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ABSTRACT: Colloidal suspensions of two species have the
ability to form binary crystals under certain conditions. The
hunt for these functional materials and the countless
investigations on their formation process are justified by the
plethora of synergetic and collective properties these binary
superlattices show. Among the many crystal structures observed
over the past decades, the highly exotic colloidal icosahedral
AB13 crystal was predicted to be stable in binary hard-sphere
mixtures nearly 30 years ago, yet the kinetic pathway of how
homogeneous nucleation occurs in this system is still unknown.
Here we investigate binary nucleation of the AB13 crystal from a
binary fluid phase of nearly hard spheres. We calculate the
nucleation barrier and nucleation rate as a function of
supersaturation and draw a comparison with nucleation of single-component and other binary crystals. To follow the
nucleation process, we employ a neural network to identify the AB13 phase from the binary fluid phase and the competing fcc
crystal with single-particle resolution and significant accuracy in the case of bulk phases. We show that AB13 crystal nucleation
proceeds via a coassembly process where large spheres and icosahedral small-sphere clusters simultaneously attach to the
nucleus. Our results lend strong support for a classical pathway that is well-described by classical nucleation theory, even
though the binary fluid phase is highly structured and exhibits local regions of high bond orientational order.
KEYWORDS: colloidal particles, nanoparticles, nucleation, crystallization, neural network, machine learning, computer simulations

INTRODUCTION

Understanding crystallization is important in many research
fields such as protein crystallization for resolving the molecular
structure, drug design in the pharmaceutical industry, ice crystal
formation in clouds for weather forecasts, and crystallization of
colloidal and nanoparticle suspensions with application
perspectives in catalysis, optoelectronics, and plasmonics.
Hence, it is not surprising that over the past decades many
experimental and simulation studies have been devoted to
studying crystal nucleation in a fluid of hard spheres, which is
indisputably one of the simplest possible model systems to
describe colloidal and nanoparticle systems and serves as a
reference for systems with more complicated interactions, e.g.,
depletion and electrostatic interactions.
Nucleation describes the process in which a crystal nucleus

spontaneously forms due to a statistical fluctuation in the
metastable fluid phase. Despite the significant amount of work
spent on understanding crystal nucleation in hard spheres, the
mechanism by which a hard-sphere fluid transforms into a
crystal phase remains to be settled. Several scenarios such as a

classical one-step crystallization process, a nonclassical two-step
crystallization mechanism with precursors consisting of local
regions with either high density, high bond-orientational order,
or competing orders, or a spinodal-like process have been
proposed, but all of these crystallization mechanisms are still
heavily debated.1−10

Another unresolved issue is the huge discrepancy in crystal
nucleation rate between simulations and experiments at low
supersaturation. By employing a wide variety of simulation
techniques, of which some of them even include the effect of
hydrodynamics, a much lower nucleation rate was consistently
found in simulations compared to experimental results.11−18
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To enhance the structural diversity and functional composi-
tion of the self-assembled structures, one may resort to binary
mixtures of large and small colloidal hard spheres with diameters
σL and σS, respectively. Although the number of distinct binary
crystal structures is relatively small, we wish to remark here that
the structural diversity can be enhanced significantly by taking
into account varying interaction potentials; for example,
suspensions consisting of two types of particles with opposite
charges can form a dazzling variety of binary superlattice
structures.19,20 In this work, we focus on binary mixtures of
particles interacting with hard-sphere-like potentials as they
serve as a reference for a wider class of soft repulsive interaction
potentials, mimicking the interactions of many nanoparticle
systems.
The phase behavior of binary hard-sphere mixtures is well

studied by now and display a wide variety of behaviors ranging
from a spindle-type to azeotropic and eutectic phase diagram,
wide coexistence regions between phases with different
compositions, pure single-component crystals, substitutionally
disordered crystalline phases, interstitial solid solutions, and
various binary crystal structures with different stoichiometries xL
= NL/(NL + NS), with NL (NS) denoting the number of large
(small) particles.21 Depending on the diameter ratio q = σS/σL,
binary hard-sphere systems exhibit entropically stabilized binary
superlattice structures analogous to their atomic counterparts
NaCl (0.2 ≤ q ≤ 0.42), AlB2 (0.42≤ q≤ 0.59), NaZn13 (0.48 ≤
q ≤ 0.62), and the Laves phases (0.74 ≤ q ≤ 0.84).21

The most intriguing structure of the above-mentioned binary
crystals is without any doubt the NaZn13, also termed the
icosahedral AB13 structure in order to distinguish it from the
cuboctahedral AB13 structure,22 which has been found to be
metastable due to a less efficient packing of the small spheres in
the case of binary hard-sphere mixtures.23,24 The stability of the
AB13 structure has gained much attention because of its bizarre
lattice. The large spheres are unusually distant from each other,
as shown in Figure 1, and are arranged on a simple cubic lattice,

which is a highly unusual crystal structure in the case of plain
hard spheres. More intriguingly, each unit cell of this simple
cubic lattice of large spheres contains an icosahedral cluster of 13
small spheres, which are all rotated by 90° with respect to their
neighboring icosahedral clusters. Hence, the full unit cell of an
icosahedral AB13 structure consists of 8 unit cells of this simple
cubic lattice of large spheres with 8 icosahedral clusters of 13
small spheres in their centers, resulting in 112 particles in total.

The colloidal analogue of the NaZn13 was for the first time
observed by Sanders et al. in natural gem opals consisting of two
sizes of silica spheres in 1987.25,26 The same AB13 structure was
later observed in systems of charged-stabilized colloids or
PMMA particles27−31 and in various nanoparticle systems, e.g.,
mixtures of semiconductor, metal oxide, magnetic, silica, and
polymer-grafted nanoparticles, as well as polyoxometalate
clusters.20,22,32−43

In contrast to the considerable amount of work that has been
devoted to studying crystal nucleation in single-component
hard-sphere fluids, only a few studies have been focused on
crystal nucleation in binary mixtures. Crystallization in fluid
mixtures is generally much harder than in single-component
systems. Spindle-, azeotropic-, eutectic-like phase transitions in
binary systems usually involve fractionation, as the composition
of the solid phase deviates from that of the supersaturated phase.
Fractionation is known to slow down the rate of crystalliza-
tion.44,45 Additionally, the surface tension of the solid−fluid
interface will increase when the compositions of the fluid and
solid phase deviate substantially, leading to higher nucleation
barriers and lower nucleation rates.46,47 Moreover, nucleation of
a binary (compound) crystal is believed to be orders of
magnitude slower than that of pure crystals or substitutionally
disordered crystalline phases due to a loss of mixing entropy,
making binary crystal nucleation an extremely rare event.44 This
is one of the reasons that the number of simulation and
experimental nucleation studies on binary colloidal crystals is
very limited.
Yet, the few simulation studies on binary crystal nucleation

revealed several interesting observations. For instance, simu-
lations on homogeneous nucleation of a binary AB2 crystal in a
mixture of hard spheres revealed that in the case of multiple
competing crystal structures the phase that nucleates is the one
whose composition is closest to that of the fluid phase even when
it is metastable.44,47 In addition, it was found by simulations that
kinetic barriers also play an important role in determining which
crystal phase nucleates. In the case of oppositely charged colloids
it was found that the disordered fcc phase that nucleates is
metastable and has a higher free-energy barrier for nucleation
than the thermodynamically stable binary CsCl crystal.48 In this
case the disordered fcc phase was favored by nonequilibrium
nucleation. These results greatly challenge the commonly held
assumption that subcritical clusters are always in quasi-
equilibrium with the fluid phase.49 Another simulation study
showed that homogeneous nucleation of an interstitial solid
solution in a binary mixture of hard spheres is driven by the
nucleation of large spheres into an fcc crystal while maintaining
chemical equilibrium of the small spheres throughout the
system. More recent simulations showed that nucleation of
Laves phases is severely suppressed by the presence of
icosahedral clusters in a binary hard-sphere mixture, but that
softness of the interaction potential reduces the degree of 5-fold
symmetry in the binary fluid and enhances crystallization.50

Finally, we also mention for completeness that spontaneous
spinodal-like crystallization of structures isostructural to AlB2,
NaZn13, and the Laves phases has been observed in simulations
on highly supersaturated binary hard-sphere fluids with and
without unphysical moves that swap the identities of large and
small spheres.51

All nucleation studies share a common challenge: being able
to recognize different phases starting from the raw particle
coordinates of the system. In particular, one requires a criterion
that is able to distinguish on a single-particle level particles

Figure 1. Icosahedral-AB13 structure consists of a simple cubic
lattice of large (A) spheres and icosahedral clusters of 13 small (B)
spheres denoted in blue and red, respectively. The icosahedral
clusters of 13 small spheres are rotated by 90° with respect to their
neighboring clusters as indicated by the differently colored circles.
The zoom-in displays the icosahedral cluster formed by the small
spheres inside a simple cubic subunit cell of large spheres.
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belonging to the growing phase from those of the metastable
parent phase. Most crystal nucleation studies are based on
describing the local environment of each particle in terms of the
so-called bond orientational order parameters, i.e., rotational
invariant combinations of the spherical harmonics of degree l, as
introduced by Steinhardt et al. in 1983.52 Specifically, the 4-fold
and 6-fold bond order parameters, q4 and q6, suffice to
distinguish the crystalline particles from the fluid-like particles,
as most crystals exhibit either cubic and/or hexagonal symmetry.
In the case of binary crystals, the local environment of each
particle of each species can deviate substantially from cubic and
hexagonal symmetry, and other symmetries should be taken into
account in identifying the different crystal phases. Here, we
describe the local environment of a particle by using a full
expansion in spherical harmonics, and we train an artificial
neural network to identify the different phases on a single-
particle level using a set of bond order parameters up to degree l
= 12 as input. We demonstrate the effectiveness of this method
by studying nucleation of the AB13 crystal structure in binary
mixtures of nearly hard spheres using simulations. We show that
standard techniques fail in identifying the different phases and
that machine learning is useful in achieving this goal.
Employing the trained neural network as an order parameter,

we investigate how an AB13 crystal nucleates and grows and we
shed light on the formation mechanism during the early stages.
In addition, we study how icosahedral clusters of small spheres
arrange themselves inside this simple cubic lattice and whether
the growth of the binary nucleus proceeds via the attachment of
individual small spheres, small clusters, or perfect or defective
icosahedral clusters of small spheres. Specifically, the role of the
icosahedral clusters on the AB13 nucleation is intriguing, as the
presence of 5-fold clusters is often attributed to glassy dynamics
and suppression of crystallization.53 However, in ref 23, it was
conjectured that the abundance of icosahedral clusters in both
the fluid and AB13 crystal and thus the structural similarity of
these two phases may result in an ultralow surface tension and
hence a low nucleation barrier and high nucleation rate. To
investigate this, we determine the nucleation barrier height and
the nucleation rate using the seeding approach, and we compare
our results with crystal nucleation in pure hard spheres and with
nucleation of the Laves phases. Finally, we analyze the kinetic
pathways of the spontaneous crystallization events of the AB13
phase in binary mixtures of hard spheres using brute force
molecular dynamics (MD) simulations.

RESULTS AND DISCUSSION
The Model. We consider a binary mixture of NL large (L)

hard spheres with a diameter σL and NS small (S) hard spheres
with a diameter σS. For a binary hard-sphere (BHS) mixture, the
AB13 phase is thermodynamically stable for a diameter ratio q =
σS/σL ∈ [0.54, 0.61].21 In this work, we set q = 0.55. The
particles interact via aWeeks−Chandler−Andersen (WCA) pair
potential, which can straightforwardly be employed in MD
simulations and which reduces to the hard-sphere potential in
the limit that the temperature T → 0. The WCA potential
uαβ(rij) between species α, β ∈ {L, S} reads54
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with rij = |ri − rj| the center-of-mass distance between particle i
and j, ri the position of particle i, ϵ the interaction strength, and
σαβ = (σα + σβ)/2. The steepness of the repulsion between the
particles can be tuned by the temperature kBT/ϵ. We set kBT/ϵ =
0.025, which has been used extensively in previous simulation
studies to mimic hard spheres.3,13,16,55

Using free-energy calculations in Monte Carlo (MC)
simulations, we determine phase coexistence between the
AB13 crystal and the binary fluid phase with the same
composition as that of the AB13 crystal (see the Methods
section). The pressure at which the crystal and fluid are at
coexistence reads βPcoexσL

3 = 45.35. To study nucleation of the
AB13 crystal, we perform simulations at pressures P > Pcoex in the
regime where the fluid phase is metastable with respect to the
crystal phase.

Local Structure Detection. Bond Order Parameters. In
order to follow the nucleation process of the AB13 phase, we
need to find a way to detect an embryo of the stable AB13 crystal
structure in the supersaturated binary fluid phase with single-
particle resolution. In many simulation studies, local bond
orientational order parameters have been used to study crystal
nucleation.52,56,57 To calculate these local bond order
parameters, we first have to define the local environment of
particle i by determining a list of neighbors using, for instance, a
distance criterion based on the first minimum of the pair

Figure 2. Pair correlation functions gij(r/σL) of (a) the AB13 crystal phase and (b) the binary fluid phase at composition xL = 1/14 with i, j∈ {L,
S} denoting the large (L) and small (S) species, for a mixture of WCA spheres at kBT/ϵ = 0.025 to mimic hard spheres and at coexistence
pressure βPcoexσL

3 = 45.35. The large−large pair correlation function gLL(r) of the AB13 shows that the large spheres are unusually distant from
each other in comparison with the binary fluid phase. The small−small pair correlation function gSS(r) of the AB13 phase demonstrates that the
small spheres exhibit fluid-like behavior, making it difficult to distinguish the binary fluid phase and the AB13 crystal on the basis of the small
spheres.
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correlation function or by employing a Voronoi construction.
The set of distance vectors between particle i and its neighbors is
then expanded in spherical harmonics of order l. Finally, the
quadratic and cubic rotationally invariant quantities, ql and wl,
are defined to measure the local symmetry of bonds of particle i;
see the Methods section. Due to the cubic or hexagonal
symmetry of most crystals, the 4-fold and 6-fold bond order
parameters, q4 and q6, have been extensively employed in the
literature to study crystal nucleation.
We first study whether the 4-fold and 6-fold bond order

parameters can be used to distinguish the AB13 crystal from the
binary fluid phase with a composition xL =NL/(NL +NS) = 1/14
and from the pure fcc phase. For this purpose, we use the
averaged bond order parameters q̅l, thereby taking into account
also the second shell of neighbors of a particle.58 We perform
MC simulations in the isobaric−isothermal ensemble; that is, we
fix the pressure P, the temperatureT, and the number of particles
N = NL + NS. We carry out bulk simulations of the AB13 crystal
and the binary fluid at coexistence pressure βPcoexσL

3 = 45.35 and
of the pure fcc crystal at βPcoexσ

3 = 8.87 corresponding to the
pressure at bulk coexistence with the single-component fluid
phase.
In Figure 2, we plot the pair correlation functions gij(r) of the

AB13 crystal and the binary fluid phase with i, j∈ {L, S} denoting
the large (L) and small (S) species. We make the following
noteworthy observations. We first observe from the small−small
pair correlation function gSS(r) of the AB13 phase that the small
spheres exhibit fluid-like behavior even though they are in a solid
state. The structural similarity of the small spheres in the binary
fluid and the AB13 phase makes it difficult to distinguish the two
phases on the basis of the local symmetry of the small spheres.
Additionally, we observe that the main peak of the large−large
pair correlation function gLL(r) of the AB13 crystal is at a
unusually large distance in comparison with that of the binary
fluid phase. In order to nucleate the AB13 phase in the binary
fluid phase, the large spheres have to be pushed away from each
other to much larger distances to make room for the icosahedral
clusters of small spheres. In addition, the huge difference in the
position of the main peak of the gLL(r) of the binary fluid and the
AB13 phase complicates the identification of neighboring
particles on the basis of a simple cutoff distance.
To circumvent this problem, we use the parameter-free solid-

angle-based nearest-neighbor (SANN) algorithm to identify the
neighbors of each particle.59 Using the SANN algorithm, we

measure the 4-fold and 6-fold averaged bond order parameters,
q̅4 and q̅6, and we show scatter plots in the q̅4−q̅6 plane for the
large and small species of the AB13 phase, the binary fluid phase,
and the fcc phase in Figure 3.We observe from Figure 3a that the
distributions for the large and small species of the AB13 phase
and the binary fluid phase overlap, making the distinction
between the different phases very hard. To improve the
separation of the bond order parameter distributions, we
calculate q̅4 and q̅6 by taking into account only the neighbors
of the same species as the particle of interest in the SANN
algorithm. We plot the results in Figure 3b and observe that the
distribution of the large species in the AB13 is well separated
from the other structures. However, the distribution of the small
species of the AB13 phase still overlaps with that of the binary
fluid phase. We thus find that it remains a major challenge to
correctly classify the small species of the AB13 phase, which can
be misidentified as fluid particles due to their icosahedral
arrangement.

Feed forward Neural Network. In order to overcome this
problem, we describe the local environment of a particle using a
full expansion in spherical harmonics, and we train an artificial
neural network (ANN) to identify distinct structures on a single-
particle level, thereby extending the approach of ref 60. The
main goal of the ANN here is to detect the birth of a crystal
nucleus of the AB13 structure in a binary fluid phase, which
presents additional difficulties with respect to the identification
of bulk phases60 due to the solid−fluid interfaces of the crystal
nuclei. Moreover, the identification of crystalline particles and
estimating the number of crystalline particles are crucial for
determining the barrier height and the nucleation rate using the
seeding approach.14,15 To minimize the effect of interfaces, we
employ the standard, instead of the averaged coarse-grained,
bond order parameters, thereby increasing the spatial resolution
at the expense of the accuracy in the local structure detection.
The idea behind the choice of nonaveraged bond order
parameters is as follows: given the great predictive capacity of
neural networks, due to the extremely effective way of
combining information from many features and using nonlinear
functions, we can use less precise but more local descriptors. A
high accuracy can be reached thanks to the versatility of the
neural network, and in this way it is possible to obtain, for each
particle, an estimate of the class based only on the f irst shell of
neighbors.

Figure 3. Scatter plot in the averaged bond order parameter q̅4−q̅6 plane for the four local particle environments we wish to distinguish: large
species (light blue) and small species (red) of the AB13 phase, binary fluid phase (light purple), and the pure fcc phase (dark blue). (a) Averaged
bond order parameters calculated using the solid-angle-based nearest-neighbor criterion irrespective of particle species, showing significant
overlap of 3 of the 4 local structures, therebymaking the classification impossible. (b) Averaged bond order parameters calculated by taking into
account only the neighbors belonging to the same species. The distribution of the small species of the AB13 phase still overlaps with that of the
binary fluid phase.
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We employ the bulk simulations of the AB13 phase, the pure
fcc phase, and the binary fluid as described in the section Bond
Order Parameters, and build a training set of 105 training
samples for each of the local particle environments we wish to
distinguish: large particles of the AB13 phase, small species in the
AB13 phase, particles in a pure fcc phase, and particles
irrespective of species in a binary fluid. We describe the local
environment of each particle i by a 36-dimensional input vector
of bond order parameters:

I i q i w i q i w i( ) ( ( ) , ( ) , ( ) , ( ) )l l l l
ss ss= { } { } { } { }′ ′ (2)

where l ∈ [1, 12] and l′ varies in the same range but only
assumes even values. The superscript ss means that bond order
parameters are calculated by considering only particles of the
same species as particle i.
In ref 60, a single-layer ANN, i.e., only an input and output

layer and no hidden layers, was employed to successfully classify
the AB13 phase from a binary fluid phase with a composition xL =
1/3 using the averaged bond order parameters as input.
However, this network architecture with the averaged bond
order parameters as input vector is not accurate enough to
distinguish the AB13 phase from the binary fluid with a
composition xL = 1/14 equal to the stoichiometry of the AB13
phase, which is mostly due to the structural similarity of the
small spheres in the AB13 and the fluid phase, both exhibiting an
abundance of (defective) icosahedral clusters. In addition, the
standard nonaveraged bond order parameters that we employ
offer a poorer characterization of the bulk phases with respect to
their averaged counterparts. In order to improve the accuracy of
the classification, we add hidden layers to our neural network.
To be more specific, we employ a fully connected neural

network with two hidden layers consisting of 72 neurons. Each
neuron uses a rectified linear unit (ReLU) activation function to
guarantee fast convergence and good generalization. The output
layer has four neurons, corresponding to the four distinct local
particle environments (classes) we wish to distinguish, and is
activated with a Softmax function (Figure 4). The network was
trained using stochastic gradient descent and L2 regularization.

61

We employ 20% of the samples as validation data to predict the
accuracies for each output node corresponding to the four

different particle environments (see the Methods section). The
accuracies related to each specific class are shown in Table 1.

Seeding Approach. Numerical simulations have helped in
elucidating nucleation for a plethora of model systems, but
despite the possibility of following each single particle during the
crystallization process, they suffer from an important drawback.
In fact, the accessible time scales in MC or MD simulations are
typically much shorter than in experiments. This is particularly
disadvantageous for nucleation studies, as the birth of a
crystalline nucleus in a metastable fluid is a rare event.
For this reason, it is often necessary to use special sampling

schemes in simulations like umbrella sampling (US),12,62−64

forward flux sampling (FFS),12,65 metadynamics,66,67 or
transition path sampling.68−70 These techniques are mainly
employed to enhance or bias the sampling of the system in order
to observe rare events such as nucleation. However, these
simulation techniques are extremely expensive from a computa-
tional point of view, restricting nucleation studies to highly
metastable conditions.
Recently, another technique has been proposed to study

nucleation, known as the seeding approach.14,15 The great merit
of this technique is that it enables the determination of all
relevant physical quantities to describe nucleation, e.g., barrier
height and nucleation rate, and that it divides the simulation
study into short simulations with a standard and unbiased
sampling of phase space. Moreover, the computational cost of
these simulations is moderate, which allows studying nucleation
under weakly metastable conditions where the critical nucleus
consists of several thousands of particles. The seeding technique
involves the following steps: (1) inserting a seed of the crystal
structure of interest in a metastable fluid and running
simulations to equilibrate the interface while keeping the
crystalline particles fixed, (2) releasing this constraint and
equilibrating the full system at a sufficiently high pressure that
the seed does not melt, and finally (3) running simulations of
this carefully equilibrated system for a wide range of pressures in
order to determine the critical pressure Pc at which the
probability that the seed will grow or melt will be equal, while
for P < Pc the seeds will predominately melt, or grow for P > Pc.
In order to avoid finite-size effects, we perform simulations in the
NPT ensemble. An illustration of the last step is shown in Figure
5, where we plot the size of the largest clusterNCL as a function of
time t/τMD, for 10 independent simulations, at pressure βPσL

3 =
51.1, and 51.3. Here, m k T/MD L Bτ σ= denotes the MD time
unit and m the mass of the particles. In Figure 5b (5d) the
majority of the simulations show a growing (melting) cluster,
which means that the pressure βPσL

3 = 51.3(50.9) is higher
(lower) than the critical one. In Figure 5a, we observe that at
βPσL

3 = 51.1 the cluster melts and grows with equal probability,
indicating that this value corresponds to the critical pressure for
a critical cluster size Nc = 770. The number of particles
belonging to the main cluster is determined using the neural-

Figure 4. Architecture of our fully connected artificial neural
network (ANN). The input layer has 36 units, as described by eq 2,
while both hidden layers contain 72 neurons. The output layer
consist of four neurons, yielding the probability that a particle
corresponds to a certain class.

Table 1. Accuracies of the ANNs on the Validation Set
Calculated for All Four Classes

class accuracy

AB13, large 100.0%
AB13, small 98.1%
fluid 97.8%
fcc 99.4%
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network-based order parameter as described in the section Feed
forward Neural Network together with a clustering algorithm to
identify clusters of mutually bonded solid particles.
Subsequently, several physical quantities can be calculated

using classical nucleation theory (CNT), such as the height of
the Gibbs free-energy barrier ΔGc using

G N N( ) /2c c c μΔ = Δ (3)

and the nucleation rate J,

J
D N

f
D

G
6

exp( )L
5

L c

L
2

L
f L

3
c

σ β μ
π

σ
ρ σ β= Δ − Δ

+

(4)

where Nc denotes the critical nucleus size, βΔμ is the
supersaturation, i.e., the difference in chemical potential between
the supersaturated fluid and the stable crystal phase, f+ = ⟨(N(t)
−Nc)

2⟩/t is the attachment rate of particles to the critical cluster,
t is the time, ρf(βPcσL

3) is the critical density of the fluid at the
critical pressure Pc, and DL is the long-time diffusion coefficient

Figure 5. (a) Largest cluster size NCL of the AB13 phase as recognized by the ANN as a function of time t/τMD using the seeding approach in 10
independentMD simulations of a binary mixture ofWCA spheres at temperature kBT/ϵ = 0.025 tomimic hard spheres with a diameter ratio q =
0.55 in theNPT ensemble, composition xL = 1/14, and at a pressure (a) βPσL

3 = 51.1, where the cluster melts and grows with equal probability,
indicating that this pressure value corresponds to the critical pressure for this cluster size, (b) βPσL

3 = 51.3, where the cluster grows in the
majority of the simulations, and (d) βPσL

3 = 50.9, at which the cluster melts inmost of the simulations. Typical configurations of the growth and
melting of the cluster are shown in (c) and (e), respectively. Note that the size of fluid-like and fcc-like particles is reduced for visual clarity.

Figure 6. (a) Height of the Gibbs free-energy barrier βΔGc, (b) nucleation rate JσL
5/DL, (c) interfacial free energy βγσL

2, and (d) the crystal
number density ρsσL

3 as a function of the chemical potential difference βΔμ between the fluid and the AB13 phase of a binary WCA mixture at
kBT/ϵ = 0.025 to mimic hard spheres, with a diameter ratio q = 0.55 and composition xL = 1/14 as obtained from the seeding approach. For
comparison, we also plot the results on nucleation of the Laves phase in a binary hard-spheremixture from ref 50 and of the fcc phase in a fluid of
pure hard spheres from refs 16 and 55.
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at the same ρf.
14,15 The attachment rate f+ is measured from 10

independent simulation trajectories at density ρf. Assuming, on
average, a spherical cluster shape, the crystal-fluid interfacial free
energy γ can be calculated from

N
32

3c

3

s
2 3
πγ

ρ μ
=

Δ (5)

with ρs the density of the solid phase. We note that these
equations rely on the validity of CNT, which will be checked and
proven in the section Spontaneous Nucleation. We emphasize
that all variables computed through the seeding approach using
eqs 3, 4, and 5 are sensitive to the numerical value ofNc and thus
to an estimate of the nucleus interface. This particular estimate is
problematic for all classification algorithms and can, in principle,
lead to systematic errors when evaluating the aforementioned
variables. In the Supporting Information we show a detailed
analysis of the performance of the ANN with respect to the
interface detection.
Using different seed sizes in the seeding approach, we

determine ΔGc, J, γ, and ρs for different critical pressures
corresponding to different supersaturations Δμ. We plot our
results as a function ofΔμ in Figure 6 and present the numerical
data in Table 2. For comparison, we also plot the results of
previous simulation studies on the nucleation of the Laves phase
in a binary hard-sphere mixture50 and of the fcc phase in a fluid
of pure hard spheres.16,55

Comparing the nucleation barrier ΔGc for the three different
phases at the same thermodynamic driving force Δμ, we clearly
observe from Figure 6a thatΔGc is consistently higher for the fcc
phase than for the AB13 crystal and the Laves phases. This is in
contradiction with the assumption that the nucleation barrier for

binary nucleation should be higher due to a loss of mixing
entropy. As the nucleation rate J is predominantly determined by
ΔGc, we find a similar behavior for J, where J of the fcc phase
seems to be smaller compared to that of the binary crystals.
However, a direct comparison of the nucleation rates J for the
three different systems is difficult, as J is only measured for
relatively high supersaturations βΔμ > 0.34 in the case of hard
spheres,55 whereas J is determined for Δμ < 0.4 for the binary
crystals. In addition, we plot the interfacial free energy γ for the
three phases in Figure 6c. We wish to remark here that we
express the surface tensions in units of kBT/σL

2, which is an
arbitrary choice, and hence a direct comparison of the three
systems cannot be made as the dimensions of the spheres and
the compositions are very different for the fcc, Laves, and AB13
phase. Hence, the conjecture of ref 23 that the surface tension of
the AB13−fluid interface may be low due to the structural
similarity of these phases is difficult to verify. Moreover, one
might expect that the much higher dimensionless interfacial
tension βγσL

2 of the AB13 phase may give rise to a much higher
ΔGc, but this is counterbalanced by a higher reduced crystal
density ρsσL

3 in eq 5. On the other hand, by comparing
nucleation of the fcc phase with that of the Laves phase, we find
that although the dimensionless interfacial free energies βγσL

2

are comparable, the difference in crystal density ρsσL
3 can yield a

difference in ΔGc. Thus, in order to compare the effect of
interfacial tension and crystal density on the nucleation of
different crystal structures, one should compare the ratio γ3/
ρsρs

2 for the various systems, as this ratio is directly related to the
barrier height and critical nucleus size via eqs 3 and 5 and is
independent of an arbitrary choice of length scale.
Finally, we observe not only much higher reduced surface

tensions βγσL
2 for the AB13 phase with respect to the other

Table 2. Values of the Most Significant Variables Involved in the Seeding Approach Calculationsa

Nc N βΔμ βPcσL
3 ρfσL

3 ρsσL
3 βΔGc βγσL

2 log10(JσL
5/DL)

2706 40334 0.095 48.40 3.383 3.778 128.3 0.994 −55.66
1977 29204 0.110 48.90 3.390 3.786 108.9 1.042 −47.47
1290 19376 0.141 49.90 3.405 3.802 91.01 1.161 −39.72
770 13692 0.178 51.10 3.423 3.820 68.38 1.234 −29.37
488 8988 0.214 52.30 3.440 3.838 52.22 1.281 −22.10
176 4746 0.344 56.70 3.499 3.897 30.29 1.482 −12.08

aEach row corresponds to a different critical nucleus size Nc. See the main text for the meaning of each variable.

Figure 7. (a) Size of the largest AB13 clusterNCL as recognized by the ANN for a binary mixture of WCA spheres at kBT/ϵ = 0.025 to mimic hard
spheres, with a diameter ratio q = 0.55 and composition xL = 1/14 as a function of time t/τMD for five different pressures βPσL

3 using MD
simulations in the NPT ensemble. (b) Four configurations of a spontaneous nucleation event at βPσL

3 = 72.2, showing a time sequence of the
early stages of AB13 nucleation with time increasing from the upper-left corner and then proceeding clockwise. Particles that do not belong to
the main crystalline cluster have been reduced in size for visual clarity.
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examined crystals but also a much stronger increase of γ with
supersaturation. This steep rise in surface tension with Δμ is
responsible for the flattening of the nucleation barrier and
nucleation rate at high supersaturation in Figure 6a and b,
indicating that spontaneous nucleation, i.e., where the
nucleation barrier is sufficiently low, may be at surprisingly
high driving forces Δμ.
Spontaneous Nucleation. Figure 6a shows that the

nucleation barrier βΔGc decreases with supersaturation βΔμ.
When βΔGc is sufficiently low, we expect to observe
spontaneous nucleation of the AB13 phase using brute force
MD simulations, i.e., without any nonphysical biasing of the
sampling of phase space.
In order to observe spontaneous AB13 nucleation, we initialize

the system in a highly supersaturated binary fluid phase and
perform MD simulations for a wide range of pressures in the
NPT ensemble. Using our trained ANN to identify the AB13
particles, we monitor and plot the size of the largest cluster NCL
of the AB13 phase as a function of time t/τMD in Figure 7a. We
distinguish three different regimes. At pressure βPσL

3 = 71.0, the
metastable fluid does not show any sign of crystallization within
our simulation times, and hence, the supersaturation βΔμ ≃
0.74 is too low to observe spontaneous nucleation. At a slightly
higher pressure βPσ3 = 71.4 (βΔμ ≃ 0.75), we find a critical
nucleus appearing after some waiting time, which subsequently
grows out in time, showing a spontaneous crystallization event
of the AB13 structure proceeding via nucleation. Increasing the
pressure even further, we enter the third regime, where as soon
as the simulation is started, multiple nuclei form immediately
throughout the fluid. In this regime, the supersaturated fluid
phase is mechanically unstable, and hence, crystallization sets in
immediately and exhibits spinodal-like behavior. We thus
confirm that the instability regime of the binary fluid phase
with respect to AB13 crystallization is at much higher driving
forces βΔμ > 0.75 than in the case of the Laves phases, for which
we found βΔμ > 0.53 in ref 50 due to amuch stronger increase of
γ with supersaturation of the AB13 phase. More specifically, the
significant increase of interfacial tension with supersaturation of
the AB13 phase implies a relatively slow decrease (increase) of
the nucleation barrier βΔGc (nucleation rate J). Hence,
spontaneous nucleation of the AB13 is found at surprisingly
high βΔμ with respect to the Laves phases or the fcc phase.
Moreover, the validation of our estimate of βΔμ where we
should expect spontaneous nucleation based on the results from
the seeding approach supports our assumption that AB13
nucleation is well-described by classical nucleation theory.
In Figure 7b we show a time sequence of the early stages of the

spontaneous AB13 nucleation from the metastable binary fluid
phase at βPσL

3 = 72.2 with time increasing from the upper-left
corner and then proceeding clockwise. We make two remarks
here. First, we observe that the ANN classification, combined
with the clustering algorithm, is capable of following the
nucleation process from the early stages, thereby revealing the
kinetic pathways toward the formation of an embryo. Second, we
find that the nucleation starts with a (defective) icosahedral
cluster of small spheres around which large spheres start to order
themselves on a simple cubic lattice. We thus show that the local
bond orientational order of small spheres into clusters with
icosahedral symmetry plays a crucial role in the kinetic pathway
of the fluid-to-solid transition. This immediately begs the
question whether nucleation of the AB13 phase proceeds via a
classical pathway or a nonclassical two-step crystallization
scenario where relatively dense or bond orientational ordered

structures in the fluid phase act as precursors for nucleation. The
nucleation kinetics is of paramount importance, as the seeding
approach for estimating the Gibbs free-energy barrier heights
and nucleation rates is only valid in the case that nucleation
proceeds via a classical nucleation pathway. To this end, we
analyze particle configurations of spontaneous nucleation events
in time. We observe that the system remains in the metastable
binary fluid phase in which small crystalline nuclei appear and
dissolve until a crystal nucleus of the AB13 phase exceeds its
critical size at intermediate times and grows out. The induction
time and the growth of a crystal nucleus when its size is larger
than the critical nucleus size demonstrate that binary nucleation
of the AB13 phase proceeds via a classical nucleation pathway. In
Figure 7b, we observe the spontaneous formation of a crystalline
nucleus in the metastable fluid phase, which grows further when
its size is larger than the critical size. This observation, together
with the video that we include in the Supporting Information,
shows that AB13 formation occurs via classical nucleation.

Local Motifs Analysis. In order to shed light on the early
stages of the AB13 crystal nucleation, we employ a recently
developed method called topological cluster classification
(TCC) algorithm71 to detect predetermined particle arrange-
ments in particle configurations. In particular, we focus on two
topological clusters, the square shortest-path four-membered
ring (sp4a) and the regular icosahedral cluster of 13 particles
(13a), which are relevant particle clusters of the large and small
species, respectively, in the AB13 crystal (see Figure 8b). The
fraction of particles belonging to these two clusters has on
average a nonzero value in the fluid phase and reaches one as
crystallization proceeds.

In Figure 8a we plot the evolution of the fraction of large and
small particles belonging to the square and the icosahedral
clusters, respectively, during a spontaneous nucleation event. In
order to facilitate the comparison between the two clusters, we
subtract the corresponding averaged particle fraction observed
in the fluid phase. Hence, the curves fluctuate around zero until
nucleation occurs. Interestingly, the fraction of square and
icosahedral clusters both increase at the same time when
nucleation occurs, and the growth behavior of both particle
clusters is similar. Hence, we conclude that the nucleation of the
AB13 phase proceeds via a coassembly process, in which the large

Figure 8. (a) Normalized number of large Ñsp4a/NL (small Ñ13a/NS)
particles belonging to a square sp4a (icosahedral 13a) cluster as a
function of time t/τMD in a spontaneous nucleation event, corrected
for the averaged number observed in the fluid phase. The large
statistical fluctuations in Ñsp4a/NL is due to a much lower number of
large species in the system. (b) Sketch of the square shortest-path
four-membered ring sp4a (blue) and the 13a (red) icosahedral
cluster.
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spheres form a simple cubic lattice and the small species form the
body-centered icosahedral clusters.

CONCLUSIONS
In conclusion, we have investigated homogeneous nucleation of
an AB13 crystal in a binary fluid of hard spheres with a size ratio
of q = 0.55 and a composition corresponding to the
stoichiometry of the AB13 phase. To achieve this, we have
trained a neural network using a large set of nonaveraged bond
order parameters as input to distinguish the AB13 phase from all
competing phases, i.e., the binary fluid and the fcc phase, with
significant accuracy in the case of bulk phases. We showed that
using two (averaged) bond order parameters is not sufficient to
identify the different phases of interest in a single-particle level,
while an artificial neural network with two hidden layers
provides an elegant and powerful way of combining a high
number of bond order parameters and to successfully distinguish
the different phases with high accuracy.
Using the trained neural network as an order parameter in our

nucleation study, we were able to follow crystal nucleation of the
AB13 phase in a supersaturated binary fluid phase. We used the
seeding approach to calculate Gibbs free-energy barriers and
nucleation rates without prior knowledge about the system.
Subsequently, we made a comparison of the nucleation of the
AB13 phase with another binary hard-sphere crystal, the Laves
phase, and with a single-component fcc phase of pure hard
spheres. Our key findings are that (1) the assumption that the
nucleation barrier for binary nucleation is higher due to a loss of
mixing entropy is incorrect, e.g., the barrier for the pure fcc phase
is higher than for the AB13 and the Laves phases in the case of
hard spheres at the same thermodynamic driving force Δμ, and
that (2) the assumption that the nucleation barrier is high due to
a high interfacial free energy is not always valid, as it also depends
on the number density of the solid phase, e.g., the reduced
surface tensions βγσL

2 for the fcc and the Laves phase are very
similar, but fcc has a higher barrier height due to a lower reduced
solid density ρsσL

3. Hence, in order to compare the effect of
interfacial tension and crystal density on the nucleation of
different crystal structures, one should compare the ratio γ3/ρs

2

for the various systems, as this ratio is directly related to the
barrier height and critical nucleus size via eqs 3 and 5 and is
independent of an arbitrary choice of length scale.
Subsequently, we used the dependence of the nucleation

barrier height βΔGc on supersaturationΔμ to obtain an estimate
of Δμ where spontaneous nucleation should occur. In this way,
we were able to observe spontaneous nucleation of the AB13
phase using brute force MD simulations. To shed light on the
nucleation mechanism, we analyzed the spontaneous nucleation
events by measuring the fraction of large particles belonging to a
square shortest-path four-membered ring (sp4a) and the
fraction of small particles belonging to an icosahedral (13a)
cluster. We observed a similar growth behavior of both clusters,
demonstrating that the AB13 nucleation proceeds via a
coassembly process. This finding is corroborated by our analysis
of the early stages of nucleation when the first embryo forms
using the trained neural network as an order parameter. Figure
7b shows clearly that the embryo grows by the attachment of
both large particles and icosahedral clusters of small particles.
Our results show that AB13 crystal nucleation proceeds via a
classical pathway that can be well-described by CNT, even
though the binary fluid is highly structured. Due to thermal
fluctuations, the local regions of high bond orientational order
and many-body correlations appear and disappear in the

metastable fluid phase. The crystal only forms when also the
large species are coordinated in the right way around the
icosahedral clusters, thereby making AB13 nucleation classical.
Finally, our method for the identification of local structures

using a neural network can straightforwardly be extended to
other crystal structures, liquid crystal phases, and glasses and can
be employed for future nucleation studies, analyzing not only
numerical but also experimental data stacks.

METHODS
We determine bulk coexistence of the binary fluid phase with a
composition xL = 1/14 and the AB13 crystal of a binary mixture of nearly
hard spheres (see the section The Model) with a diameter ratio q = σS/
σL = 0.55 by computing the Helmholtz free energy per particle f = F/N
as a function of density ρ = N/V for both phases with N the number of
particles and V the volume of the system. We calculate f using
thermodynamic integration of the equations of state

f f
P

( ) ( ) d
( )

0 2
0

∫β ρ β ρ ρ β ρ
ρ

= + ′ ′
′ρ

ρ

(6)

where f(ρ0) denotes the Helmholtz free energy per particle for a
reference density ρ0, β = 1/kBT is the inverse temperature, and P is the
pressure. We use the ideal gas as a reference state for the binary fluid
phase, and we employ the Frenkel−Ladd method to calculate the
Helmholtz free energy at a reference density ρ0 usingMC simulations in
the NVT ensemble.72

Subsequently, we calculate, for both the AB13 crystal and the binary
fluid phase, the chemical potential βμ at pressure P:

G
N

f
Pβμ β β β
ρ

= = +
(7)

with βG the dimensionless Gibbs free energy. The chemical potential
difference or supersaturation is obtained via βΔμ = βμfluid − βμAB13

,
whereas two-phase coexistence between the AB13 and fluid phase is
determined by imposing βΔμ = 0, resulting in

f
P

(1/ )
β

ρ
β

Δ
Δ

= −
(8)

which is equivalent to the common tangent construction on the free-
energy curves in the βf− 1/ρ plane withΔf = f fluid− fAB13

andΔ(1/ρ) =
(1/ρfluid) − (1/ρAB13

).
In order to train the ANN, we first build a training set of the different

local particle environments (classes) we wish to distinguish. To this
end, we perform MC simulations in the NPT ensemble of the AB13
crystal and the binary fluid phase with a composition xL = 1/14, both at
coexistence pressure βPcoexσL

3 = 45.35, and of the pure fcc phase at bulk
coexistence with the fluid phase at pressure βPcoexσ

3 = 8.87. In total we
collect 100 000 configurations of each local particle environment that
we wish to classify. We describe each local particle environment with a
36-dimensional input vector of nonaveraged bond order parameters;
see eq 2. The training of the network was done using the Keras package,
enabled by Tensorflow backend. Specifically, we trained the network
minimizing the categorical cross-entropy loss function with the addition
of an L2 regularization term using a weight decay prefactor of 10−4. The
minimization was carried out using minibatch stochastic gradient
descent with momentum,61,73,74 and we set the learning rate to 10−2.

Both equilibration parts of the seeding approach have been carried
out usingMC simulations in theNPT ensemble, using pressure βPσL

3 =
56.0 and a total number of MC cycles equal to 103. For our
investigations on the seeded growth and the spontaneous nucleation,
we perform MD simulations using HOOMD-blue (highly optimized
object-oriented many-particle dynamics)75,76 in theNPT ensemble. We
use varying system sizes for the seeding approach (see Table 2) and
employ a total number of 3024 particles to study spontaneous
nucleation. The temperature T and pressure P are kept constant via the
Martyna−Tobias−Klein (MTK) integrator,77 with the thermostat and
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barostat coupling constants τT = 1.0τMD and τP = 1.0τMD, respectively,

and m/MD Lτ σ= ϵ is the MD time unit. The time step is set to Δt =
0.004τMD, which is small enough to ensure stability of the simulations.
We ran the simulations for 109τMD time steps, unless specified
otherwise. The simulation box is cubic, and periodic boundary
conditions are applied in all directions.
To calculate the nucleation free-energy barrier heights and

nucleation rates, we used the seeding approach. To this end, we
initialized the system with a crystal seed of the AB13 phase surrounded
by fluid particles at an overall composition of xL = 1/14. We first
equilibrated the system using two steps as described in themain text, via
MC simulations in the NPT ensemble involving trial moves to displace
particles and to isotropically scale the volume of the system. We
employed six different seed sizes to determine the free-energy barrier
height βΔGc and nucleation rate JσL

5/DL as a function of super-
saturation βΔμ as shown in Figure 6. Finally, we employ the TCC
algorithm71 to analyze spontaneous nucleation events. The algorithm is
used separately on both species; that is, we take into account one
species at a time. Bonds between particles are detected using a modified
Voronoi construction method.71 The free parameter fc, controlling the
amount of asymmetry that a four-membered ring can show before being
identified as two three-membered rings, is set to 0.82.71

All simulation images are realized using the OVITO software.78

Bond Orientational Order Parameters. To describe the local
environment of a particle, we employ the standard bond orientational
order parameters introduced by Steinhardt et al.52 We first define the
complex vector qlm(i) for each particle i

q i
N i

Y r r( )
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where Nb(i) is the number of neighbors of particle i, Ylm(θ(rij), ϕ(rij))
denotes the spherical harmonics, m ∈ [−l, l], θ(rij) and ϕ(rij) are the
polar and azimuthal angles of the distance vector rij = rj − ri, and ri
denotes the position of particle i. Subsequently, we define rotationally
invariant quadratic and cubic order parameters as
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Additionally, we also use the averaged bond orientational order
parameters. The averaged q̅lm(i) is defined as
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where Ñb(i) is the number of neighbors including particle i itself. The
rotationally invariant quadratic and cubic averaged bond order
parameters are defined as
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To identify all the neighbors of particle i, we employ the parameter-free
solid-angle-based nearest-neighbor algorithm of Van Meel.59 This
algorithm assigns a solid angle to every potential neighbor j of i and
defines the neighborhood of particle i to consist of the Nb(i) particles
nearest to i for which the sum of solid angles equals 4π. We note that in
SANN the identification of neighbors is not necessarily symmetric; that
is, it is not ensured that if particle A is a neighbor of particle B, particle B
is a neighbor of particle A.
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