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A generalized density-modulated twist-splay-bend
phase of banana-shaped particles
Massimiliano Chiappini 1✉ & Marjolein Dijkstra 1✉

In 1976, Meyer predicted that bend distortions of the nematic director field are com-

plemented by deformations of either twist or splay, yielding twist-bend and splay-bend

nematic phases, respectively. Four decades later, the existence of the splay-bend nematic

phase remains dubious, and the origin of these spontaneous distortions uncertain. Here, we

conjecture that bend deformations of the nematic director can be complemented by simul-

taneous distortions of both twist and splay, yielding a twist-splay-bend nematic phase. Using

theory and simulations, we show that the coupling between polar order and bend defor-

mations drives the formation of modulated phases in systems of curved rods. We find that

twist-bend phases transition to splay-bend phases via intermediate twist-splay-bend phases,

and that splay distortions are always accompanied by periodic density modulations due to the

coupling of the particle curvature with the non-uniform curvature of the splayed director field,

implying that the twist-splay-bend and splay-bend phases of banana-shaped particles are

actually smectic phases.
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The simplest and most common liquid crystal phase is the
nematic phase, which is also the most relevant one for
optoelectronic applications. The uniaxial nematic (N)

phase consists of anisotropic particles that lack positional order
but display orientational order as the particles are preferentially
aligned along a so-called nematic director n̂. More exotic states of
matter can be conjectured if the nematic director is allowed to
vary in space, i.e. the average orientation of a particle at position r
is defined by a nematic director field n̂ðrÞ. A well-known example
is the chiral nematic or cholesteric (N*) phase, which is char-
acterised by a nematic director that rotates as a helix around a
chiral director with a cholesteric pitch length p, denoting the
length scale associated to the helical periodicity.

An even more fascinating example is the twist-bend nematic
(NTB) phase, recently discovered in experiments on bent-core
mesogens1–12. The NTB phase was already predicted by Meyer in
197613 and by Dozov in 200114 for banana-shaped particles that
favor spontaneous bend deformations in the nematic director
field. As a pure bend deformation cannot uniformly fill the three-
dimensional space, local bend deformations have to be accom-
panied by either a spontaneous twist, yielding an NTB phase, or by
splay distortions, resulting into an oscillating splay-bend nematic
(NSB) phase, see Fig. 1a, c. The NTB phase is characterised by a
nematic director field that precesses around a right circular cone
with a pitch p and a conical angle 0 < θ0 < π/2. Hence, the NTB

phase is a chiral phase with local polar order and a uniform bend
deformation. Because of the achirality of bent-core mesogens, the
precession of the nematic director of the NTB phase can be left- or
right-handed. On the other hand, the nematic director field of the
NSB phase precesses over a flat isosceles triangle with maximum
angle θ0, thereby preserving the achiral symmetry and oscillating
between non-uniform bend and splay domains, see Supplemen-
tary Note 2.

Many fundamental questions regarding the NTB phase are still
open despite numerous theoretical and experimental investiga-
tions. Even the most basic question regarding the origin of bend
deformations and the appearance of chiral symmetry in systems

of achiral bent-shaped particles is still unresolved. While Meyer
invoked that bend deformations originate from the spontaneous
polar ordering of the particles due to either the molecular shape
or the electrostatic polarization13,15, Dozov ignored the possibility
of spontaneous polar order and explained the bend distortions by
a negative bend elastic constant14. In addition, the relationship
between the structure of the NTB phase and the details of the
constituent molecules is still not well understood. It is found
experimentally that the observation of the NTB phase depends
sensitively on the molecular details.

Flexible bent-core molecules linked with an odd number of
hydrocarbon atoms display NTB phases but not the ones with an
even-numbered linkage16. On the other hand, computer simula-
tions demonstrate the existence of NTB phases for both rigid and
flexible banana-shaped molecules17–20. Flexibility also plays an
important role in the stabilisation of NTB phases as most rigid
bent-core molecules form smectic (Sm) phases instead of nematic
phases. Finally, the prediction of the surprisingly short pitch
length and of the non-trivial tilt angle of the helicoidal nematic
director field on the basis of the microscopic details of the par-
ticles is also of urgent interest for the design of optoelectronic
materials.

On the other hand, even though the Oseen–Frank theory
predicts the NSB to be more stable than the NTB phase when the
splay elastic constant is smaller than twice the twist elastic con-
stant, experimental evidence of a NSB phase is still lacking. Recent
simulations suggest that an NSB phase could be stabilised in
lyotropic systems of banana-shaped particles20 but the presence
of long-ranged density modulations questions the nematic nature
of this NSB phase. We also note that a transition from an NTB

phase to an unidentified density-modulated (SmX) phase was
recently observed in experiments21. Yet it is unclear what the
physical mechanism is behind the NSB phase and how the system
transforms into an NSB phase. Does the transformation from the
N or NTB phase proceed via a first-order or second-order phase
transition? Here we conjecture that the transition from the NTB to
the NSB phase may proceed via an intermediate phase that

Fig. 1 Schematics of a twist-bend, twist-splay-bend, and splay-bend nematic phase of curved rods. a–c Side and top views of the spatial modulations of
the particle orientations in (a) a chiral twist-bend nematic (NTB) phase, b a chiral twist-splay-bend nematic (NTSB) phase and (c) an achiral splay-bend
nematic (NSB) phase. d A hard curved spherocylinder consisting of a cylinder of length L and diameter D capped at both ends with a hemisphere of
diameter D and bent with a radius of curvature R corresponding to an opening angle Ψ= L/R. In our generalized Maier–Saupe theory, this particle is
modelled as a rigid chain of M segments with center-of-mass positions ri and orientations ûi tangent to the particle profile for i∈ 1,⋯ ,M, sketched by the
(pink) arrows pointing upwards along the arc.
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displays spatial modulations of both twist, splay, and bend,
thereby extending Meyer’s speculations of 1976 by conjecturing
that spontaneous bend deformations of the nematic director field
can be accompanied by simultaneous deformations of both twist
and splay. In this picture, twist deformations in the NTB phase are
gradually replaced by splay deformations, eventually resulting
into an NSB phase with pure splay and bend deformations. A
similar scenario was recently discovered by studying the response
of an NTB phase to an external field22,23, which undergoes a
structural change via an elliptical analogue of the NTB phase to an
NSB phase upon increasing the field strength. This intermediate
phase that we term the twist-splay-bend nematic (NTSB) phase is
characterized by a nematic director that precesses around an
elliptical cone with conical angles θa and θb, see Fig. 2.

To shed light on the microscopic origin of the spatially
modulated nematic phases and to better understand the trans-
formation from the NTB to an NSB phase via a possible NTSB

phase, we develop a Maier–Saupe-like mean-field theory that
takes into account not only the particle shape and interactions,
but also the spatial modulations of the nematic director and
density field in a variational fashion. We map out a theoretical
phase diagram of curved spherocylinders that displays stable NTB,
twist-splay-bend, and splay-bend phases, and test the predictions
against simulations. We show that the twist-splay-bend and
splay-bend (smectic) phases present periodic density modulations
due to non-uniform deformations in the director field. Finally, we
derive a relation between the particle curvature and the structure
of the NTB phase.

Results
A variational mean-field theory for spatially modulated liquid
crystal phases. We generalize a recent Maier–Saupe theory for
thermotropic bent-core mesogens24 to determine the phase
behavior of curved spherocylinders with diameter D, length L,
and radius of curvature R corresponding to a central angle Ψ=
L/R (Fig. 1d). We describe a curved spherocylinder with centre-
of-mass position R= (X, Y, Z) and orientation Ω= (α, β, γ) as a
rigid chain of M segments of length L/M. We find that M=
10 segments is sufficient to account for the particle shape for the
range of Ψ that we considered. Each segment i, with centre-of-
mass position ri and orientation ûi, is assumed to align pre-
ferentially along the local nematic director n̂ðriÞ via an effective

mean-field potential βU(R,Ω). In addition, we employ McMil-
lan’s extension25 to account for possible density modulations
along the (global) nematic director. The resulting effective mean-
field potential reads

βUðR;ΩÞ ¼ � βϵ

M
Sþ ατ cos

2πZ
λ

� �� �
´ ∑

M

i¼1
P2ðûi � n̂ðriÞÞ

� �
;

ð1Þ
where, βϵ is a dimensionless constant that quantifies the align-
ment strength, P2(x)= (3x2− 1)/2 is the second-order Legendre
polynomial, β= 1/kBT is the inverse temperature with kB Boltz-
mann’s constant, λ is the periodicity of the density modulations,
and α is a tunable parameter determining the tendency of the
system to form density modulations. Furthermore, S and τ are the
local nematic and the smectic order parameters, respectively,

S ¼ 1
M

∑
M

i¼1
P2ðûi � n̂ðriÞÞ

� �
; and

τ ¼ cos
2πZ
λ

� �
1
M

∑
M

i¼1
P2ðûi � n̂ðriÞÞ

� �� �
;

ð2Þ

where 〈⋯ 〉= ∫dRdΩf(R,Ω)⋯ denotes the ensemble average
with the probability distribution function f ðR;ΩÞ ¼
exp½�βUðR;ΩÞ�=Q for the position and orientation of a curved
spherocylinder, and Q ¼ R dR dΩ exp½�βUðR;ΩÞ� is the par-
tition function.

As a variational ansatz for n̂ðrÞ we employ the nematic director
field n̂TSBðzjθa; θb; qÞ of a generic NTSB phase with conical angle
θa and θb, wavenumber q, and the helical axis along the z−
direction

n̂TSBðzjθa; θb; qÞ ¼ sinðθbÞ cosðqzÞ iþ sinðθaÞ sinðqzÞ j
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ðθbÞcos2ðqzÞ � sin2ðθaÞsin2ðqzÞ

q
k:

ð3Þ
We note that the NTSB phase reduces to an NTB phase with a

circular precession cone when θa= θb= θ0, whereas for θa= θb
= π/2 the circular cone reduces to a flat circle resulting into an N*

phase as the precession of the nematic director reduces to a
simple twist around the phase director. If either θa or θb vanishes,
the elliptical cone collapses onto a flat isosceles triangle and
an NSB phase is obtained with nematic director field

Fig. 2 Nematic director field of a twist-splay-bend nematic phase. Precession cone (top panel) and orthogonal projection of the nematic director field
n̂TSBðzjθa; θb; qÞ (bottom panel) of several limiting cases of the twist-splay-bend nematic (NTSB) phase: a the uniaxial nematic (N) phase with θa= θb= 0,
b the splay-bend nematic (NSB) phase with θb= 0, c the NTSB phase with θa≠ θb, d the twist-bend (NTB) phase with θa= θb, and (e) the cholesteric (N*)
phase with θa= θb= π/2.
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n̂TSBðzjθ0; 0; qÞ ¼ sinðθ0Þ sinðqzÞ jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ðθ0Þsin2ðqzÞ

p
k

which differs from the expression n̂SBðzÞ ¼ sinðθ0 sinðqzÞÞ jþ
cosðθ0 sinðqzÞÞ k given by Dozov14. However, for small conical
angles the two expressions for the nematic director fields are
indistinguishable, see Supplementary Note 1. Finally, for θa= θb
= 0 the cone becomes a simple line, and the NTSB simply reduces
to a uniaxial N phase. Hence, all the above-mentioned nematic
phases are limiting cases of the NTSB phase, see Fig. 2. In the
following, we distinguish NTB, NTSB, and NSB states based on their
ellipticity e= θb/θa: we label NTB the states with e > 0.8, NTSB the
states with 0.2 < e < 0.8, and NSB the states with e < 0.2. We note
that the thresholds e= 0.2 and e= 0.8— necessary because of the
statistical error on e — are arbitrary, and every state with
ellipticity e ≠ 0, 1 is, in principle, an NTSB state.

As βU(R,Ω) only depends on the Z-component of R with period
p, we restrict all integrations over R to integrations over Z∈ [0, p].
The onset of orientational and/or positional order corresponds to a
change of entropy per particle ΔS=N ¼ �kB

R
dZdΩ f ðZ;ΩÞ

log ½16π3f ðZ;ΩÞ=q� ¼ hUðZ;ΩÞi=T � kBlog 16π3=qQð Þand to a
change of energy per particle ΔU/N= 〈U(Z,Ω)〉/2. Using Eq. (2),
we obtain the change of free energy per particle relative to the
isotropic state

βΔF
N

¼ βΔU
N

� ΔS
kBN

¼ βϵ
S2 þ ατ2

2

� �
� log

qQ
16π3

� �
: ð4Þ

Minimizing ΔF with respect to S, τ, λ, and the variational
parameters θa, θb, and q of the nematic director field
n̂TSBðzjθa; θb; qÞ yields the equilibrium phase at temperature
kBT/ϵ. We note that since the nematic director n̂TSBðzjθa; θb; qÞ
already imposes a periodicity with pitch length p= 2π/q in
the system, pmust be a multiple of the periodicity λ of the density
modulations, i.e.p= nλ with n 2 N. As the numerical
minimization of ΔF always yields non-integer values of n close
to 2 in spatially modulated phases, we impose n= 2 in all
considered cases.

In Fig. 3a we show the resulting phase diagram from
Maier–Saupe theory for a system of curved spherocylinders as a
function of Ψ and inverse temperature βϵ, where we set α= 0.05.
At low curvature, i.e. small Ψ, the I phase transforms into a
uniaxial N phase and subsequently into an NTB phase upon
increasing βϵ. However, the stability range of the N phase shrinks

with increasing particle curvature, eventually disappearing at Ψ≳
1.2. Our results show that deformations of the nematic director
field become more pronounced with increasing particle curvature
Ψ until the I-N phase transition is replaced by a direct I-NTB

transition20,24,26.
Moreover, our generalized Maier–Saupe theory predicts that

upon increasing βϵ further, the nematic director field exhibits not
only twist and bend modulations but also splay deformations,
resulting in a twist-splay-bend phase. Upon lowering the
temperature further, the twist deformations are gradually
replaced by splay deformations, eventually yielding a splay-bend
phase at sufficiently high βϵ. In particular, we find two distinct
regions of splay-bend phases, one at low particle curvature and
one at high curvature, the latter transforming into a re-entrant
twist-splay-bend phase with increasing βϵ. Intriguingly, our
theory predicts that the onset of splay deformations is
accompanied by density modulations. We therefore refer to these
phases as twist-splay-bend smectic (SmTSB) and splay-bend
smectic (SmSB) phases rather than NTSB and NSB phases. This
finding is also supported by the observation that in the case of α
= 0, i.e. without McMillan’s extension to describe density
modulations, the phase diagram displays only stable I, N, and
NTB phases. The NSB phase is thus unstable in the case of a
homogeneous density field. Furthermore, we find that varying the
value of α > 0 results only in a temperature shift of the transition
from NTB to the SmTSB and SmSB phase, whereas the amplitude of
the density modulations remains unaffected. This confirms that
splay deformations of the nematic director field are inherently
associated with the appearance of density modulations, as already
speculated by De Gennes and Meyer, four decades ago27,28.

Monte Carlo simulations of hard curved spherocylinders in
bulk and sedimentation. To test the predictions of our
Maier–Saupe theory, we study the bulk phase behavior of hard
curved spherocylinders with L/D= 19 and varying particle cur-
vature Ψ using NPT-MC simulations, i.e. the number of particles
N, pressure P and temperature T are fixed. The resulting phase
diagram is shown in Fig. 3b as a function of Ψ and packing
fraction η. The phase behavior of this athermal lyotropic system is
driven by η that plays a similar role as the inverse temperature βϵ
in our Maier–Saupe theory for thermotropic systems. Using this

Fig. 3 Phase diagram of curved spherocylinders. Phase behaviour of hard curved spherocylinders as (a) predicted by theory, as a function of inverse
temperature βϵ and particle curvature Ψ, and (b) obtained from simulations, as a function of packing fraction η and Ψ. Both phase diagrams exhibit an
isotropic (I) phase at low βϵ and η, respectively. For small particle curvatures Ψ the I phase transitions into an uniaxial nematic (N) phase upon increasing
βϵ or η. The stability range of the N phase decreases with Ψ and disappears at Ψ≳ 1.2. Upon increasing βϵ or η further, the twist-bend nematic (NTB) phase
transforms into a twist-splay-bend smectic (SmTSB) phase, and eventually into a splay-bend smectic (SmSB) phase. The splay deformations in the nematic
director field are accompanied by density modulations. Source data are provided as a Source Data file.
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analogy, the comparison of the topology of the theoretical with
the computational phase diagram is remarkable. Our simulations
confirm the I-N-NTB phase sequence at low particle curvature
that transforms into SmTSB and SmSB phases upon increasing η,
as well as a direct I-NTB transition at high particle curvature
transforming into SmTSB and SmSB phases with increasing den-
sity. Our simulations reveal that the splay modulations are
accompanied by density modulations in agreement with our
predictions from Maier–Saupe theory. In the Supplementary
Note 4, we present a mapping of the theoretical and computa-
tional phase diagrams using the dependence of the global nematic
order parameter Sg on temperature and packing fraction, and we
provide a comparison of the orientational order parameters, pitch
and conical angles as a function of thermodynamic state, showing
quantitative agreement between the predictions of the
Maier–Saupe theory and simulations. We note that the main
qualitative difference is the absence of the re-entrant SmTSB phase
in the simulated phase diagram. It is important to mention here
that due to hysteresis effects and slow equilibration it is impos-
sible to accurately determine the regions of stability and the first-
or second-order nature of the phase transitions of the NTB,
SmTSB, and SmSB phases in simulations of hard curved spher-
ocylinders. However, the simulations consistently show that the
phase transformation from an NTB to an SmSB phase proceeds via
an intermediate SmTSB phase as twist deformations are gradually
replaced by splay deformations of the nematic director field. For
example, in Fig. 4 we show typical configurations of an SmSB

phase, an SmTSB phase, and an NTB phase along an expansion of a
system of hard curved spherocylinders of length L/D= 19 and
opening angle Ψ= 1.31 from packing fraction η= 0.406 to
packing fraction η= 0.367. To fully characterise the phases in
Fig. 4, we plot the scalar order parameter S(z), the nematic
director field n̂ðzÞ, and the density field ρ(z) in Supplementary
Fig. 12, 13 and 14. In addition, we also plot the polarisation vector
m̂ðzÞ along with the bend distortions in the director field
described by the bend vector b̂ðzÞ ¼ n̂ ´ ∇ ´ n̂ð Þ=k n̂ ´ ∇ ´ n̂ð Þ k.
We clearly observe that m̂ðzÞ is always anti-parallel to b̂ðzÞ,
demonstrating that these modulated phases are driven by bend
deformations coupled to polar ordering spontaneously arising
from the packing constraints of banana-shaped particles.

Finally, we perform simulations on a system of hard curved
spherocylinders with L/D= 19 and Ψ= 0.99 under gravity with a
gravitational length lg= kBT/mg= 7.5D parallel to ẑ with a hard
wall at the bottom at z= 0, m denoting the buoyancy mass of the
rods and g the gravitational acceleration. The resulting config-
uration, presented in Fig. 5a, shows the full I-N-NTB-SmTSB-SmSB

phase sequence in a single system. In particular, we observe a
continuous transition from an NTB phase with a director field
precessing on a circular cone at the top of the sediment, via an
SmTSB phase where the precession cone becomes elliptic, towards
an SmSB phase where the elliptical cone reduces to a flat triangle
at the bottom of the sample. Hence, the transition from the NTB

to the SmSB phase occurs via a continuous flattening of the
precession cone of the nematic director field from a right circular
cone to an isosceles triangle via a continuous range of elliptical
precession cones corresponding to a range of SmTSB phases. In
the Supplementary Note 6, we compare the equation of state
obtained by integrating the density profile of the sediment with
the equation of state obtained from bulk simulations, showing
good agreement.

Rationalising the topology of modulated liquid crystal phases.
Our extensive simulations show that our generalized
Maier–Saupe theory effectively predicts, despite its simplicity, the
stability of twist-bend, twist-splay-bend, and splay-bend phases of

curved spherocylinders. Our microscopic theory is solely based
on the tendency of particles to align their particle shape to the
local nematic director field n̂ðrÞ. To rationalize our findings we
calculate the integral curves of the nematic director field n̂ðzÞ, i.e.
curves r(z) to which the nematic director n̂ðzÞ at z is tangent, such
that r0ðzÞ ¼ νn̂ðzÞ with ν a proportionality constant. We thus find

rðzÞ ¼ rðz0Þ þ
Z z

z0

d z0νn̂ðz0Þ; ð5Þ

where the integration constant r(z0)= (x0, y0, z0) corresponds to

Fig. 4 Splay-bend smectic SmSB, twist-splay-bend smectic SmTSB, and
twist-bend nematic NTB phases. Typical configurations of (a) an SmSB

phase with conical angles θa ~ 0.76 and θb ~ 0 at packing fraction η= 0.394
(box size 55.5D × 30.3D × 47.7D), b an SmTSB phase with conical angles θa
~ 0.87 and θb ~ 0.51 at packing fraction η= 0.371 (box size 52.0D × 33.4D ×
49.1D), and (c) an NTB phase with conical angles θa ~ θb ~ 0.83 at packing
fraction η= 0.354 (box size 49.9D. 3D × 49.3D) along an expansion of a
system of hard curved spherocylinders of length L/D= 19 and opening
angle Ψ= 1.31.
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the starting point of an integral curve, such that Eq. (5) actually
yields an infinite collection of curves, all identical except for a
translation in x and y.

For a generic twist-splay-bend (TSB) phase the integral in Eq.
(5) cannot be evaluated analytically. However, the tendency of
particles to align their profiles to the nematic director field at low
temperatures or high densities, corresponds to a tendency to
match their particle curvature with the curvature of its integral
curves. Given a curve r(z) with tangent r0ðzÞ ¼ νn̂ðzÞ of constant
norm k r0ðzÞ k¼ ν, we can reparametrize it by its arc length as r
(s= νz). In this reparametrization the tangent to the curve r0ðsÞ ¼
ð∂rðzÞ=∂zÞz0ðsÞ ¼ n̂ðsÞ has unit norm, and we can calculate the
curvature of the integral curve as κðsÞ ¼k n̂0ðsÞ k. Going back to
the original parametrization, we obtain κðzÞ ¼k n̂0ðzÞ k=ν. Using
this formula, we obtain the following curvature for the integral

curve of the nematic director field of a generic TSB phase,

κTSBðzÞ ¼
q
ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðθaÞ � 2sin2ðθaÞsin2ðθbÞ þ sin2ðθbÞ þ ðsin2ðθaÞ � sin2ðθbÞÞ cosð2qzÞ

2ð1� sin2ðθaÞsin2ðqzÞ � sin2ðθbÞcos2ðqzÞÞ

s
:

ð6Þ
In the presence of splay deformations, i.e. θa ≠ θb, κTSB(z) is a

non-trivial periodic function of z. In Fig. 6a–b, we show the
curvature κSB(z) of the integral curves of the nematic director field
of various splay-bend (SB) phases with θa= θ0 and θb= 0 from
theory and simulations, along with their density profiles ρ(z),
measuring the probability of finding a particle at z. The
periodicity of κSB(z) agrees well with that of log ρðzÞ, i.e. minus
the effective mean-field potential felt by the particles. If the

Fig. 5 A system of curved rods in gravity. a Typical configuration from a simulation on a system of hard curved spherocylinders with an aspect ratio L/D
= 19 and central angle Ψ= 0.99 in a gravitational field along �ẑ with a gravitational length lg= 7.5D and a hard wall at z= 0. The phase sequence I-N-NTB-
SmTSB-SmSB is observed from the top to the bottom in the sediment. b The x-, y-, and z-components of the nematic director field n̂ðyÞ ¼ ðnxðyÞ; nyðyÞ; nzðyÞÞ
in subsequent slabs of the system of thickness 5D, showing a continuous transition from splay-bend deformations to twist-bend deformations with
increasing altitude z, corresponding to lower pressure and density. The measured values of the nematic director field are denoted by the varying symbols,
whereas the lines denote a fit of the simulation data using Eq. (3). The precession cones correspond to the fits of the nematic director field, showing a
continuous transition from an NTB phase with a director field precessing around a circular cone at the top of the sediment, via an SmTSB phase where the
precession cone becomes elliptic, towards an SmSB phase where the elliptical cone reduces to a flat triangle at the bottom of the sample. Source data for
(b) are provided as a Source Data file.
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curvature of the integral curves of the nematic director field
matches that of the particles, the particles can optimally align
their shape to the local nematic director field, resulting into a
lower potential energy or higher free volume and thus a higher
local density ρ(z), whereas geometric frustration arises when the
curvature of the integral curve deviates from that of the particles,
leading to a higher potential energy or lower free volume and
hence a lower local density. We thus conclude that the presence
of periodic density modulations in TSB and SB phases, and hence
SmTSB and SmSB phases, can be explained geometrically by the
coupling of particle curvature to the non-uniform bend
deformations of the director field, but also by the coupling of
density to splay deformations27,28.

On the other hand, in the case of an NTB phase the
translational symmetry of the elastic deformations is preserved,
see Supplementary Note 2, and we expect the curvature of the
integral curves of the nematic director field to be uniform.
Intriguingly, for NTB phases with θa= θb= θ0 the integration of
Eq. (5) can be carried out explicitly, yielding the following
expression rTBðzÞ ¼ rTBðz0Þ þ ν

q sin θ0½sinðqzÞ � sinðqz0Þ� i�
ν
q sin θ0½cosðqzÞ � cosðqz0Þ� jþ ν cos θ0½z � z0� k for the integral
curve of the nematic director field, i.e. a helix of period pν cos θ0.
Hence, we can impose that the integral curve has the same pitch
p as the NTB phase — or, equivalently, that rðzÞ � ẑ ¼ z — by
setting ν ¼ 1= cos θ0. As expected, the curvature of Eq. (6)
reduces to a uniform value κTBðzÞ ¼ ðq=νÞ sinðθ0Þ ¼
q sinð2θ0Þ=2 independent of z. Using the conjecture that particles
tend to match their curvature with the one of the integral curves
of the nematic director field, we impose κTB= 1/R, and obtain
the simple relation

p ¼ πR sinð2θ0Þ ð7Þ
between the pitch p and conical angle θ0 of an NTB phase and the
particle curvature R. In Fig. 6c we test this simple relation against
NTB phases from theory and simulations, finding that it describes
the data remarkably well without any fit parameter. The most
significant deviation is found for the theoretically predicted NTB

states close to the I-N phase transition, where the pitch increases
significantly across a small temperature range24, a behavior not
captured by Eq. (7) and our simulations. We remark here that
the absence of an increase in the pitch in simulations may be
caused by the finite size of the simulation box and the periodic
boundary conditions. However, larger simulation boxes are
beyond the limits of our computational resources. Figure 6c
shows that the conical angle and the pitch vary in the range θ0 ∈
[0.2, 0.9], and p/R ∈ [1, 5]. We thus find that the pitch length p is
on the order of the radius of curvature R of a particle

independent of L, which can be used as a simple design rule
and is consistent with the small pitch lengths observed for
thermotropic bent-core mesogens1–12. We remark here that this
phase is also called a polar twisted nematic instead of an NTB

phase only because of its small pitch length29,30. In this work we
prefer to classify the liquid crystal phases according to their
symmetries. We also note that the smectic layer spacing λ= p/2
varies as λ/L ∈ [0.32, 4.16]. Hence, the unidentified SmX phase
with a smectic layer spacing of λ ≃ 0.5L may perhaps be a SmTSB

or SmSB phase21.

Discussion
We introduce a generic nematic NTSB phase with twist, splay, and
bend modulations in the director field which reduces to N, N*,
NTB, and NSB phases in limiting cases. We use the nematic
director field of this NTSB phase as a variational ansatz to develop
a simple but comprehensive variational Maier–Saupe theory of
periodically deformed nematic and smectic phases. We exploit
this mean-field theory to predict the phase behavior of curved
rods as a function of thermodynamic state and microscopic
details, and find excellent agreement with simulations on hard
curved spherocylinders. To characterise the symmetry and local
structure of these modulated phases, we measure the scalar order
parameter S(z), nematic director field n̂ðzÞ, polarisation vector
m̂ðzÞ, and density field ρ(z) in simulations. We observe that the
polarization is always anti-parallel to the director of the bend
deformations, demonstrating that polarization and bend defor-
mation are coupled by the flexo-electric effect originally proposed
by Meyer13. We conclude that the mechanism behind these
spatially modulated phases is the spontaneous polar ordering and
bend deformations arising from the packing efficiency of curved
particles. Our key findings are (1) that the NTB transforms into a
SmSB phase (or vice versa) via a gradual squeezing (or opening) of
the precession cone, passing through an intermediate SmTSB

phase, and (2) that the elusive NSB phase is unstable with respect
to the density-modulated SmSB phase. Accurate free-energy cal-
culations in computer simulations are required to determine the
thermodynamic stability of the SmTSB phase and the nature of the
NTB, SmTSB, and SmSB phase transitions in the bulk phase dia-
gram of hard curved spherocylinders.

Moreover, the agreement between the phase diagram deter-
mined by our simple mean-field theory for a thermotropic system
and the one obtained from simulations for a lyotropic system, not
only demonstrates the predictive power of our simple variational
Maier–Saupe theory, but also provides strong evidence that the
particle curvature is the driving force behind the topology of the
spatial director-field modulations in the NTB, SmTSB, and SmSB

phases. To rationalize this finding, we calculate the integral curves

Fig. 6 Rationalization of the spatial modulations of the density and the nematic director fields. a–b Modulations of the curvature κ(z) of the integral
curves of the nematic director field (top), and of the logarithm of the density profile ρ(z) (bottom) corresponding to minus the effective potential acting on
the particles, in splay-bend smectic states (SmSB) predicted by our theory (a) and found in Monte Carlo simulations (b) for a system of hard curved
spherocylinders of various curvatures Ψ and inverse temperatures βϵ or packing fractions η as labelled. c Pitch length p versus the conical angle θ0 of
various twist-bend nematic (NTB) phases of hard curved spherocylinders of various curvatures Ψ∈ [0.5, 2] from theory (top) and simulations (bottom),
along with the relationship of Eq. (7) (pink line). Source data are provided as a Source Data file.
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of the nematic director field. We show that the curvature of these
integral curves is periodic in the case of SmTSB and SmSB phases,
and that the coupling of particle curvature to the non-uniform
curvature of the director field leads to periodic density modula-
tions. In the case of NTB phases, we derive an explicit expression
for the uniform curvature of the nematic director field integral
curves. By matching this curvature with that of the particles, we
derive a simple relationship between the pitch and conical angle
of the NTB phase and the microscopic particle curvature. We
verify this simple relationship using theory and simulations.

In conclusion, our variational ansatz for a twist-splay-bend
phase is a powerful tool for predicting, understanding and
rationalising spatially modulated liquid crystal phases. Exploiting
the generality of this variational ansatz in a generalized
Maier–Saupe theory enabled us to predict not only the stability of
twist-bend and splay-bend phases, but also the orientational
order parameters, pitch and conical angle as a function of the
thermodynamic state and microscopic details of the particles, see
Supplementary Note 5. This variational ansatz can also be
exploited in Landau–de Gennes and Oseen–Frank theories of
spatially modulated phases. Further improvements of the
Maier–Saupe theory such as introducing biaxiality31, extending
the description from prolate to oblate liquid crystals, or gen-
eralizing the variational ansatz for spatial modulations from 1D
to 2D and 3D to describe polar blue phases32, may lead to a
generic theoretical framework of modulated liquid crystal phases.

Methods
Variational Maier–Saupe theory. To solve our generalized
Maier–Saupe theory, we minimize the free energy in Eq. (4) with
respect to the variational parameters of the director- and density-
field. Calculating the free-energy difference per particle βΔF/N is
trivial except for the partition function Q, i.e. an integral of the
form

I ¼
Z

dΩ
Z p

0
dZ f ðZ;ΩÞ

¼
Z 2π

0
dα
Z π

0
sin βdβ

Z 2π

0
dγ
Z p

0
dZ f ðZ;ΩÞ;

ð8Þ

with f ðZ;ΩÞ ¼ exp½�βUðZ;ΩÞ�. We assume that the function f
(Z,Ω) is a periodic function in Z with period p. To evaluate the
integrals of the form (8), we first transform the original space of
integration to a 4-dimensional hypercube [−1, 1]4 using the
transformation α ¼ πðξ þ 1Þ; cos β ¼ η; γ ¼ πðμþ 1Þ;Z ¼
p
2 ðψ þ 1Þ with Jacobian ∣J∣= pπ2/2. The integral in Eq. (8)
becomes

I ¼
Z 1

�1
dξ
Z 1

�1
dη
Z 1

�1
dμ
Z 1

�1
dψ

pπ2

2
f ðZðψÞ;Ωðξ; η; μÞÞ; ð9Þ

which we solve using an N -points Gauss-Legendre quadrature. If
{ξi}, {ηi}, {μi}, and {ψi} are theN node points in [−1, 1], i.e. theN
roots of the N -th Legendre polynomial, and {wξ,i}, {wη,i}, {wμ,i},
and {wψ,i} are the associated weights, we can approximate the
integral I of Eq. (9) by

I � ∑
N

i¼1
∑
N

j¼1
∑
N

k¼1
∑
N

l¼1
wξ;iwη;jwμ;kwψ;l

pπ2

2
f ðZðψlÞ;Ωðξi; ηj; μkÞÞ:

ð10Þ
Using the approximation of Eq. (10) and f ðZðψÞ;

Ωðξ; η; μÞÞ ¼ exp½�βUðZðψÞ;Ωðξ; η; μÞÞ�, we evaluate the parti-
tion function in Eq. (4) using an N = 32 points Gauss-Legendre
integration.

Once Q is calculated, we minimize βΔF/N at given βϵ in the 6-
dimensional space of parameters S, τ, n, θa, θb and q= 2π/p by

means of a Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) using the Python library in https://pypi.org/project/cma/.

Monte Carlo simulations. We study the phase behavior of a system
consisting of hard curved spherocylinders using Monte Carlo
simulations in the NPT ensemble, i.e. at fixed number of particles N,
pressure P and temperature T. We employ an orthorhombic
simulation box of sides Lx, Ly, and Lz and apply periodic boundary
conditions. We perform a sequence of MC cycles consisting of N+
1 MC moves. Each MC move consists of a particle move with
probability ~N/(N+ 1), and a volume move with probability ~1/(N
+ 1). In a particle move, a random roto-translation of a randomly
picked particle is proposed and accepted if it does not generate
overlaps with other particles. In a volume move, a random variation
of a random side of the simulation box is proposed, and the system
is compressed or expanded accordingly. If the compression/expan-
sion does not generate overlaps between the particles, the move is
accepted with a probability

accðV ! V 0Þ ¼ min 1;
V 0

V

� �N

e�βPΔV

 !
; ð11Þ

where ΔV ¼ V 0 � V denotes the change in volume. We perform
simulations on a system of N= 2048 hard curved spherocylinders,
and initialize all simulations from a nematic configuration. We
measure a wide set of observables during the simulation, like density,
uniaxial nematic order parameters, smectic order parameters, etc.
When the system reaches equilibrium as monitored from the
observables, we characterize the system’s configuration. We find that
108 MC cycles are typically sufficient for equilibration.

To study a system of hard curved spherocylinders in a
gravitational field, we perform Monte Carlo simulations in an
NVT ensemble, i.e. we fix the number of particles N= 8192,
volume V, and temperature T. We implement a hard wall at the
bottom at z= 0 and apply periodic boundary conditions in the x
− and y− direction. Each MC cycle consists of N attempts to
randomly rotate and translate a randomly selected particle. If a
particle roto-translation leads to an overlap with one of the
particles or with the hard wall, the move is rejected, otherwise it is
accepted with a probability

accðz ! z0Þ ¼ minð1; e�βΔUgÞ; ð12Þ
with ΔUg ¼ ðz0 � zÞ=lg the change in potential energy due to
gravity, z and z0 the old and new z-coordinate of the displaced
particle, and lg the gravitational length of the system.

Data availability
The source data from Figs. 3, 5b, 6, Supplementary Figs. 1, 2, 3, 7, 8, 9, 11, 12, 13, 14,
and 15 are provided in the source data file. All the other relevant data associated with
this research is available upon request. Source data are provided with this paper.

Code availability
The simulation and analysis codes associated with this research are available upon
request.
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