Np. Moreover, these Np points are only
approximately equidistributed on the surface and their associated
Voronoi cells slightly differ both in their shape and in their surface
area [see Fig. 1(a)]. As a consequence, the energy is also sensitive to
the orientation of the particle. One way to alleviate this undesired
effect is to estimate the energy as an average over an ensemble of
No randomly chosen orientations. Here, we set No = 100, while we
optimize the value of Np by checking the convergence of the energy
as Np goes to infinity. In the simple case of two overlapping par-
ticles i and j, the interaction potential in the limit of small surface
elements can be evaluated analytically via simple integration and
reads

Ui(rij) =
Kπ
16
[1 − (

rij
σ
)

2
+ 2(

rij
σ
) log(

rij
σ
)], (2)

where rij is the distance between the two particles. Note that the
first term in the series expansion of Eq. (2) is proportional to (1 −
rij/σ)α with α = 3, which is different from the power α = 5/2 of
the Hertz potential. We use the expression in Eq. (2) as our ref-
erence energy and evaluate the error introduced by the discretiza-
tion as a function of Np. This is done by evaluating the energy
in Eq. (1) for several equally spaced distances in the interval rij/σ
∈ (0.5, 1) and for different values of Np. The error is then evalu-
ated as the root mean squared deviation (RMSD) from the refer-
ence energy. As shown in Fig. 2, this deviation becomes small as Np
increases and reaches a plateau at about Np ≈ 600. We attribute this
plateau to the numerical precision of our calculations. As a reason-
able compromise between accuracy and efficiency, we choose a value
of Np = 200.

The elastic energy introduced in Eq. (1) in the case of two
overlapping particles can be extended easily to the case of more
interacting particles by taking particular care in the evaluation of

FIG. 2. Root mean squared deviation (RMSD) from the reference energy as a
function of Np. The chosen value, Np = 200, is indicated with a star.

the deformation δr⃗k of the points on the surface. When a particle
i is overlapping with more neighboring particles, one can repeat the
same construction presented in Fig. 1(b) for each of the overlapping
particles and compute, for every point k on its surface, the deforma-
tion due to each of these particles. Then, the actual deformation of
point k is simply given by

δrk = max
j

δr jk , (3)

where δr jk is the deformation of point k due to the presence of par-
ticle j alone, and j runs over all the neighboring particles overlap-
ping particle i in the region containing point k. An example of such
a construction in the case of three overlapping particles is shown
in Fig. 3.

Taking the maximum in Eq. (3) allows us to correctly evalu-
ate the actual deformation of a surface point and avoids overesti-
mating the associated elastic energy. One could think of the effect
of Eq. (3) as a many-body correction on top of a pairwise inter-
action. In a pairwise fashion, the deformation energy of a particle
is given by the sum of the deformation energies caused indepen-
dently by each of its overlapping neighbors, i.e., allowing the over-
estimation of the energy for some of the surface points. With such
a picture in mind, the many-body effect introduced in this model
always has a negative sign compared to the pairwise interaction. To
further stress this point, we evaluate the energy per particle in per-
fect configurations of the two-dimensional square, hexagonal, and
sigma phases both in a pairwise fashion, i.e., without the correc-
tion introduced by Eq. (3), and in a many-body fashion, i.e., by
considering the actual deformation of the surface points. A compar-
ison of these energies as a function of density is shown in Fig. 4(a).
Figure 4(b) shows a typical configuration of the three phases, and
Fig. 4(c) shows the typical shell deformation of a particle in these
phases.

In the present work, we aim to study the phase behavior of
these particles in two dimensions by means of Monte Carlo (MC)
simulations. However, the large number of points required for the
discretization of the particle’s shell and the need for averaging over
different orientations make the evaluation of the interaction compu-
tationally very demanding (approximately between 4 and 5 orders
of magnitude more expensive than a simple pairwise interaction like
the Hertzian potential). This high computational cost limits the size

FIG. 3. Visualization of the shell’s deformation of a particle overlapping with two
other particles. Highlighted in red is the region where the many-body effect of the
interaction expressed by Eq. (3) comes into play.
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FIG. 4. (a) Energy per particle in the two-dimensional square (left), hexagonal (center), and sigma (right) phases as a function of density. The energy is evaluated both in a
many-body and in a pairwise fashion by considering or without considering the correction introduced in Eq. (3). (b) Snapshots of a typical configuration of the three phases.
The dark and the light circles represent the hard cores and the overlapping (non-deformed) shells of each particle, respectively. (c) Typical shell’s deformation of a particle in
these phases. The deformed portion of the shell is highlighted with a darker color, while the red color indicates the regions where the many-body effect comes in to play. The
hard core of the particle is not shown.

of the system and the time scales that can be assessed in simulations.
We overcome these difficulties by fitting the interaction as a linear
combination of the SFs introduced by Behler and Parrinello.25 As
we will see, the fit speeds up the energy evaluation of at least two
orders of magnitude, making it possible to perform long simulations
of large systems.

In Sec. III, we present the details of the fitting procedure and
discuss the results.

III. FITTING PROCEDURE
In the following, we focus on the SFs of Behler and Parrinello

and use them in combination with simple linear regression for

approximating the energy of a particle in our model. Specifically, we
first describe how we generate representative configurations of the
particles’ configurations, i.e., the training dataset. Then, we intro-
duce the types of SFs used in this work and the fitting procedure.
Finally, we discuss the accuracy and reliability of the fit.

A. Training dataset
As we are interested in studying the phase behavior of this

model in two dimensions, the training dataset should include repre-
sentative examples of the particle’s typical environments for a wide
range of different densities and interaction strengths K. We perform
MC simulations of the model in the canonical ensemble, i.e., con-
stant number of particles N, area A, and temperature T. Note that

J. Chem. Phys. 153, 064902 (2020); doi: 10.1063/5.0015606 153, 064902-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

since the averaging over different orientations introduces statistical
uncertainty in the energy evaluation, in these simulations, we use
the penalty method introduced in Ref. 44. In this method, the stan-
dard acceptance rule proposed by Metropolis et al.45 is modified by
adding to the energy difference an error-dependent penalty term.
The effect of this term is to correct, on average, for the presence of
the noise.

To build the training dataset, we consider a relatively small sys-
tem size N = 64 particles and restrict our attention to densities for
which many-body effects are present. Specifically, simulations are
performed for several densities in the range ρσ2

∈ [2.4, 4.6] start-
ing from a hexagonal crystal configuration, and ρσ2

∈ [2.4, 4] start-
ing from a square crystal configuration. In both cases, the density
spacing considered is δρσ2 = 0.025. Moreover, for each density and
initial configuration, we consider different values of the interaction
strength: βK ∈ {1, 10, 50, 100, 1000}, where β = 1/kBT with kB being
Boltzmann’s constant and T being the temperature. Hence, βK can
be seen as a dimensionless inverse temperature.

From each simulation, we save 50 independent snapshots
together with the corresponding particles’ dimensionless energies,
ui = U i/K. Finally, 10 particles from each snapshot are randomly
selected and included in our dataset. 80% of this dataset is used for
the training, while the remaining 20% is used for testing the model.

B. Symmetry functions
To describe the local environment of a particle, we use the

SFs introduced by Behler and Parrinello for constructing high-
dimensional neural network potentials.25 These SFs are described in
detail in Refs. 29 and 39 and have been used as inputs for atomic
feed-forward neural networks in order to provide the atomic energy
contributions of different materials and molecules.25,33,34,36,37 Here,
we briefly describe the form of the two types of SFs employed in this
work.

The first type of SFs, G2, provides information on the pair
correlations between the reference particle and its neighbors, i.e.,
all particles closer than a fixed cutoff distance rc to the reference
particle. For a given particle i, G2

i is defined as

G2
i =∑

j
eη(rij−Rs)

2

fc(rij), (4)

where rij is the distance between particles i and j, η and Rs are two
parameters that control the width and the position of the Gaussian,
respectively, with respect to particle i, and the sum runs over all
neighbors j being closer than rc. Additionally, f c(rij) is a cutoff func-
tion: a monotonically decreasing function that smoothly goes to 0 in
both value and slope at the cutoff distance rc. Here, we consider a
cutoff function of the form

fc(rij) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

0.5[cos(πrij/rc) + 1] for rij ≤ rc

0 for rij > rc.
(5)

The second type of SFs, G3, provides information on angular
correlations, and it is defined as

G3
i = 21−ξ

∑

j,k≠i
(1 + λ cos θijk)

ξeη(r
2
ij+r

2
ik+r2

jk)fc(rij)fc(rik)fc(rjk), (6)

where the indices j and k run over all the neighbors of particle i, and
ξ, η, and λ are three parameters that determine the shape of the func-
tion. The parameter λ can have the values +1 or −1 and determines
the angle θijk at which the angular part of the function has its max-
imum (θijk = 0○ for λ = 1, and θijk = 180○ for λ = −1). The angular
resolution is provided by the parameter ξ, while η controls the radial
resolution.

Here, the goal is to express the particle’s deformation energy,
ui = U i/K, as a function of a suitable set of SFs. The selection of this
set, i.e., the number of SFs to use and their parameters, is arguably
the most crucial step in the optimization of the fitting procedure. In
the context of neural-network-based potentials, this is usually done
by evaluating empirically how the accuracy of the model depends
on the set of SFs employed. Based on this idea, one can adopt sev-
eral optimization strategies in order to find a proper set of SFs. For
instance, a recent work proposed the use of genetic algorithms as
a method for an optimal selection.40 The main drawback of such a
procedure is that the training of the model has to be repeated for
every considered set.

A completely different approach for an efficient and automatic
selection was proposed in Ref. 41. The various methods introduced
there are based solely on the knowledge of the geometry of the par-
ticles’ environments, and do not rely on the energy, nor on the per-
formance of the model that results from a given choice of the SFs.
Instead, the common idea behind these methods is to choose SFs
that are as diverse as possible by e.g. minimizing their linear corre-
lation. This avoids including redundant information and allows one
to capture different aspects of the particle’s environment using a rel-
atively small set of SFs. One possible risk of this approach in terms
of efficiency is the inclusion of SFs that poorly correlate with the
energy. These SFs would be sensitive to the aspects of the particle’s
environment that hardly influence the particle’s energy. While their
inclusion would not harm the accuracy of the model, their evaluation
would constitute an unnecessary numerical overhead.

In the following, we draw inspiration from Ref. 41 and intro-
duce a new efficient and automatic procedure for the selection of SFs.
As we will see, the proposed method is by definition ideally suited to
work in combination with simple linear regression, but could also be
used as the basis of a nonlinear regression scheme.

C. Selection of SFs
As in Ref. 41, the first step of the procedure involves the cre-

ation of a large but manageable pool of candidate SFs. This is done
by calculating, for every particle in the dataset, several SFs with dif-
ferent sets of parameters. At this stage, the parameters are chosen
following simple heuristic rules with the goal of capturing most
of the possible correlations within the cutoff radius. Here, we fix
the cutoff to the range of the interaction defined in our model,
i.e., rc = σ.

We build a set of radial symmetry functions G2 consisting of
Gaussian functions [Eq. (4)] both centered around the reference par-
ticle (Rs = 0) and displaced away from the reference particle (Rs > 0).
For the SFs with Rs = 0, we consider 15 different Gaussian widths in
the range η ∈ [0.001, 24]. For the other radial symmetry functions,
we vary the center of the Gaussian among nine equally spaced val-
ues in the range Rs/rc ∈ [0.1, 0.9], with Gaussian widths chosen on a
logarithmic scale: η ∈ {1, 2, 4, 8, 16}.
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The G3 angular SFs are generated by setting λ ∈ {−1, 1},
η ∈ {0.01, 0.1, 1, 2, 4, 8}, and ξ ∈ {1, 2, 4, 8}.

With these choices, our pool of candidates consists of M = 108
SFs. One could in principle consider a larger pool, making the
description of the environment more complete at the expense, how-
ever, of a greater computational cost. In this work, we found this
pool to be sufficiently large.

The second step of the procedure consists of selecting from the
initial pool a subset of Ns < M SFs that captures the most relevant
features of the particle’s environment and can be used as the basis
of a regression scheme to approximate the particle’s energy. In this
step, the SFs are selected from the pool one after the other in a way
that maximizes the overall correlation with the target energy.

The first SF that is selected is the one with the highest linear
correlation with the energy, i.e., the one that alone best predicts the
energy. As a measure of the correlation, we use the square of the
Pearson correlation coefficient, defined as

ck =
∑i(Sk(i) − S̄k)(ui − ū)

σSD(Sk)σSD(u)
, (7)

where Sk(i) and ui are, respectively, the kth SF in the pool and the
energy of the ith particle in the dataset, S̄k and ū are their arithmetic
means evaluated over the whole dataset, and σSD(Sk) and σSD(u) are
their standard deviations. Then, the second SF selected is chosen to
be the one that maximizes the increase in the correlation with the
energy. The linear correlation between a set of SFs and the energy is
quantified by the coefficient of multiple correlation, R, whose square
is given by

R2
= cTR−1c. (8)

Here, cT = (c1, c2, . . .) is the vector whose ith component is the Pear-
son correlation, ci, between the ith SF in the set and the energy, while
R is the correlation matrix of the current set of SFs. Specifically, the
element Rij of this matrix is the Pearson correlation between the ith
and the jth SFs in the set. Note that in the case of only one SF Si, R2

reduces to c2
i . R2 can also be computed as the fraction of variance

that is explained by a linear fit (including an intercept) of the energy
in terms of the SFs in the set. Although computationally slightly
more expensive than the evaluation of Eq. (8), we found this second
method to be numerically more stable.

By maximizing the increase in the correlation with the energy,
we aim to select new SFs that add relevant information to the cur-
rently selected set, while penalizing both (i) highly correlated SFs
with only redundant information and (ii) SFs that are sensitive to
the aspects of the particle’s environment that poorly correlate with
the particle’s energy. The inclusion of point (ii) in our selection pro-
cedure is arguably the main difference with the methods proposed
in Ref. 41, where only point (i) is addressed. The described process
can be repeated iteratively in order to select new SFs until R2 stops
increasing appreciably. This, indeed, indicates that the remaining
SFs in the pool add negligible information, and gives us a simple
rule to optimize the number of selected SFs.

Another advantage of our procedure is that the value of R2 is
by definition a quantitative measure of how well a linear combina-
tion of the selected SFs can approximate the particle’s energy. As a
result, its final value represents an excellent indication of whether

linear regression or more complex nonlinear schemes are neces-
sary for the problem at hand. When sufficient, using simple linear
regression instead of nonlinear neural networks, for instance, might
have some important advantages: (i) the parameters’ optimization is
deterministic instead of stochastic, which makes the fitting process,
or training, much simpler in terms of efficiency and accuracy; (ii) the
risk of overfitting is considerably lower; and (iii) the resulting model
is cheaper in terms of the computational cost.

In Sec. III D, we present the results of the fit and compare its
efficiency and reliability with the original model.

D. Fit results and validation
We now present the results of the selection procedure in our

problem. Figure 5 shows (a) R2 and (b) the root mean squared error
(RMSE) of the corresponding linear fit as a function of the num-
ber of selected SFs. The RMSE is shown for both the training and
the test sets. Note that R2 and the RMSE are related by a simple
transformation, i.e., R2

= 1 − RMSE2
/σ2

SD(u).
The first thing to notice is that with only a few SFs, R2

approaches very closely its maximum possible value, i.e., R2 = 1. This
clearly indicates that even linear regression using a low number of
SFs can very accurately approximate our target interaction.

Next, if we look closely at the variation of the RMSE as a func-
tion of Ns [Fig. 5(b)], we can identify three distinct regimes. Initially,
the error decreases very rapidly: by about one order of magnitude

FIG. 5. (a) Square of the correlation coefficient, R2, and (b) root mean squared
error (RMSE) as a function of the number of symmetry functions employed, Ns.
The RMSE is shown for both the training and the test sets. The chosen value,
Ns = 18, is indicated with a star.
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FIG. 6. Ratio between the computational times required for the energy evaluation
in a hexagonal crystal using the original model, τM , and the fitted potential, τF ,
as a function of density. τF is evaluated for two different choices of the number of
SFs: Ns = 7 and Ns = 18.

going from Ns = 1 to Ns = 7. After that, the error keeps decreasing
more slowly until Ns ≃ 18. Finally, after Ns = 18, the error essentially
stays constant. From this picture, we can distinguish two obvious
choices for the number of symmetry functions: Ns = 7 and Ns = 18.
Both provide a good balance between accuracy and efficiency, but

clearly choosing Ns = 7 leads to a more efficient model. Limiting the
number of selected SFs is particularly important when using them
as the input of a neural network. In such cases, the input size also
influences the size of the following layers in the network and, as a
result, has a stronger impact on the overall efficiency of the model.
However, as we use linear regression, we opted, instead, for a slightly
less efficient but more accurate choice of Ns = 18.

To quantify the speed-up achieved with the fit, we compared
the computational times required for the energy evaluation using the
original model (τM) and the fitted potential (τF). For completeness,
τF is evaluated for two different choices of the number of SFs: Ns = 7
and Ns = 18. Since these times depend differently on the density
and on the number of neighbors interacting with each particle, we
considered a hexagonal crystal with N = 64 particles at different den-
sities. The ratio τM/τF , represented in Fig. 6, clearly shows that the fit
speeds up the energy evaluation by at least two orders of magnitude
at all densities and for both choices of Ns. A discontinuous jump is
observed at a density of ρσ2 = 3.5, where an extra shell of neighbors
enters the interaction range of any given particle. Although these
extra neighbors usually do not contribute to the energy, our Monte
Carlo simulation still takes them into account as possibly interacting
neighbors. As a consequence, around this density, the computation
cost goes up significantly. Nonetheless, the fit is at least 200 times
faster than the original model even at high densities. Furthermore,
note that a choice of Ns = 18 is only about 1.2 times more expensive

FIG. 7. Comparison of the pressure as a function of density obtained with the original model and the fitted potential for βK = 1 (top left), βK = 50 (top center), βK = 100 (top
right), βK = 200 (bottom left), βK = 500 (bottom center), and βK = 1000 (bottom right). Simulations were performed with a system size N = 64 particles and starting from a
hexagonal crystal configuration at a density ρσ2 = 4.6.
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than Ns = 7 and leads to a fitting error that is approximately 0.6 times
smaller.

We now turn the discussion to the reliability of our fitted poten-
tial. A first simple indication of the general accuracy of the fit is
given by its performance on data that were not used in the train-
ing. Figure 5(b) shows that the RMSE on the training and test sets
are approximately equal for every value of Ns, indicating that the
fit generalizes well to “previously unseen” data. Although this is
a good measure of the quality of the fit, it is also important to
verify its reliability when computing other properties of the sys-
tem. To this end, we performed MC simulations in the isothermal–
isobaric ensemble (NPT) with the original model and with the fitted
potential. For several pressures and different values of the inter-
action strength βK, we compare the estimated equilibrium density
of the system. Note that we considered a system size N = 64 par-
ticles and started all simulations from a high density hexagonal
crystal. Furthermore, to speed up the simulations using the origi-
nal model, we limited the number of orientations in the averaging
No = 10.

Figure 7 shows a comparison of the results obtained with the
model and with the fit for six values of βK. Up to a value of
βK = 200, we find an excellent agreement between the two models.
The only appreciable differences are observed for a few pressures
in the vicinity of a first-order phase transition. At these pressures,
the system repeatedly jumped from one phase to the other during
the simulations. As each jump requires the system to overcome a
free energy barrier, the time spent in the two phases depends on
the particular run and affects the final estimate of the density. As a
consequence, similar differences would be observed even if running
distinct simulations with the same model.

For larger values of βK, however, discrepancies between the
original model and the fit start appearing also at points far from the
phase transition. This is shown in Fig. 7 for βK = 500, and, especially
for βK = 1000, where the difference becomes more pronounced.
There is a simple explanation to this. For high values of βK, the error
in the fit (which scales with the prefactor K) becomes comparable to
the typical energy fluctuations (i.e., comparable to kBT). This leads
to observable errors in the overall behavior of the system, and hence
in the equation of state. In our case, this clearly starts happening for
an interaction strength of at least βK = 500, after which our fitted
potential becomes less reliable.

IV. PHASE BEHAVIOR
We investigated the phase behavior of the system in two dimen-

sions by performing NPT-MC simulations with the fitted interaction
potential. Specifically, we determined the equation of state (EOS)
of the system, i.e., the pressure as a function of the equilibrium
density, for several values of the interaction strength in the range
βK ∈ [1, 500]. We repeated this analysis for different initial con-
ditions of the system: a low-density fluid phase, and high-density
hexagonal, square, and sigma phases. We chose these initial con-
figurations as similar phases have been observed in similar models
for deformable colloids. In all cases, we considered a system size of
N = 256 particles. Additionally, during these simulations, we let the
two axes of the box change independently in order to let the box
shape adapt.

To assess the structure and discriminate between different
phases, we computed the averaged m-fold bond orientational order
parameter χm, defined as46

χm = ⟨
RRRRRRRRRRR

1
Nb(j)

Nb(j)

∑

k=1
exp(imθrjk)

RRRRRRRRRRR

2

⟩. (9)

Here, m is an integer associated with the symmetry of interest, rjk is
the vector connecting particles j and k, and θrjk is the angle between
rjk and an arbitrary axis. Additionally, the sum over k runs over
the Nb(j) nearest neighbors of particle j. The set of nearest neigh-
bors of each particle is identified with a two-dimensional adaptation
of the parameter-free criterion called SANN (solid angle nearest
neighbor).47

For all values of βK and initial conditions considered, the sys-
tem stabilized a fluid phase at low densities and a hexagonal crystal
phase at higher densities. In Fig. 8, we show the measured EOS and
the order parameter χ6 for three values of βK. χ6 measures the degree
of sixfold symmetry in the system and it is expected to be high in
the hexagonal phase. The background colors in Fig. 8 indicate the
regions of stability of the two phases, while the color gray indicates
the coexistence region. Points falling in this region correspond to
pressures at which the system jumped multiple times from one phase
to the other during the simulation.

Finally, from these EOSs, we determined the phase behavior
of the system as a function of the interaction strength and the

FIG. 8. Pressure (black) and χ6 (blue) as a function of density for βK = 1 (left), βK = 50 (center), and βK = 200 (right).
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FIG. 9. Phase diagram as a function of the interaction strength, βK, and the density,
ρσ2. The stable phases are the fluid phase (F) and the hexagonal crystal phase
(H). The gray area denotes the coexistence region between the two phases.

density. The constructed phase diagram is shown in Fig. 9. Note that
this phase diagram is actually much simpler than that of the ana-
lytic, two-body Hertzian potential, that displays a variety of complex
phases.10

V. CONCLUSIONS
In short, we have introduced a simple and efficient method to

fit computationally expensive many-body interactions using linear
combinations of symmetry functions. In particular, our approach
selects an effective set of symmetry functions with an iterative pro-
cedure performed on a representative set of sample configurations.
We used this approach to fit the interaction potential of colloids
coated with a deformable shell, speeding up the energy evaluation
by at least two orders of magnitude. Using Monte Carlo simulations
of the fitted potential, we scan the phase diagram of the colloidal
model system over a range of temperatures and densities, revealing
a fluid and a single stable hexagonal crystal phase.

While the model we investigated is relatively simple, the com-
putational speedup demonstrates that our approach provides an
effective way forward in situations where interaction potentials
between particles are too computationally expensive to be tractable
in standard computer simulations. This applies not only to sim-
ulating deformable colloids but also to ab initio simulations of
atomic systems, where interactions between atoms are complicated
by quantum effects. Similarly, the same approach can straightfor-
wardly be extended to fitting effective interactions between particles,
e.g., in systems containing polymer chains (in solution or grafted
onto particles) that carry a large number of degrees of freedom.
In such cases, one would fit the particle’s free energy instead of its
energy.

The main strengths of the fitting approach we propose here are
its efficiency and its flexibility. The efficiency stems from the fact that
the iterative method used to select symmetry functions is directly
aimed at fitting the desired energy function and, thus, avoids includ-
ing SFs that do not correlate with the target function. This criterion
relies on the fact that our final fitting scheme is a simple linear fit,
which ensures that the expected impact of adding a new SF can

be gauged based on its linear correlation with the energy function
and the previous set of SFs. The flexibility stems from the fact that
the method does not rely on a specific choice for the pool of SFs
we select from. Here, we only include radial and angular functions
since we know from physical considerations that the particles are
isotropic. However, including SFs that take into account the orien-
tation of the particles is straightforward. Hence, we believe that the
proposed approach is a valuable tool for speeding up the simulation
of particles with complex interactions.
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