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Supplementary Note 1.  

Details on v-SFG and how it reports on the surface charge 

Within the dipole approximation, incident light induces a dipole moment, which on a 

macroscopic scale (averaging over many molecules), is the polarization. For weak incident 

fields, the induced dipole moment (𝜇) or polarization (𝑃) scales linearly with the electric 

field. However, for laser pulses also higher-order terms need to be taken into account. For 

the second- and third-order terms, the proportionality constants between the applied field 

and the induced dipole are the first- and second-order hyperpolarizability 𝛽 and 𝛾, 

respectively. On the macroscopic, polarization scale, this is the second and third-order 

nonlinear susceptibility 𝜒(2) and 𝜒(3)1 

 

 
𝜇 = 𝜇0 + 𝛼𝐸 + 𝛽𝐸2 + 𝛾𝐸3 + ⋯ 

𝑃 = 𝑃(1) + 𝑃(2) + 𝑃(3) + ⋯ = 𝜖0(𝜒(1)𝐸 + 𝜒(2)𝐸2 + 𝜒(3)𝐸3 + ⋯ ). 
(S1) 

 

The total electric field is the sum of the electric fields of the two incident laser pulses  

 

 𝐸 = 𝐸vis cos(𝜔vis ⋅ 𝑡) + 𝐸IR cos(𝜔IR ⋅ 𝑡), (S2) 

 

Where the amplitudes are given by 𝐸𝑣𝑖𝑠 and 𝐸𝐼𝑅 and the frequencies by 𝜔𝑣𝑖𝑠 and 𝜔𝐼𝑅. From 

combining equations (S2) and (S3), a second-order term with the sum of the incident 

frequencies arises1  

 

 𝑃SFG
(2)

= 𝜖0𝜒(2)𝐸vis𝐸IR cos((𝜔vis + 𝜔IR) ⋅ 𝑡). (S3) 

 

Considering that the intensity of the sum-frequency light scales with the square of the 

polarization, we can derive the relation1-3 
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 𝐼SFG~ 𝐸vis
2 𝐸IR

2 |𝜒(2)|
2
, (S4) 

 

where 𝜒(2) is the macroscopic average of the first-order hyperpolarizability. In the case of a 

centrosymmetric system, 𝜒(2) becomes zero since the individual molecular 

hyperpolarizabilities cancel each other out, explaining the interface-specificity of v-SFG. At 

the interface, it is also crucial that a net-orientation of the molecules is present. In the case 

of random orientation, there is again canceling of the individual contributions. For the 

mineral-water interface, a net-orientation of interfacial water molecules is achieved by the 

presence of a surface charge.1,2,4,5 

The presence of surface charge means that there is also an additional electric field present, 

which polarizes into the bulk and thereby breaks the symmetry requiring the addition of a 

𝜒(3) contribution. The static, DC electric field determines the magnitude of the 𝜒(3) 

contribution5-8 

 

 𝐼SFG~𝐸vis
2 𝐸IR

2 |𝜒(2) + 𝜒(3) ∫ 𝐸DC(𝑧) ⅆ𝑧
∞ 

0
|

2
. (S5) 

 

We note that 𝜒(2) in Equation (S5) is effectively integrated over the interfacial layer where 

𝜒(2) is non-zero. Within the Gouy-Chapman model, the electric field decays into the bulk 

solution as described by the Debye length. The Debye length is shorter with increasing salt 

concentration.5-7  

Our measurements are performed in total internal reflection geometry, which is known to 

enhance the detected signal by orders of magnitude.9 Therefore, the acquisition time of 

spectra can be reduced to seconds allowing the real time tracking of the dynamics when 

turning flow on and off.4 Here we use this particular property to observe the equilibration of 

the system, e.g. converging to a steady state. The enhancement of the signal in total internal 

reflection geometry can be described by Fresnel factors.9 One would have to take them into 
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account when interfacial molecules are directly investigated by the spectral shape. As it is 

the magnitude of the signal, which correlates with the surface charge and is therefore of 

interest for our study, we integrate our spectra and do not focus on the spectral shape. 

Nevertheless, we note that Fig. 1b from the main text does not suggest significant changes of 

the spectral shape upon flow. For details on a relation between the spectral shape and 

Fresnel factors, we refer to other studies.2,10-14 

Using total internal reflection geometry also requires consideration of the penetration depth 

of the evanescent fields that are generated at the interface. The interplay between the arising 

coherence length and the Debye length is complex.5-7,15,16 If the penetration depth is shorter 

than the Debye length, the penetration depth would determine to which extent the 𝜒(3)-term 

contributes to the signal. However, for our ionic strength in the millimolar range, the 

penetration depth of the evanescent field is much larger than the Debye length. Thus, we 

neglect the decay of the evanescent field and use the description of GONELLA et al.6 

 

 𝐼SFG~𝐸vis
2 𝐸IR

2 |𝜒(2) + 𝜒(3)𝜓 ⋅ 𝑓3|
2
. (S6) 

 

Here 𝑓3 describes a correction term for coherence, which for our ionic strength is ~1 and can, 

therefore, be neglected. The surface potential 𝜓 is described by the Graham equation: 

 

 𝜓 = 2
𝑘B𝑇

𝑒
sinh−1(2𝜋𝜎 𝜆B𝜆D) = 2

𝑘B𝑇

𝑒
sinh−1 (

𝑒𝜎

√8𝑘B𝑇𝑁A𝜌s𝜖0𝜖r
), (S7) 

 

where 𝑘B is the Boltzmann constant, 𝑇 the temperature, 𝑒 the elementary charge, 𝜎 the 

number of charged surface groups, 𝜆B the Bjerrum length and 𝜆D the Debye length, 𝑁A the 

Avogadro constant, 𝜌s the background concentration in mol/m3, 𝜖0 the electric permittivity 

of vacuum, and 𝜖r the relative permittivity of water. 

As discussed in the main text, the flow-induced changes in ionic strength are much lower 

than the background ionic strength, which is why screening is excluded as a cause of the 
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observed changes. Therefore, and in accordance with other studies4,17, we correlate the 

changes in the v-SFG response in this work solely to changes in the surface charge. This 

change in surface charge can influence not only the surface potential but also 𝜒(2) and thus 

both terms in equation (S5) in a complex manner 18. For simplicity, we employ the following 

approximation  

 

 ISFG~𝜓2. (S8) 
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Supplementary Note 2.  

Additional v-SFG Results 

 

 

Supplementary Figure 1. Exemplary time traces of the v-SFG signal with flow on/off cycles. Similar to Fig. 1c in the 
main text, time traces of the integrated v-SFG signal (black circles) and a ten-point average (orange) as a guide for the eye 
are shown. The black curve shows the flow rate. The regimes marked by the blue and red lines are the flow-off and flow-on 
regimes, respectively. These regimes were used for calculating the relative increases in the v-SFG response due to flow. The 
change in the v-SFG intensity in these regimes is very low over time. Thus steady-state can be assumed.  
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Supplementary Figure 2. Gradient in the increase of the v-SFG intensity along the mineral surface. At different 
positions, the relative increase in the v-SFG intensity at the CaF2-water interface is calculated based on averaged steady-
state spectra under flow-on and flow-off conditions as marked in Fig.1c of the main text and Supplementary Figure1. The 
open circles represent these ratios and the filled symbols are the mean of the ratios at the corresponding positions. The 
error of the individual ratios (open circles) due to small fluctuations within the steady-states of one flow-on/off cycle (see 
Fig1c of the main text and Supplementary Figure1) is negligible compared to the spread. The flow rate was 6mL/min. The 
solid lines are guides to the eye. The position is given as displacement from the center, with values increasing in the 
direction of flow, indicated by the arrow. The black data were already shown in Fig. 3 of the main text. By comparing the 
black and red data, it becomes clear that the addition of 1 μM NaF has no influence on the results as the points in black and 
red are within the spread of each other for every position. 
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Supplementary Figure 3. Experimental results at high fluoride concentrations. (a) Exemplary time traces of the v-SFG 
signal with flow on/off cycles when using a 4 mM NaF solution in pH 3 HCl. (b) At different positions, the relative increase 
in the v-SFG intensity at the CaF2-water interface is calculated based on averaged steady-state spectra under flow-on and 
flow-off conditions as marked in Fig1c of the main text and Supplementary Figure1. The open circles represent these ratios 
and the filled symbols are the mean of the ratios at the corresponding positions. The flow rate was 6mL/min. The solid line 
is a guide to the eye. The position is given as displacement from the center, with values increasing in the direction of flow, 
indicated by the arrow.  
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Supplementary Note 3.  

Details of the Experimental Set up. 

 

 

Supplementary Figure 4. Illustration of Flow Set up. (a) The flow cell has a flow channel with a rectangular CaF2 prism 
mount on top. The Vis and IR laser pulse overlap at the center of the flow channel and generate SFG light in total internal 
reflection geometry. The flow cell is connected to a reservoir and a peristaltic pump. (b) Technical drawings of the flow cell 
with lengths in mm. Top panel shows a top view. A and B indicates the position of the cross sections in the middle and 
bottom panel, respectively. 
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Supplementary Discussion 1.  

Full Poisson-Nernst-Planck-Stokes calculations 

Solving the Poisson-Nernst-Planck equations with a finite element analysis requires a mesh 

size significantly smaller than the Debye length (~10 nm). We observed that the full 

experimental geometry has to be modeled, with a length scale of centimeters, to describe the 

experiments. The use of many more than 107 mesh elements is computationally prohibitive. 

In this section, we will show that the results of small-scale Poisson-Nernst-Planck 

calculations are qualitatively similar and highlight a few minor quantitative deviations. 

The set of equations that will be solved are the same as those in equations (3), (5)-(7) in the 

main text, but with the addition of the Poisson equation for the electric potential 𝜓, a 

conduction term added to the diffusion-advection equation, an extra electrostatic boundary 

condition relating the total surface charge density 𝑒𝜎 to the electric field over the surface 

normal 𝐧. For completeness, a body force term 𝑒 ∑ 𝑧𝑖𝜌𝑖𝑖  𝛁𝜓, with 𝑧𝑖 the ion valency, has to 

be added to the Stokes equation. However, this term can be almost always neglected in 

pressure-driven flows. The set of equations is thus given by 

 

 ∇2𝜓 = −
𝑒

𝜖
∑ 𝑧𝑖𝜌𝑖

𝑖

,  (S9) 

 𝜕𝑡𝐮 = −𝜵𝑝 + 𝜂𝛻2𝐮 − 𝑒 ∑ 𝑧𝑖𝜌𝑖

𝑖

 𝛁𝜓, (S10) 

 𝜕𝑡𝜌𝑖 = 𝐷∇2𝜌𝑖 − 𝛁 ⋅ (𝜌𝑖 𝐮) + 𝐷
𝑒𝑧𝑖𝜌𝑖

𝑘𝐵𝑇
 𝛁𝜓, (S11) 

 𝐧 ⋅ 𝛁𝜓 =
𝑒𝜎

𝜖
, (S12) 

 𝜓(±∞) = 0. (S13) 

 

In equilibrium this set of equations reverts back to regular Poisson-Boltzmann theory, that 

yields a diffuse layer of excess counter-ions, the electric double layer, near the charged 

surface. The decay length of the electric potential in this layer is the Debye length 𝜆D =
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(8𝜋𝜆B𝜌s)−1/2 where 𝜆B  is the Bjerrum length and 𝜌s the bulk concentration of an added 1:1 

electrolyte. The geometry is scaled down to a cylindrical channel with length 5 μm and radius 

0.15 𝜇m. The length of the dissolving, charged surface in the middle of the channel is 2.5 𝜇m. 

When including dissolution, a concentration profile of reactive ions forms, which breaks the 

translational invariance along the channel. When the concentration gradient over the Debye 

length is much larger than the concentration gradient over the channel, ∂𝑟𝜌 ≫ ∂𝑥𝜌, we can 

use the lubrication layer approximation19. This allows us to write the surface charge as 

𝜎(𝑥) = Γ(1 + 𝑘ads𝜌(𝑟 = 0, 𝑥) 𝑒𝜙0(𝜎(𝑥))/𝑘des)
−1

, with 𝜙0=𝜓0 𝑒/𝑘B𝑇  the dimensionless 

electric potential at the surface. We combine this result with the Gouy-Chapman result 

derived for the surface potential of flat plates finding 𝜙(𝑥) = 2 sinh−1(2𝜋𝜆B𝜆D𝜎(𝑥)). We 

compare the Gouy-Chapman surface potential with the numerically calculated surface 

potential in Supplementary Figure 5. Note that both the lubrication layer and Gouy-Chapman 

approximation work well at the 𝜇𝑚 length scale, and the quality of the approximations is 

expected to increase at larger length scales. 

When a pressure difference is applied over the channel, the electric boundary condition 

becomes of importance, as a streaming current is generated. In the experimental system, the 

fluid circulates, and inlet and outlet are connected, so boundary conditions representing a 

closed electric circuit are used: 𝜓(𝑥 = ±∞) = 0. The resulting concentration profiles for 

Peclet numbers of one, two, and four times 3.5 ⋅ 106 can be seen in Supplementary Figure 5. 

These calculations were repeated without any charge on the dissolving surface, but with the 

same surface reaction. The concentration profile in the middle stays the same with and 

without the conduction term. 
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Supplementary Figure 5. Comparison between Small Scale Calculations with and without a Conduction Term. (a) 
The concentration on the central axis of the channel (red) and the concentration at the surface (blue) with a conduction 
term for the lowest and highest Peclet number investigated here, together with the corresponding profiles (gray) without 
conduction, which both overlap almost exactly with the red curves . The difference between the red and blue lines is due to 
electrostatic attraction between the surface and reactive ions, and can be accounted for by a Boltzmann factor 𝑒𝜙0 . (b) 
surface charge heterogeneity with conduction (orange) and without conduction (violet) for Peclet numbers 0, 1, 2 and 4 
times 3.5 ⋅ 106 (dark to light). The large quantitative difference is again due to a change in concentration due to electrostatic 
attraction, but qualitatively the trends are the same. (c) Comparison between the electrostatic potential directly extracted 
from the numerical calculations with conduction (gray) and the surface potential as calculated by the Gouy-Chapman 
(green) from the same calculation for Peclet numbers 0, 1, 2 and 4 times 3.5 ⋅ 106 (dark to light).  

 

The chief difference between these two concentration profiles is an increase of the 

concentration by a factor of 𝑒𝜙0  at the surface. While this does not change any of the 

qualitative features of our model, namely a surface charge gradient induced by flow over a 

dissolving surface, it does affect the magnitude of this effect. This can be seen in 

Supplementary Figure 5b where we plot the obtained surface charge with and without 

conduction at the different flow rates. The difference between the two responses is 

significant (approximately a factor of five). This is mainly due to a rescaling of the 

equilibrium constant 𝐾 by a Boltzmann factor 𝐾ch = 𝐾unche𝜙0 , where 𝐾ch is the equilibrium 

constant 𝑘ads𝜌b/𝑘des with electrostatics and 𝐾unch is the equilibrium constant without 
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electrostatics. As the equilibrium constant is an effective fit parameter used to reproduce the 

equilibrium surface potential 𝜓0, this rescaling is effectively absorbed during our calculation 

in the main text. Note that the equilibrium surface potential is calculated using 𝐾ch instead 

of 𝐾unch, which therefore accounts for the electric double layer. When the surface potential 

changes, the equilibrium constant also changes. This feature is neglected in the main text, 

however it only introduces minor quantitative deviations. Thus, the main conclusions from 

the numerical calculations with electrostatics included are that (i) the expression for 

equilibrated EDL’s (Gouy-Chapman) is valid and hence non-equilibrium electrostatic 

phenomena can be neglected, and (ii) upon including electrostatics the same qualitative 

behavior is found as in the main text. 

 

  



 

  S-14 

Supplementary Discussion 2.  

Analytic one-dimensional model 

As analytically solving the two-dimensional dissolution-diffusion-flow problem defined by 

equations (6)-(7) in the main text is intractable, we first convert the problem to an effective 

one-dimensional problem, which is analytically solvable. This one-dimensional problem can 

be solved while taking most experimental complications into account (back-reaction, a piece 

of the channel without a dissolving surface). However, the resulting analytic results are 

usually too complex to aid understanding of the system. Therefore, we introduce some 

further simplifications. The presented method can be straightforwardly extended to a 

parallel plate geometry. 

We transform the two-dimensional diffusion-advection problem to a one-dimensional 

problem by radially integrating the diffusion-advection equation to obtain the average 

density �̅�(𝑥) = 2𝜋∫ 𝜌(𝑥, 𝑟) 𝑟 ⅆ𝑟/𝜋𝑅2. For convenience we drop the subscript F for the 

entirety of this section, but will still focus on the ion partaking both in charging and 

dissolution i.e. the fluoride concentration. In the regions without dissolution, we then find 

 

 𝜕𝑡�̅� = 𝐷𝜕𝑥
2 �̅� − ∂𝑥𝑢𝜌̅̅̅̅ . (S14) 

 

Whereas the diffusive term is straightforwardly integrated, the calculation of the advective 

term is more complicated. This is because it results in a density-weighted velocity 

𝑢𝜌̅̅̅̅ =2𝜋∫ 𝑢𝑥(𝑟)𝜌(𝑟, 𝑥) 𝑟 ⅆ𝑟/𝜋𝑅2, which requires the knowledge of 𝜌(𝑥, 𝑟) as a function of the 

radial coordinate to calculate. In the narrow-channel limit 
𝛿

𝑅
≫ 1, however, the 

approximation 𝜌(𝑥, 𝑟) = �̅�(𝑥) is valid as shown in the main text, and the radially averaged 

advection-diffusion equation simply becomes: 

 

 𝜕𝑡�̅� = 𝐷𝜕𝑥
2 �̅� − �̅�𝜕𝑥�̅�. (S15) 
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In the opposite limit of a thin boundary layer (
𝛿

𝑅
≪ 1) the integral 𝑢𝜌̅̅̅̅  does not factorize as 

there is a significant radial variation in the concentration 𝜌(𝑥, 𝑟). A qualitative 

approximation can be made in the limit of high Peclet (Pe ≫ 1) by replacing the average 

velocity �̅� by the effective boundary transfer velocity ℎ ∝ �̅�2/3, as will be derived in 

Supplementary Discussion 2. The boundary transfer velocity accounts for the effect that at 

high flow velocities the ions released from the surface do not have time to spread out over 

the length of the entire radius by diffusion. This lowers the effective flow velocity (ℎ ∝ �̅�2/3) 

as the velocity near the surface of the channel is lower than at the center.  

Continuing with the narrow channel limit 
𝛿

𝑅
≫ 1 , where 𝑢𝜌̅̅̅̅ = �̅��̅�, the integration of equation 

(S15) in the region with a dissolving surface (represented by the source term 𝐉) is 

straightforward and results in 

 

 𝜕𝑡�̅� ≈ 𝐷𝜕𝑥
2�̅� − �̅�𝜕𝑥�̅� + 2𝑛

𝑘dis − 𝑘prec𝜌b

𝑅
− 4𝑛

kprec

𝑅
(�̅� − 𝜌b), (S16) 

 

where the dissolution term was substituted for the radial concentration gradient at the 

boundary 𝐧 ⋅ 𝐉 = 𝐷𝜕𝑟𝜌.  We linearized the precipitation in the density 𝑘prec𝜌𝑛 ≈  𝑘prec𝜌b −

𝑛 𝑘prec(𝜌 − 𝜌b) to ensure that the equation remains a linear, solvable differential equation. 

Here 𝑛 is the stochiometric constant relating the number of ions released per uncharged unit. 

Note that these equations are approximations valid in the limit 
𝛿

𝑅
≪ 1.  

From differential equations equation (S15) and equation (S16) we can construct analytic 

solutions for simple geometries involving patches of non-dissolving and dissolving channels. 

For instance, in a channel with a dissolving surface in the middle separated by two regions 

without dissolution to two bulk reservoirs, we would have three differential equations, 

namely two patches without dissolution and one patch with dissolution. For the dissolving 

surface, we would use equation (S16), and for the regions without a dissolving surface, 

equation (S15) is used. At the edge of each discontinuity, the boundary condition �̅�𝑛(𝑥𝑛) =

𝜌𝑛 is used, where 𝑥𝑛 is the boundary between geometry elements 𝑛 and 𝑛 + 1, �̅�𝑛 denotes 
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the solution to the 𝑛th differential equation. The boundary concentration 𝜌𝑛 is an unknown 

concentration that can be fixed by using that the average concentration �̅�𝑛 at each boundary 

is continuous �̅�𝑛(𝑥𝑛) = �̅�𝑛+1(𝑥𝑛), which is true as long as the radius 𝑅(𝑥) is continuous. This 

then gives 𝑛 − 1 equalities for 𝑛 + 1 unknown concentrations. The two unknown 

concentrations are located at the edges of the model system (for instance, the edge of the 

bulk reservoirs). In this work, the boundary condition �̅�1(𝑥0) = �̅�𝑁(𝑥𝑁) = 𝜌𝑏 , with 𝑥0 being 

the leftmost system boundary and 𝑥𝑁 being the rightmost system boundary, was always 

used. While this set of equations is always analytically solvable (and is straightforwardly 

extended to, for instance, multiple reactive patches) the resulting expressions are often so 

complicated to the point of being illegible, even with only three spatial regions (two non-

dissolving patches and a channel with only a dissolving surface). The solutions are 

computationally accessible, so the solutions can be straightforwardly plotted to gain insight 

without having to resort to numerical calculations. Here we will consider the solution in a 

simplified case, leading to the result shown in the main text. We consider a geometry with 

only one part; a dissolving channel of length 2𝐿, with radius 𝑅, and neglect the precipitation 

term. We chose not to add the two non-dissolving walls because of the additional complexity 

in the final expressions. The resulting expression is 

 

 
𝜌(𝑥)

𝜌b
= 1 +

Δ𝜌𝑚𝑎𝑥

𝑃𝑒
 (

2𝑥

𝐿
+ (1 + 𝑒2 Pe − 2𝑒Pe(1+

𝑥
𝐿

)) (Coth(Pe) − 1)), (S17) 

 

which, in the limit of low and high Peclet number, simplifies to equation (8) in the main text. 

Here Δ𝜌 =  𝑘dis𝐿2 𝐷𝑅𝜌b⁄  and Pe = 2𝑢𝐿/𝐷. It can be seen in Figure 7 in the main text that this 

analytic result matches numerical results in the narrow channel limit (𝛿/𝑅 ≫ 1)  

In principle, this one-dimensional model is fully solvable for any radially symmetric 

geometry with continuous radius 𝑅(𝑥) and constant radial concentration 𝜌(𝑥, 𝑟) = �̅�(𝑥). In 

practice, the resulting expressions, while valid, become so complex that they are useless for 

insight and even become computationally heavy to plot and manipulate. Highly simplified 

analytic models lose quantitative predictive power but incorporate all the fundamental 
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physics in the problem: dissolution, advection, and reactions, and qualitatively describes 

how they balance each other.   

 

Supplementary Discussion 3.  

Diffuse boundary layer 

In this section we summarize the derivation of the diffuse boundary layer as presented 

elsewhere20. A diffuse boundary layer is the concentration profile that forms near a 

dissolving surface when lateral advection is so strong that there is not enough time for radial 

diffusion to occur. As in the previous section, we drop the subscript 𝐹 on the density 𝜌, but 

we are still explicitly solving for the fluoride concentration. 

Observing that at high Peclet numbers lateral diffusion can be neglected, the diffusion-

advection equation can be written in stationary state as 

 

        𝜕𝑡𝜌 = 𝐷∇2𝜌 − ∇ ⋅ (u𝜌) ≈
𝐷

𝑟
𝜕𝑟(𝑟𝜕𝑟𝜌) − 𝑢𝑥(𝑟)𝜕𝑥𝜌 = 0. (S18) 

 

Now we consider a very long channel with a fully developed laminar flow profile with a 

laterally constant surface concentration 𝜌m, for which the boundary conditions can be 

written as 

 

       {

𝜌(±∞, 𝑟) = 𝜌b,

𝜌(𝑥, 𝑅) = 𝜌m,

𝜕𝑟𝜌(𝑥, 0) = 0.

 (S19) 

 

This is traditionally known as the Graetz problem20-22. The assumption of a constant surface 

concentration is not valid in the model considered in the main text. However, the present 

analysis is concerned with describing the concentration profile some distance 𝛿 from the 
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surface. We will solve differential equation (S18) together with boundary conditions 

equation (S19) using the Ansatz that the solution is self-similar, and that the concentration 

profile 𝜌(𝑥, 𝑟) that depends on two variables can be described by a function of a single self-

similar variable 𝜂 

       𝜌(𝑥, 𝑟) = 𝑓(𝜂). (S20) 

 

The existence of a self-similar solution is suggested23 because it is not possible to define a 

dimensionless lateral position 𝑋 using only the lateral position and velocity, 𝑥 and 𝑢𝑥, and 

hence the concentration should be reducible to a one parameter equation of  𝜂 ∝ (𝑅 −

𝑟)/𝛿(𝑥). Now we define the dimensionless, self-similar, parameters 

 

       𝜂 =
𝑅 − 𝑟

𝛿(𝑥)
= (𝑅 − 𝑟) (

4 �̅�

9𝐷𝑅(𝑥 + 𝐻)
)

1
3

, (S21) 

 

      𝜁 =
𝛿(𝑥)3

𝑅3
=

9𝐷(𝑥 + 𝐻)

4�̅�𝑅2
, (S22) 

 

      Θ =
𝜌 − 𝜌m

𝜌b − 𝜌m
. (S23) 

 

and using this we rewrite equation (S19) to20  

 

 
𝜕2Θ

𝜕𝜂2
+ 3𝜂2

𝜕Θ

𝜕𝜂
− 3𝜂𝜁

1
3

𝜕Θ

𝜕𝜁
1
3

= (
3

2
𝜂3𝜁

1
3 +

𝜁
1
3

1 − 𝜂3𝜁
1
3

) 
𝜕Θ

𝜕𝜂
−

3

2
𝜂2𝜁

2
3

𝜕Θ

𝜕𝜁
1
3

. (S24) 

 

 We find the dimensionless boundary conditions 
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 {
Θ(𝜂 = ∞) = 1,

Θ(𝜂 =  0) = 0.
 (S25) 

 

The solution to equation (S24) can be expanded as function of 𝜁 = 𝛿/𝑅 

 

 Θ = Θ0(𝜂) + 𝜁
1
3Θ1(𝜂) + 𝜁

2
3Θ2(𝜂) + 𝑂(𝜁), (S26) 

 

where at high Peclet number we only consider the dominant zero-order term, also known as 

the Lévêque approximation 

 

 
ⅆ2Θ0

ⅆ𝜂2
+ 3𝜂2

ⅆΘ0

ⅆ𝜂
= 0. (S27) 

 

This is approximation is equal to only considering the first order term of the velocity 

expansion 𝑢(𝑟) ≈ 4�̅�(1 − 𝑟/𝑅) + 𝑂((1 − 𝑟/𝑅)2) 21 close to 𝑟 = 𝑅, and hence is valid in the 

limit of high Peclet number where 𝛿/𝑅 ≪ 1. Solving for Θ0 we find the Lévêque solution 

 

 Θ0(𝜂) = 𝐶−1 ∫ 𝑒−𝑠3
 ⅆ𝑠,

𝜂

0

 (S28) 

 

 𝐶 = ∫ 𝑒−𝑠3
 ⅆ𝑠

∞

0

= Γ (
4

3
) ≈ 0.9. (S29) 

 

with Γ the Euler gamma function. Plotting the concentration profile in Supplementary Figure 

6 as a function of the radial coordinate at 𝑥 = 0 we see that the radial concentration profile 

is very well approximated by the Lévêque solution. In Supplementary Figure 7 we plot the 
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radial position 𝑅 − 𝑟 at which the concentration satisfies 1.9 <
𝜌F(𝑟)

𝜌b,F
< 2.1 together with 

𝛿(𝑥) as function of (𝑥 + 𝐻)1/3. We find that the boundary layer thickness in our numerical 

calculations is linear in(𝑥 + 𝐻)1/3 as expected. 

Thus, for 𝑥 = 0 and at a flow rate of 1 mL/min we find that the typical boundary layer 

thickness at which the radial concentration has decayed by 90% of its surface value is 

approximately 𝛿 ≈ 0.4 mm. 

 

Supplementary Figure 6. Radial Concentration Profiles. The radial concentration profile of reactive ions in the center 
of the channel at different flow speeds are shown. The data were obtained from full numerical calculations as described in 
the main text. It can be seen that close to the surface, the concentration profile is well described by a linear concentration 
profile with a flow-dependent length scale. Circles are the analytically predicted diffuse boundary layer at the lowest flow 
rate according to equation (S28) with the maximum density 𝜌𝑚 fit parameter. 

 

While the behavior of the concentration profile at some distance from the channel wall is 

thus correctly described by diffuse boundary layer theory, the near-surface (𝑅 − 𝑟 ≪ 𝛿) 

profile deviates significantly from the Lévêque solution as the assumption of a constant 

surface concentration is incompatible with the macroscopic concentration gradient, which 

is the main object of interest in the main text. Thus, while superficially similar to a cuberoot 
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scaling, the surface concentration 𝜌(𝑥, 𝑅) does not follow the power law (𝑥 + 𝐻)1/3. To 

estimate the influence of the diffuse boundary layer on the surface concentration 𝜌(𝑥, 𝑅) we 

insert an approximation for the radial concentration profile (S34, S36) into our analytic 

calculation as presented in Supplementary Discussion 2, which allows us to calculate 𝜌m =

𝜌(𝑥, 𝑅). Note that this combination of diffuse boundary layer theory and the radially 

integrated diffusion-advection equation does not result in a fully self-consistent theory. 

However it does allow us to estimate the change in surface concentration with regard to 

flow-rate. 

The fact that the diffuse boundary layer is localized near the channel wall where the velocity 

is low implies that the effective velocity for the transport of ions is much lower than the 

channel-averaged velocity. To estimate the effect of the small boundary layer thickness we 

need an expression for 𝜌(𝑥, 𝑟) such that the integral ∫ 𝜌(𝑟)𝑢(𝑟)𝑟 ⅆ𝑟
𝑅

0
 can be evaluated, as 

required for S14. Inspecting the numerically obtained concentration profiles in 

Supplementary Figure 5 we see that the it can be approximated by the simple form 

 

 𝜌(𝑟, 𝑥) = {

𝜌b                                                  if       𝑟 < 𝑅 − 𝛿(𝑥),
 

𝜌b +
𝜌m − 𝜌b

𝛿(𝑥)
(𝑟 − 𝑅 + 𝛿(𝑥))     if   𝑅 − 𝛿(𝑥) <  𝑟 < 𝑅.

 (S30) 

 

With this approximation the divergence of the density weighted velocity 𝑢𝜌̅̅̅̅ , as defined in 

equation (S14), can be straightforwardly found 

 

 𝜕𝑥 𝑢𝜌̅̅̅̅ = 𝜕𝑥 (�̅�
4𝛿2

3𝑅2
(𝜌m − 𝜌b)) + 𝑂 (

𝛿3

𝑅3
) ≈ 𝜕𝑥

4�̅�𝛿

3𝑅
�̅�. (S31) 

 

From this we can define the effective density weighted velocity  ℎ, also known as the 

boundary transfer velocity22. The boundary transfer velocity is given by ℎ = 4�̅�𝛿/3𝑅 when 

the surface concentration is much larger than the bulk concentration (𝜌𝑚 ≫ 𝜌b), in which 
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case �̅� = 𝜌m𝛿/𝑅, and the gradient in the surface concentration is larger than the gradient in 

the boundary thickness (𝜌m
−1𝜕𝑥𝜌m ≫ 𝛿−1𝜕𝑥𝛿). As seen from S28 the boundary thickness 

satisfies 𝛿 ∝  �̅�−1/3 and thus the effective transfer velocity scales as 

 ℎ = �̅�
4𝛿

3𝑅
∝ �̅�2/3 . (S32) 

From this it can be straightforwardly seen that the Sherwood number Sh, which is the 

dimensionless number comparing the boundary transfer rate with the diffusion rate, scales 

as Sh= 2𝐿ℎ/𝐷 ∝ Pe2/3  20,22. While the effective advection rate scaling by a power of 1/3 with 

the channel-averaged advection rate is a well-known result for a channel wall, kept at a 

constant concentration20-22, here we show that a phenomenological model for a dissolving 

channel with a heterogeneous surface concentration gives rise to a power of 2/3. 

 

 

Supplementary Figure 7. Verification cube root scaling diffuse boundary layer thickness. The radial position at which 
the concentration is between 1.9 < 𝜌/𝜌𝑏 < 2.1 (data points) against the cube root of the lateral position (𝐻 + 𝑥)1/3, plotted 
from the 𝑥 = −𝐻 to 𝑥 = 𝐻. It can be clearly seen that the numerical data is linear in the cube root of the position (𝐻 + 𝑥)1/3. 
The 𝑦-axis scale is between 0 < 𝑟 < 𝑅. 
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The Sherwood number replacing the Peclet number and scaling as a power smaller than 1 

of the latter captures an important aspect of our experiment, namely that the effective 

advection rate over the boundary layer is much lower than the channel-averaged advection 

rate. This causes the sharp transition between the flow and no-flow concentrations seen in 

Supplementary Figure 7b to broaden significantly to larger Peclet number. As the 

experimental Peclet number is Pe ≈ 105, the Sherwood number is lower by almost two 

orders of magnitude Sh ≈ 103. Combined with the precipitation reaction, which increases 

the dissolution rate at lower surface concentration, the lower effective advective transfer 

rate ℎ explains why there is still a significant change of concentration with flow while the 

limit of large Peclet number has been reached in our experiments.  We stress that the 

scaling relation between surface concentration and flow rate in the case of a fully 

developed diffuse boundary layer is an order-of-magnitude estimation and that we have 

not found a regime in which it is quantitatively accurate.  
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