
1Soft Condensed Matter, Debye Institute for Nanomaterial Science, Department of Physics, Utrecht University, Utrecht, The Netherlands. 2Departments 
of Materials Science and Engineering, Engineering Sciences & Applied Mathematics, Chemistry and Physics & Astronomy, Northwestern University, 
Evanston, IL, USA. ✉e-mail: M.Dijkstra@uu.nl; luijten@northwestern.edu

The Stone Age, Bronze Age and Iron Age denote periods in his-
tory during which humans began to master these naturally 
occurring materials. But what if we could fabricate our own 

new materials with targeted properties by simply arranging the 
atoms as desired? As early as 1960, Richard Feynman challenged us 
to think ‘from the bottom up’ and create new materials by direct-
ing and manipulating the arrangements of individual atoms1. He 
invited us to enter a completely new field in physics, where we have 
unprecedented control over the properties and functionalities of 
new materials. Although this was only a distant dream at the time, 
advances in modern experimental synthesis techniques and revolu-
tions in nanotechnology have brought us tantalizingly close to real-
izing this dream.

A promising approach towards achieving this goal is hierar-
chical self-assembly, the spontaneous organization of individual 
particles into ordered structures and the most important strategy 
used by nature for the formation of complex biofunctional struc-
tures. In this process, materials are fabricated by first assembling 
atoms into molecules, then combining molecules into larger units 
with sizes from a few nanometres to several micrometres, and 
finally letting these so-called colloidal building blocks, suspended 
in a liquid, self-organize into three-dimensional ordered struc-
tures. These self-assembled materials have well defined structure 
on the scale of tens to hundreds of nanometres and an incredibly 
large surface-to-volume ratio—properties that make them perfectly 
suited not only for optoelectronic, plasmonic and photonic applica-
tions, but also for catalysis and energy storage.

Successful implementation of this strategy hinges on the ability 
to synthesize and fabricate novel nanoparticles and colloidal parti-
cles. Although recent advances have resulted in a dazzling variety of 
new building blocks with interaction potentials that can be tailored 
from hard to soft repulsive, attractive, dipolar, shape anisotropic, 
patchy or even self-propelling, only a tiny fraction of the infinite 
number of possible colloidal building blocks, rivalling the molecu-
lar ‘toolkit’ of chemists, has been fabricated, despite extensive efforts 
devoted to developing new synthesis routes. Reviews that provide 
more details on colloidal interactions include refs. 2–7.

To accelerate advances in materials science, it is desirable to 
guide experimental efforts by theoretical predictions that permit the 

rational design of new materials. Owing to the high-dimensional 
parameter space that arises in multicomponent systems and the 
complexity that emerges when both short- and long-range inter-
actions are present or when interactions become anisotropic or 
even many body in nature, it is often not possible to infer struc-
tures directly from the building blocks, as is sometimes possible for 
atoms by considering their valency. Computational modelling offers 
the potential to tackle such problems. During the past few decades, 
computer simulations have become a powerful tool for predicting 
the structure and phase behaviour of systems of particles with vari-
ous shapes and interactions, including systems that have otherwise 
intractable complexity.

In this Review, we discuss computer simulation methods and 
strategies for the design of soft materials using self-assembly of col-
loids and nanoparticles. A comprehensive and up-to-date coverage 
of these topics is timely, given the rapid technical evolution of the 
field over the past decade, the burgeoning research efforts in col-
loid and nanoparticle self-assembly and the increasing prominence 
of simulation strategies in studies of soft materials. Our treatise is 
structured as follows. First, we briefly describe the simulation tech-
niques that are commonly employed to study the phase behaviour 
and structure of colloidal systems, followed by a description of the 
effective interactions between colloidal particles in solution. These 
effective interactions can be used to predict self-assembled struc-
tures, for example crystal structures at infinite pressure or zero tem-
perature, and subsequently the equilibrium phase diagram can be 
determined. Enhanced sampling techniques can accelerate these 
predictions. Finally, we discuss the classification of thermodynamic 
phases using order parameters, followed by a discussion of machine 
learning (ML) techniques and methods to reverse-engineer build-
ing blocks for targeted self-assembly. We conclude with an outlook.

Simulation strategies
Colloidal suspensions consist of mesoscopic particles dispersed in a 
solvent. Due to their size, these particles exhibit Brownian motion 
caused by the thermal agitation of solvent molecules that collide 
with their surfaces. In addition, the viscosity of the fluid results in 
viscous drag forces on the colloids. As a consequence, these systems 
have a genuine thermodynamic character and the entire machinery  
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of equilibrium statistical mechanics can be used to describe the 
collective behaviour of these suspensions. Since the huge differ-
ence in time and length scales between the colloids and the solvent 
molecules prevents naïve implementation of a molecular dynam-
ics (MD) scheme for both species, colloidal particles are typically 
treated as macroscopic bodies immersed in a structureless solvent. 
In this representation, the solvent is viewed as a homogeneous 
dielectric and viscous continuum and the colloidal particles interact 
via effective interactions. These colloid-only systems can be stud-
ied using standard Monte Carlo (MC) and MD simulations, thereby 
neglecting not only the Brownian motion of the colloids but also 
the long-range hydrodynamic interactions between them originat-
ing from the flow fields generated by their motion. Although hydro-
dynamic interactions are difficult to model due to their many-body 
character, various simulation techniques have been developed to 
take them into account, including Stokesian dynamics, the lattice 
Boltzmann method, fluid particle dynamics, multi-particle colli-
sion dynamics/stochastic rotation dynamics and dissipative par-
ticle dynamics8. These simulation techniques are computationally 
expensive and often the effect of hydrodynamic interactions may 
be neglected, for example in studies that are only concerned with 
the equilibrium behaviour of the suspension. Brownian dynamics 
simulations can be employed to mimic Brownian motion of a col-
loidal particle by friction and stochastic forces9,10. Finally, we note 
that solvents can be structured and thereby induce additional inter-
actions. Examples include phase-separated solvents with particles 
adsorbed to the interface11, binary solvent mixtures close to the crit-
ical point, resulting in critical Casimir forces between the colloids12, 
and liquid-crystalline solvents with long-range forces between the 
particles induced by topological defects13.

Effective interactions
A central ingredient in all simulations is the effective interactions 
between the colloids. Fluctuating dipoles give rise to an attractive 
dispersion or van der Waals force between each pair of atoms. When 
summed over all atom pairs in two colloidal particles, this results in 
a strong van der Waals attraction between the colloids, exceeding 
the thermal energy kBT by orders of magnitude. To suppress irre-
versible aggregation, we can use either steric stabilization, realized 
by grafting a layer of polymers or ligands on the particle surface, 
or charge stabilization14. The resulting colloids then have effective 
interactions that can be mediated through a variety of mechanisms, 
summarized in Fig. 1 and discussed below.

Hard-particle interactions. The simplest effective interactions are 
those that merely represent the shape or excluded volume of the 
particles. In this case self-assembly is purely driven by entropy. One 
of the most famous examples is a hard-sphere fluid, comprised of 
equisized spheres that experience no interactions except that they 
cannot overlap. As demonstrated by computer simulations in 1957, 
this athermal system—counterintuitively—crystallizes at suffi-
ciently high packing fractions15,16. Once particles are permitted to 
be anisotropic, a wide variety of crystalline, liquid-crystalline and 
quasicrystalline structures can arise17–20. The contact interactions 
make MC and event-driven (rather than force-based) MD the com-
putational methods of choice. The primary challenge then consists 
of efficiently determining overlaps between particles. For convex 
objects, the Gilbert–Johnson–Keerthi algorithm21 is an efficient 
choice, whereas non-convex polygonal objects can be dealt with 
through the detection of polygon interference22.

Depletion interactions. When multiple types of particle are pres-
ent, entropic effects become even more complicated. An important 
example of this is so-called depletion interactions23, often illustrated 
in a binary suspension of colloids and a smaller species (for exam-
ple flexible polymers or smaller colloids). If the surface separation 

between the larger colloids is smaller than the size of the smaller 
species, the concentration of the latter is reduced (hence the name 
‘depletant’) in the region between the large colloids, resulting in an 
imbalanced force (osmotic pressure) that forces them together. The 
attraction induced by the smaller species depends on the size asym-
metry between the two components as well as the concentration 
of the smaller component, and is often represented as an effective 
interaction. This is particularly advantageous in situations where 
the small particles are numerous compared with the colloidal com-
ponent. Yet, important caveats are in order as well. The original 
Asakura–Oosawa–Vrij model assumes that the depletants behave 
ideally with respect to one another23,24, an assumption that clearly 
does not hold when these particles occupy a non-negligible volume 
fraction or interact with one another, for example via electrostatic 
repulsions. The situation becomes even more complicated when the 
depletants interact with the larger species through more than a pure 
‘excluded-volume’ repulsion. For example, charged depletants can 
be attracted by ionic surface groups on the colloid, and also van der 
Waals attractions between the depletants and the colloid must be 
considered. In these situations, the entropic effects of the depletion 
interaction compete with energetic (enthalpic) effects.

Another aspect that is sometimes overlooked is that effective 
interactions between the larger species are typically calculated on 
a pairwise basis. However, this approximation is not guaranteed 
to yield accurate effective potentials for situations where effective 
three-body and many-body interactions cannot be neglected, as in 
the case of large depletants. One way to tackle this problem is to 
derive a formal expression for the effective Hamiltonian of the col-
loids by integrating out the degrees of freedom of the depletants. 
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Fig. 1 | Effective interactions between colloids and nanoparticles, with 
typical examples of the resulting self-assembly behaviour observed in 
experiments and predicted in simulations. From top to bottom, the examples 
are excluded-volume interactions133, depletion interactions134, electrostatic 
interactions70, hydrophobic patchy interactions135 and interactions based on 
DNA hybridization69. Credit: figure reproduced with permission from ref. 133, 
under a Creative Commons License CC BY 4.0 (hard interactions); and ref. 134,  
Springer Nature Ltd (depletion interactions) and adapted with permission 
from ref. 70, APS (electrostatic/magnetic interactions); ref. 135 (patchy 
interactions) and ref. 69 (DNA hybridization), AAAS.
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The effective Hamiltonian consisting of effective polymer-mediated 
two- and higher-body terms can subsequently be evaluated ‘on the 
fly’ in MC simulations25.

An alternative approach to address complications that arise 
from colloid–depletant and depletant–depletant interactions is 
the explicit inclusion of the smaller species. Apart from the sheer 
number of particles that need to be dealt with, the primary bottle-
neck that arises in an MD simulation is the disparity in timescales. 
The motion of smaller particles takes place on far shorter times-
cales than that of the larger particles, and this dictates the magni-
tude of the time step in the MD integration scheme. As a result, we 
risk the simulation becoming non-ergodic. A standard Metropolis 
Markov-chain MC simulation encounters comparable problems, 
as the distribution of the smaller species sets the maximum dis-
placement of the larger species that can be permitted without let-
ting the acceptance rate become vanishingly small. Under certain 
conditions, a highly efficient approach is the geometric cluster algo-
rithm26 described below.

Coulombic interactions. Most colloids carry electrostatic charge, 
especially when immersed in an aqueous solution, as this promotes 
the ionization of chemical groups at the colloidal surface owing 
to the high permittivity of the medium. Even though this high 
permittivity also leads to a strong weakening of the electrostatic 
interactions between charge carriers, the long-range nature of the 
Coulomb potential often makes it one of the dominant interactions 
in colloidal suspensions27. Computationally, the long-range charac-
ter is dealt with in systems with periodic boundary conditions via 
the Ewald summation technique9,10. In its traditional formulation, 
this method has an efficiency that scales with the number of discrete 
charge carriers N as N3/2. Efficient electrostatic solvers, such as the 
particle–particle particle–mesh28 and particle–mesh Ewald29 meth-
ods, improve this to O(NlogN), whereas the fast multipole method 
even achieves O(N) scaling30.

In salt-free conditions, each colloid still has its own cloud of 
neutralizing counterions. This condition is often presented as the 
equivalent of deionized water as a solvent, but self-ionization of 
water in fact imposes a lower bound on the salt concentration. The 
counterion shell along with the colloidal surface charges is referred 
to as the electric double layer, and the ion distribution is described 
by the Poisson–Boltzmann equation. At higher salt concentrations, 
the electrostatic interactions are screened by co- and counterions 
and hence for efficiency reasons in computer simulations the col-
loidal particles are often assumed to interact via screened Coulomb 
(Debye–Hückel) or Yukawa potentials in lieu of explicit salt ions31. 
A shortcoming of this mean-field approach is that it ignores fluc-
tuation, correlation and many-body effects, causing its predictions 
to break down under so-called strong-coupling conditions. This 
occurs for example for multivalent ions in aqueous solutions at 
room temperature or for highly deionized colloidal suspensions, 
where a state-dependent volume term may drive a van der Waals 
instability32. Interesting colloidal phenomena that can be induced 
under these conditions are ‘like-charge attraction’33 and ‘overcharg-
ing’, also referred to as ‘charge reversal’34. Moreover, electrostatic 
interactions can act as the driving force for colloidal crystalliza-
tion35 and stabilization, either through direct electrostatic repulsion 
or indirectly via surface binding of charged nanoparticles36,37.

Coulombic interactions become far more complicated when 
polarizability is taken into account. Spatially non-uniform permit-
tivity gives rise to many-body effects that are colloquially referred 
to as ‘image effects’. In recent years, various approaches have been 
designed to account for non-uniform permittivity in particle-based 
simulations (Box 1).

Finally, we note that magnetic interactions allow particularly 
convenient control over colloidal assembly; the corresponding lit-
erature is vast. Here, we merely note that they can be treated with 

the same mathematical techniques as Coulombic interactions. The 
interactions between ferromagnetic particles are often represented 
by effective dipole moments, but in the case of paramagnetic inter-
actions these must be solved self-consistently. The treatment of 
magnetic polarizability also follows the approach outlined above for 
electrostatic interactions and many phenomena are analogous.

Patchy interactions. Whereas most computer simulations tradi-
tionally represent colloids as spherical building blocks with isotropic 
interactions, the introduction of directional or ‘patchy’ interactions 
opens numerous possibilities for steering self-assembly and other 
collective phenomena. Going beyond the hard building blocks with 
anisotropic shapes discussed above, the most common realizations 
are so-called one-patch and Janus particles, which feature two sides 
with distinct surface chemistries38–42. Multicompartment particles 
are also possible43,44. The surface functionalization makes it possible 
to create particles with hemispheres that are charged, hydrophobic, 
paramagnetic, grafted with polymer brushes, different in roughness 
and so on. This in turn permits remarkable control over colloidal 
assembly as well as particle motion.

The surface anisotropy of (spherical) Janus colloids makes their 
effective interaction considerably more complicated. A widely 
used potential is due to Kern and Frenkel45 and allows directional 
short-range attractions. In subsequent work on Janus particles with 
charged hemispheres, Cacciuto et al. developed a more complicated 

Box 1 | Methods for modelling dielectric effects

For simple geometries (isolated planar, cylindrical and spherical 
interfaces), the induced surface charge can be easily calculated 
to very high precision through image charges. However, for sys-
tems with other dielectric geometries, no image-based solutions 
exist. Likewise, for systems comprised of for example multiple 
dielectric spheres, the situation rapidly becomes computation-
ally intractable, since image charges iteratively induce additional 
image charges. This can be managed through truncation of the 
process, which in turns limits the numerical accuracy140–142. A 
highly efficient simulation technique to simulate the electrostat-
ics in a medium with dielectric inhomogeneities was proposed 
by Maggs and Rossetto, in which an auxiliary electrostatic field 
is evolved using local MC simulations143. The advantage of this 
method is that it circumvents the time-consuming computa-
tion of the long-ranged Coulombic interactions and that it can 
be straightforwardly applied to systems with a spatially varying 
dielectric permittivity. An alternative that can be applied to ar-
bitrary geometries with piecewise uniform permittivities relies 
on the boundary-element method and solves the Poisson equa-
tion on grid points at the dielectric interfaces. This approach has 
been proposed several times with varying degrees of efficien-
cy144–151, depending on the approach adopted to solve this prob-
lem self-consistently and the electrostatic solver employed. The 
refinements proposed by Barros et al.151 improved the efficiency 
to such a degree that application to mobile dielectric interfaces 
became possible. This was subsequently exploited to demon-
strate that polarization effects can radically alter self-assembled 
structures152, precisely due to the many-body nature of these in-
teractions. A noteworthy development is a hybrid method that 
combines the superior accuracy afforded by image charges at 
short separations with the efficiency of the method of moments 
at large distances. This approach—which is restricted to systems 
of dielectric spheres—is two orders of magnitude faster than the 
boundary-element method while simultaneously achieving an 
accuracy that is three orders of magnitude improved for colloi-
dal aggregates153.
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potential that permits repulsions and attractions46. The study of 
Janus particles has grown exponentially over the past two decades, 
from fundamental investigations of their phase behaviour47 and 
kinetics48 to applications, for example in the pharmaceutical indus-
try. Interestingly, variation of the number of patches permits control 
not only over the structure of the liquid, but also over the phase dia-
gram49,50, whereas careful choice of patterning symmetry and patch 
shape even makes it possible to achieve specific crystal structures51.

Interactions based on DNA hybridization. A particularly suc-
cessful technique for creating predefined crystal structures relies 
on the selective bonding of DNA oligonucleotides52,53. As demon-
strated simultaneously by teams led by Mirkin54 and Gang55, mix-
tures of nanoparticles grafted with complementary single-stranded 
DNA can be made to assemble into face-centred-cubic and body- 
centred-cubic crystal structures. This seminal work sparked exten-
sive exploration of the degree of programmability afforded by DNA 
hybridization, where the use of DNA linkers with different lengths 
and ‘melting’ temperatures and the composition of the nano-
particle or colloid mixture as well as particle sizes serve as control 
parameters56. Moreover, shape anisotropy of the particles can be 
used to impact directionality of the DNA bonding57, thus permit-
ting the formulation of design rules for nanoparticle-based mate-
rials58–60. Generalization to micrometre-sized colloids can lead to 
the formation of glassy random aggregates, which can be avoided 
through adjustment of grafting density and annealing protocol61 
or by DNA linkers that are fully mobile on the colloid surface62. 
These experimental efforts have been followed by theoretical and 
computational developments that have provided insights into 
the role of cooperative bonding and stability, and have started 
to yield predictive capabilities63. Strong DNA bonding makes  
direct MC or MD simulations very challenging, such that a sub-
stantial degree of coarse-graining is unavoidable64–67, yet combined 
experimental–computational work continues to yield new concep-
tual insights68,69. Going beyond supramolecular self-assembly and 
crystallization, DNA-coated colloids also find important appli-
cations in nanomedicine thanks to their ability of selective and 
reversible binding, where the same computational strategies can 
be applied.

Crystal structure prediction
A central computational challenge in self-assembly is the predic-
tion of the structure and phase behaviour of systems of colloidal 
particles and nanoparticles with various shapes and interactions. 
Given the interactions of the constituents, which crystal structures 
are stable? Conventional methods are often based on a preselection 
of structures for which the free energies are calculated to deter-
mine the thermodynamically most stable phase. This selection of 
structures relies on intuition and trial and error, and has the serious 
drawback that it rules out all non-selected structures, which might 
include stable equilibrium structures, at the outset.

Various simulated annealing techniques have been developed 
to predict the crystal structures for atomic and molecular systems 
(Box 2). These optimization techniques can also be employed to 
predict the energetically stabilized crystal structures of colloidal 
and nanoparticle systems. For instance, simulated annealing has 
been used to determine the minimum-energy crystal structures for 
oppositely charged colloids35,70, whereas genetic algorithms were 
used to predict the ground-state candidate crystal structures of 
monolayers of dipolar particles71, patchy colloids72 and particles that 
interact through square-shoulder potentials73.

An important factor that makes colloidal systems both more 
complicated and more interesting is that entropy may play an 
important role in the self-assembly, so the entropic contribution to 
the free energy cannot be neglected in the search for candidate crys-
tal structures. For example, at finite temperatures new structures 

may appear in the phase diagram with symmetries that differ from 
the ground-state crystal structures.

In the extreme case of hard-particle systems, the self-assembled 
structures are stabilized by entropy alone. As a result, the mini-
mization techniques for atomic and molecular systems cannot be 
straightforwardly applied to such systems, since it is difficult to 
construct an appropriate cost function—the potential energy of the 
system is always zero as only overlap-free configurations contribute 
to the partition function. One way to circumvent this problem is to 
replace the hard-core potential with a fictitious continuous potential 
and use the corresponding potential energy as a cost function74,75. 
However, when applied in a genetic algorithm, this approach is not 
very efficient for sampling configuration space, since new configu-
rations generated by crossover and mutation often result in particle 
overlaps. Techniques to avoid or remove such overlaps markedly 
slow down the sampling. Alternatively, packing arguments are 
often employed to rationalize the self-assembled structures of 
hard-particle systems. The underlying idea is that structures with 
a higher close-packed density have a larger free volume per particle 
at lower densities, resulting in a higher entropy and hence a lower 
free energy. To predict the densest packings of hard-particle systems 
the adaptive shrinking-cell method17, shape-fluctuating boxes76 and  
the floppy-box MC simulation method75 have been employed. 
These methods are based on simple MC simulations in the isobaric– 
isothermal ensemble. In the floppy-box MC method, the number 
of particles is chosen to be very small so that as little as one particle  
can be simulated in a unit cell. Since the shape of the simulation 
box can vary, all crystal symmetries can be sampled. If MC simu-
lations are combined with simulated annealing, the densest pack-
ing can be obtained by gradually increasing the pressure and the 
ground-state structures can be found by progressively decreas-
ing the temperature. This approach has been applied to spheres 
with various interactions, including hard interactions, attractive 
interactions, anisotropic interactions, medium-range soft interac-
tions, truly long-range interactions75 and patchy interactions72. For 
non-spherical particles, the floppy-box MC method has been com-
bined with a triangular tessellation method to describe the surface 
of arbitrarily shaped particles, and a fast detection method for find-
ing overlaps between triangles to predict infinite-pressure crystal  

Box 2 | Crystal prediction of molecular systems

Simulated annealing techniques are commonly used for pre-
dicting crystal structures of atomic and molecular systems. 
These methods are based on (1) a description of the system or 
crystal structure in terms of a set of parameters such as the size 
and shape of the unit cell, (2) a procedure to explore the con-
figuration space of the system and (3) a cost (energy) function, 
which is minimized using simulated annealing to establish the 
lowest-energy structure. These approaches can be applied to any 
atomic or molecular system for which a suitable cost function 
can be constructed. Alternative minimization techniques, typi-
cally aimed at locating the global potential-energy minimum of 
a system and thereby limited to probing the zero-temperature 
phase behaviour, include evolutionary algorithms154,155 and par-
ticle swarm optimization156. These methods work well for a rela-
tively smooth (free-) energy landscape with a well defined global 
minimum. In the case of ‘rugged’ (free-) energy landscapes the 
system can become trapped in local minima, and basin-hopping 
methods157,158 or metadynamics techniques159 are more suitable 
as they provide strategies to escape from such minima. We note 
that many of these optimization techniques are based on simula-
tions with a variable box shape to efficiently sample crystal struc-
tures with different symmetries.
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structures of shape-anisotropic particles17,77, whereas shape- 
fluctuating boxes were employed to predict the self-assembly of 
hard polyhedra from the fluid phase19.

Phase diagram calculations
Beyond the mere prediction of crystal structures lies the determi-
nation of the full phase behaviour of specific systems. Numerous 
simulation methods have been developed over the past decade to 
achieve this, the simplest of which amounts to performing simu-
lations at different state points of the system and identifying the 
resulting phases and structures as a function of temperature, pres-
sure or density. The thermodynamic phases can be identified either 
by visual inspection or by measuring thermodynamic variables, 
suitable order parameters or ML; see below. For colloidal particles 
with enthalpic interactions, we can perform cooling and heating 
runs, in which we either start from a dilute gas and lower the tem-
perature until the system undergoes a phase transition, or initialize 
the system in a stable (ground-state) crystal structure and increase 
the temperature until it melts. Alternatively, compression runs may 
be carried out by increasing the pressure (starting from the fluid 
phase) or expansion runs can be employed by lowering the pressure 
from the (most dense-packed) crystal structure. The latter approach 
is commonly used for hard-particle systems.

In the case of a first-order phase transition, this approach will be 
highly inaccurate due to hysteresis, as a free-energy barrier has to be 
crossed to transform the system between phases. The height of this 
barrier is determined by the chemical potential difference between 
the stable and metastable phases and the free-energy cost of creating 
an interface between the two coexisting phases. In the common case 
of finite-sized systems with periodic boundary conditions, the bar-
rier height is typically very high, since it scales with the interfacial 
area. To transform a system to the stable phase, high supersatura-
tions or supercoolings are required, where it may become kineti-
cally arrested or possible intermediate phases may be missed. For 
this reason, methods to study phase coexistence (Box 3) typically 
aim to eliminate the interface.

Alternatively, an older method that has recently received 
renewed attention is the direct-coexistence method78. We start with 
two well equilibrated bulk phases, for example a solid and a liquid 
phase, combined in a single simulation box. Subsequently, simula-
tions are performed at varying pressures or temperatures to deter-
mine when the two-phase coexistence is stable. When the pressure 
(temperature) is much lower than the bulk pressure (temperature), 
the system will immediately melt (freeze), whereas the system will 
rapidly freeze (melt) if the pressure (temperature) is much higher.

Once a coexistence point has been located, the full coexistence 
curve can be traced out using numerical integration of the Clausius–
Clapeyron equation79. This approach is not limited to the pressure–
temperature plane, but has also been used to determine for example 
the freezing and melting curves of hard spheres as a function of size 
polydispersity80 and the fluid–solid coexistence of charged colloids 
as a function of the screening parameter31.

Enhanced sampling techniques
All approaches discussed so far focus on thermodynamic equilib-
rium. However, the formation of a thermodynamically stable crystal 
phase also depends on kinetic effects. Crystallization may be sup-
pressed by glassy dynamics or gelation and may suffer from defects, 
such as stacking faults and vacancies. Elucidating nucleation rates 
and kinetic pathways for the transformation from a metastable 
phase to a thermodynamically stable phase requires efficient sam-
pling of rare events, since free-energy barriers must be crossed. As 
noted above, high supersaturation or undercooling often are not 
viable solutions. Therefore, we discuss several enhanced sampling 
techniques to accelerate barrier crossing and sample configurational 
space in an effective manner. These methods can be categorized into 

(1) collective variable biasing techniques, such as umbrella sampling, 
hyperdynamics, metadynamics and adiabatic free-energy dynam-
ics, (2) path-based techniques, such as transition path sampling, 
string methods and forward-flux sampling, (3) parallel tempering 
techniques, for example replica-exchange, Hamiltonian-exchange 
and multicanonical algorithms, and (4) cluster algorithms. We dis-
cuss the techniques most relevant for colloidal systems.

Umbrella sampling, first proposed by Torrie and Valleau81, over-
comes free-energy barriers by modulating the acceptance criterion 
in an MC simulation through application of a bias that depends on 
a suitably chosen reaction coordinate. Often the most appropriate 
choice for this coordinate is the order parameter (for example the 
density for a gas–liquid transition or the six-fold bond order param-
eter for a fluid–solid transition), but in general finding the optimal 
order parameter can be challenging. ML may help to find the rel-
evant set of order parameters.

Alternatively, nucleation can be studied via forward-flux sam-
pling82, which introduces a reaction coordinate or order parame-
ter similar to the umbrella sampling method. The nucleation rate 
between states A and B is then expressed as a product of the flux of 
trajectories crossing the A state boundary and the probability that 
a trajectory that has crossed this boundary will reach state B before 

Box 3 | Methods for determining phase coexistence

In the Gibbs ensemble MC method160, two phases are simulated 
in separate simulation boxes, which exchange volume and par-
ticles at a given temperature until the numbers of particles and 
the volumes of the two boxes reach their equilibrium values. The 
resulting densities of these boxes correspond to the densities of 
the coexisting phases for a given pressure and chemical potential. 
This method becomes inaccurate close to a critical point, where 
the densities of the two coexisting phases become identical and 
the boxes can change identity during a simulation run. Further-
more, this approach breaks down when one of the coexisting 
phases becomes so dense that exchange of particles and volume 
is prohibited, for example in a high-density fluid or solid phase.

A more accurate method to determine phase coexistence 
relies on measuring the probability P(N) of observing N particles 
in a volume V at chemical potential μ using grand-canonical 
MC simulations. To increase the sampling efficiency of P(N) 
we can employ (successive) umbrella sampling in combination 
with histogram reweighting161. At phase coexistence, the 
probability distribution function becomes bimodal with two 
separate peaks of equal area for the two coexisting phases. The 
coexisting densities can be determined from the average number 
of particles in the two peaks, whereas the interfacial tension of 
the two coexisting phases can be obtained from the height of the 
two peaks and the minimum separating them162.

The most accurate but also most expensive way to determine 
phase coexistence is by calculating the free energies of all possible 
phases, for example the candidate structures as predicted by the 
(crystal) structure prediction methods discussed above. Direct 
computation of the free energy is intractable as it involves 
a high-dimensional phase-space integral. However, we can 
calculate free-energy differences between two bulk systems using 
the thermodynamic integration technique. In this method, we 
construct a reversible path that links the system of interest to a 
reference system for which the free energy is known, for example 
the ideal gas or the Einstein crystal10. Once the Helmholtz free 
energies of the candidate phases have been determined, we 
can apply common-tangent constructions to the free-energy 
curves to establish the thermodynamically stable phases and the 
two-phase coexistence regions.
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returning to state A. Forward-flux sampling facilitates the calcu-
lation of this probability by breaking it up into a set of probabili-
ties between sequential values of the reaction coordinate or order 
parameter. Consequently, forward-flux sampling requires no previ-
ous detailed knowledge of the nucleation process, and the choice of 
order parameter is less important than in umbrella sampling.

Finally, nucleation events can be studied in computer simula-
tion via the transition path sampling method83. Here, a collection 
of trajectories connecting one state to another is generated via stan-
dard simulation tools such as MD or MC. By assigning a probability 
to each of the many pathways, we can construct an MC random 
walk in the space of the transition trajectories, using for example 
the ‘shooting method’, and generate an ensemble of transition paths. 
All relevant information, such as the nucleation mechanisms (clas-
sical or non-classical), the transition states and the nucleation rate, 
can subsequently be extracted from the ensemble of these paths. 
Because no a priori reaction coordinate is required, the resulting 

path ensemble gives an unbiased insight into the nucleation mecha-
nism and its kinetics.

Going beyond nucleation events, parallel tempering84 allows effi-
cient and ergodic sampling by exploiting the increased propensity 
of a system at elevated temperatures to cross free-energy barriers. 
Multiple independent MC or MD simulations are started in parallel, 
where each of these ‘replicas’ has a different temperature. At fixed 
intervals, the configuration of a run is swapped with a configura-
tion at a neighbouring temperature. The acceptance criterion of this 
swap is chosen such that detailed balance is obeyed. This approach 
permits configurations in deep free-energy minima (that is at low 
temperatures) to transition, via a ‘ladder’ of successive swaps, to 
other free-energy minima. An advantage of parallel tempering is 
that it requires minimal modification of a standard MC or MD sim-
ulation, allowing massively parallel simulations with very limited 
communication between the parallel processing units. On the other 
hand, the overall computational cost can be very high. For systems 
with considerable free-energy barriers a large number of parallel 
runs are needed, with only the run at the actual lowest temperature 
yielding relevant information.

MC simulations offer an alternative route to enhanced sampling, 
as they merely have to reproduce the Boltzmann distribution with-
out the need to emulate the physical dynamics of a system. Liu and 
Luijten26, building on earlier work85,86, devised an MC algorithm 
for colloidal systems that bypasses physical dynamics in favour of 
collective (‘cluster’) moves that are rejection free regardless of the 
pairwise interactions between any of the components in a sys-
tem. Remarkably, the process by which the cluster moves are con-
structed guarantees that, despite the rejection-free nature of the 
algorithm, the particle configurations are generated according to 
the Boltzmann distribution. As the method generates uncorrelated 
configurations at a rate that is exponentially faster than conven-
tional MC or MD simulations, it outperforms standard approaches 
by orders of magnitude for highly size-asymmetric mixtures, pro-
vided that the density of the system is not too high. This property 
makes it particularly suitable for determining generalized depletion 
potentials. A derivative of this method, in which the requirement 
for rejection-free updates is dropped, has been proposed for study-
ing the self-assembly of strongly attractive particles87, whereas the 
rejection-free variant was extended to the determination of phase 
equilibria88 and generalized to anisotropic particles89. An alterna-
tive rejection-free MC eliminates the detailed-balance condition 
but employs event-driven moves in a manner that generates the 
Boltzmann distribution90,91.

Classification of thermodynamic phases
The techniques described to determine crystal structures and phase 
diagrams rely on the ability to define appropriate order param-
eters that measure the broken symmetries in the respective phases. 
Crystalline solids are characterized by a broken translational and 
bond-orientational symmetry. To distinguish crystalline and fluid 
phases, Steinhardt, Nelson and Ronchetti introduced the concept 
of bond-orientational order parameters92. The analysis starts by 
identifying the local environment of each particle in the system, for 
example all neighbouring particles within a certain radial distance, 
a Voronoi construction or a solid-angle nearest-neighbour crite-
rion93. Subsequently, the set of distance vectors (‘bonds’) between a 
particle and its neighbours is expanded in a set of spherical harmon-
ics. To obtain order parameters that are rotationally invariant, we 
can construct combinations of the spherical harmonics. Local bond 
order parameters or averaged and reweighted variations94,95 can 
be used to study structural and dynamic processes such as nucle-
ation and growth, melting, grain boundary dynamics and defect 
dynamics (Fig. 2). The six-fold bond order parameter is commonly 
used to bias the sampling towards crystal nucleation and to study 
crystallization in a wide variety of systems96, whereas the six-fold 
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Fig. 2 | Example applications of correlation functions and bond order 
parameters to classify thermodynamic phases and pathways. a, Left: 
connected tetrahedra in a slice through a quasicrystal, with the tiling 
structure highlighted in yellow. Right: corresponding diffraction pattern 
indicating 12-fold symmetry136. b, Annealing of colloidal monolayers, with 
time evolution of the bond orientational correlation function shown in the 
inset137. Scale bars, 50 μm. c, Distinction of various fluid and solid phases 
via scatter plots of bond order parameters94. bcc, body-centred cubic; 
fcc, face-centred cubic; hcp, hexagonal close-packed; liq, liquid. Credit: 
figure adapted with permission from ref. 136, Springer Nature Ltd (a) and 
reproduced with permission from ref. 137, under a Creative Commons 
License CC BY 4.0 (b) and ref. 94, AIP (c).
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and four-fold bond order parameters are often used to distinguish 
body-centred-cubic, face-centred-cubic, hexagonal close-packed 
and fluid states. Other ways to describe the symmetry of the local 
environment of a particle are the common neighbourhood analy-
sis, bond-orientational order diagrams (histograms of bond orien-
tations), diffraction patterns and topological cluster classification 
algorithm97. To classify and identify distinct crystal structures, 
we can also use the angles and lengths of the lattice vectors of the 
respective unit cells98 or evaluate the closeness of the lattice vectors 
to reference crystals99.

Machine learning
Recently, ML has become a viable tool for analysing computer sim-
ulations and/or experiments. ML can be used to characterize and 
classify complex data sets, to find non-obvious patterns in big data 
and to reduce the number of random variables in multivariate data. 
The focus of ML is on the development of computer programs that 
can (1) learn from data that are given without being programmed 
explicitly, (2) make predictions and decisions by finding patterns in 
data and (3) adapt (or learn) when exposed to new data. Although 
ML has been adopted successfully in many research fields, the 
soft-matter field has lagged behind in embracing this approach. 
There are several factors that make the application of ML in col-
loid science challenging and have hampered successful implementa-
tions. The main difficulty stems from the importance of entropy in 
soft-matter systems, which results not only in complex phase behav-
iour, but also in thermodynamic phases that are highly susceptible 
to thermal fluctuations. The abundance of ‘exotic’ phases with 
(partial) orientational and positional order, such as liquid crystals,  

quasicrystals and plastic crystals, along with the omnipresent ther-
mal noise, makes classification of these states of matter using ML 
tools non-trivial. Despite these inherent challenges, the promise 
of materials design through ML is too great to ignore, calling for 
a thorough investigation of its applicability in soft matter (Fig. 3).

ML algorithms can roughly be divided into ‘supervised’ and 
‘unsupervised’ learning. In supervised learning (Box 4), a com-
puter program (or artificial neural network) is trained with a set of 
example inputs along with the desired outputs. The objective is to 
develop general rules between output and input and to subsequently 
provide output for previously unseen input data. This form of ML 
can be used for classification when the outputs are discrete and for 
regression in the case of continuous outputs. Neural networks have 
been trained to recognize various types of local crystalline order in 
systems of Lennard-Jones particles, Yukawa particles, water mol-
ecules and binary hard spheres100–102. In these cases, the different 
outputs (crystalline phases) are known and the input consists of the  
local environment of each particle, described with either symme-
try functions100, bond order parameters101,102, particle positions103 or 
image recognition104. The trained neural network can subsequently 
be used as an ‘order parameter’ to classify local structures, for exam-
ple in nucleation studies. Furthermore, ML methods have been used 
to find correlations between local structure and dynamical rear-
rangements and to make predictions on the long-term dynamics of 
glassy systems105,106.

Another exciting application of neural networks is to develop 
coarse-grained models of the system by integrating out the micro-
scopic degrees of freedom of certain species. Using simulations 
of the full system, ML can be used to accurately fit the effective 
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principal-component analysis (PCA)113. c, Dynamics of atoms at grain boundaries in simulated polycrystalline aluminium characterized by their ‘hopping’ 
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(many-body) interactions as a function of the particle coordinates 
in the same spirit as the Behler–Parrinello ML potentials derived 
from ab initio simulations107. The resulting potentials, which still 
capture the essential physics, can subsequently be employed in 
coarse-grained simulations108. Finally, we also mention the use of 
an active learning approach to efficiently sample a phase diagram, 
thereby accelerating materials design and discovery109.

In the case of unsupervised learning (Box 5), unlabelled data 
are used as input without corresponding output variables. The 
algorithm aims to find structures, patterns and correlations in 
big data sets, thus reducing the number of variables by mapping 
high-dimensional data onto a low-dimensional space. By iden-
tifying groups of local environments and detecting correlations 
between various input data, different thermodynamic phases can be 
identified and new order parameters can be designed that identify 
the corresponding phases. Unsupervised learning methods, such 
as diffusion map dimensionality reduction, principal-component 
analysis, Gaussian mixture models and autoassociative neural net-
works, have been applied to identify different crystal structures for 
a wide variety of systems110–115. More recently, unsupervised learn-
ing has also been employed to detect phase transitions113 and to 
study self-assembly pathways116. We refer the interested reader to 
several recent reviews that discuss recent ML developments in the 
soft-matter field117–119.

reverse-engineering methods
Conventional colloid science is based on forward design: which 
structures with what properties are formed by a given colloidal 
building block? By contrast, an inverse-design strategy starts from 
desired materials properties, translates them into a structure and 

then identifies the building blocks that self-assemble into this struc-
ture. This inverse problem is a tremendous challenge, owing to the 
number of possible structures, compositions, interactions and con-
trol parameters. A multitude of approaches has been exploited to 
devise interaction potentials for such targeted self-assembly. Most 
inverse-design methods start with an variational ansatz for the pair 
potential, parametrized by a set of parameters. Torquato determined 
the optimal values of these parameters by evaluating the difference 
in ground-state energy between the target lattice and its competing 
structures and minimizing the Lindemann parameter of the tar-
get structure near melting120. This approach was employed for the 
inverse design of interaction potentials for low-coordinated crystal 
lattices such as the honeycomb and square lattices, and disordered 
ground states, but also targeted bulk properties120. Truskett et al. 
introduced an inverse-design method121 using maximum-likelihood 
ML or the relative-entropy coarse-graining approach122. Here, the 
optimal parameter values for the pair potentials are found by maxi-
mizing the likelihood of reproducing the targeted configurations. 
This approach has been used to rationally design pair potentials 
for porous structures, a variety of open lattices such as honeycomb, 
kagome, (truncated) square, rectangular and truncated hexago-
nal lattices, binary crystals123 and Frank–Kasper and quasicrys-
talline phases124. Disordered structures with large photonic band 
gaps were designed with a constraint optimization method125 and 
particle shapes for targeted colloidal crystals via entropy maxi-
mization126. We can also use a statistical physics approach127 to 
design the interaction potentials and the system parameters for a 
target crystal structure128. Finally, we note that an inverse-design 
approach should take into account not only the thermodynamics 
but also the kinetics of the targeted self-assembly. A first step in this 
direction was demonstrated recently through the use of diffusion 
maps to project the stable states and assembly pathways of patchy  

Box 4 | Supervised learning

An artificial neural network is an ML algorithm that mimics the 
way the human brain recognizes patterns. It consists of intercon-
nected layers of artificial ‘neurons’ and is trained with ‘labelled’ 
data consisting of a set of example inputs (represented by the vec-
tor I = I1, I2, …) along with the desired outputs (O = O1, O2, …). 
The remaining layers are so-called hidden layers. Each neuron 
(denoted by a circle) receives inputs from the neurons in the pre-
vious layer, processes these inputs by calculating a weighted sum 
of all inputs together with a bias and passes this weighted sum 
through an activation function to the neurons in the next layer. 
By adjusting the weights and biases we can tune the network’s 
output to the training set. This process of adjusting the weights 
and biases is called ‘learning’.

Neural network consisting of an input layer (dark blue), a number of 
hidden layers and an output layer.

Box 5 | unsupervised learning

Unsupervised ML techniques, such as principal-component 
analysis and the diffusion map method, project high-dimensional 
data onto a low-dimensional manifold. The central idea of 
principal-component analysis is to reduce the dimension of the 
input data in a manner that retains most of the information of 
the original data set by projecting it onto a new set of orthogonal 
basis vectors. This transformation is defined such that the first 
principal component p1 accounts for the largest possible variance 
in the data, the second component p2 for the second largest vari-
ance and so on. A set of M simulation configurations described 
by L variables, for example Cartesian coordinates and particle 
orientations, is represented by an M × L matrix X. The principal 
components of this data set are obtained from the eigenvalues 
of the covariance matrix XTX. The corresponding eigenvectors 
constitute the new basis of principal components, p1, …, pL. 
Each configuration i, described by an L-dimensional vector xi, 
is projected onto the jth principal component pj using tj,i = xi ⋅ pj 
(j = 1, …, L; i = 1, …, M), such that the tj,1, …, tj,M show successive-
ly the largest possible variance with increasing principal com-
ponent j. As the jth eigenvalue of the covariance matrix is equal 
to the variance of the data along the jth principal component, 
the set of principal components that exhibit substantial vari-
ance can easily be identified. The data in the high-dimensional 
phase space can thus be projected onto the lower-dimensional 
manifold spanned by these dominant principal components, ne-
glecting the remaining principal components. If the data exhibit 
nonlinear features, principal-component analysis will fail and a 
nonlinear dimensionality reduction method such as the diffu-
sion map approach should be employed.
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colloids onto a low-dimensional assembly landscape and to ratio-
nally design the interaction strength that optimizes the yield of the 
target self-assembly129,130. We refer the interested reader to ‘Inverse 
design of soft materials with desired function’ in this issue as well as 
refs. 118 and 131 for a more elaborate review.

Future challenges and paths towards their resolution
The computational prediction of colloidal self-assembly, from 
aggregates to crystals, has made spectacular strides in the past two 
decades. Nevertheless, resolution of this type of problem continues  
to be enormously demanding, so it is satisfying to note that the 
development of new techniques is still an active area of research. As 
a concrete example, ML techniques have played an important role in 
the field, with examples ranging from crystal structure classification 
to the identification of suitable order parameters.

Beyond the inevitable extension to systems with more accurate 
potentials and larger numbers of components (and hence corre-
spondingly larger numbers of phases), we anticipate rapid growth 
in several specific directions. Active, that is self-propelled, particles 
represent a burgeoning field in themselves, with numerous excit-
ing aspects as well as noteworthy connections to systems that rep-
resent life. A primary challenge for predictive capabilities for such 
active matter is the degree to which its behaviour is controlled by 
an underlying minimum-free-energy principle and a correspond-
ing probability distribution, comparable to the way in which 
equilibrium phenomena are governed by the Boltzmann distribu-
tion. Another direction that is gaining traction is the extension to 
smaller length scales. In this case, assumptions that are valid for 
micrometre-sized colloids must be relinquished and aspects such as 
polydispersity, surface roughness, non-uniform surface chemistry 
including molecular details of the capping layer, and structuring of 
the solvent molecules must be taken into account. Moreover, the 
typical interaction range is no longer small compared with the size 
of the particle132.

Finally, with increasingly powerful computational capabilities, 
the use of colloidal design rules to create particles suitable for spe-
cific applications is coming within reach. Given the vast swaths of 
parameter space that at best have received only a cursory glance, we 
propose that a more systematic framework correlating colloidal prop-
erties with their collective behaviour, perhaps in a high-throughput 
screening and data-driven design method, would greatly facilitate 
the adoption of these building blocks for the creation of new materi-
als with targeted properties. Another route that could be undertaken 
is the ‘inverse-design’ strategy, which involves optimization of the 
shape and interactions of the building blocks as well as the system 
parameters for a targeted structure with specific properties.
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