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Using computer simulations, we investigate the phase behavior of hard-core spherocylinders with a
length-to-diameter ratio L=σ ¼ 5 and coated by a soft deformable corona of length λ=σ ¼ 1.35. When
quasi-two-dimensional layers are formed in smectic and solid phases at low temperatures, the competition
between the two intrinsic length scales of the parallel aligned particles leads to the stabilization of different
in-plane lattices of nonconventional symmetry, including low-density hexagonal, square, and high-density
hexagonal crystals, as well as an intriguing dodecagonal quasicrystal. Our Letter opens up the opportunity
to control the assembly of anisotropic nanoparticles into structures with preengineered symmetry-
dependent physical properties.
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Prolate rodlike particles interacting via purely hard-core
interactions show an especially rich phase behavior that is
determined by particle shape anisotropy and system pack-
ing fraction [1–3]. In particular, rodlike particles can form
isotropic (I) fluids, liquid crystalline nematic (N) and
smectic (SM) phases, plastic crystals as well as orienta-
tionally ordered solids with “AAA” or “ABC” stacking. The
unit cell of AAA- and ABC-stacked layers consists of
parallel aligned rods forming packed structures with sixfold
rotational symmetry. The inclusion of effective attractive
forces (e.g., dispersion or depletion interactions) can induce
nontrivial effects, such as the occurrence of a vapor-liquid
critical point [4], a shift in the location of the liquid-crystal
transition [5–7], and the apparent coexistence between
more than two or three phases [8]. Nevertheless, these
forces are not able to promote the formation of crystal
phases with nonhexagonal symmetry. Since the early work
of Hemmer and Stell [9], it has been recognized that hard-
core spherically symmetric particles decorated by a soft-
repulsive corona of variable shape can spark an especially
complex phase behavior, where isostructural solid-solid
transitions [10,11], liquid-liquid transitions [12], thermo-
dynamic and dynamic anomalies [13–16], glass transitions
[17], and the formation of various ordered structures in two
and three dimensions [13,18,19] have been observed [20].
In the particular case of two-dimensional systems with
double-scale isotropic repulsive interactions, the shape and
energy and length scales of the potential soft-repulsive tail
strongly influence the overall phase behavior and symmetry
of the ordered structures [21–23], leading to interesting
stripelike and honeycomb mesophases, labyrinths,
Archimedean tilings, square lattices, and quasicrystals of
different symmetry [24–29]. This rich morphology,

promoted solely by the incorporation of soft-repulsive
interactions, has been recently observed experimentally
in quasi-two-dimensional systems of polystyrene (PS)
microspheres, coated with poly(N-isopropylacrylamide)
microgels at the air-water interface [30], and monolayers
of PS colloidal particles coated with polymeric amphi-
philes [31].
Given the ability of hard spherocylinders of forming

phases where particles are basically constrained in distinct
two-dimensional layers [32–34], one may expect that
adding a soft-repulsive shoulder would be sufficient to
trigger the formation of nonhexagonal arrays of parallel
rods, analogous to those found in strictly two-dimensional
systems [27,35]. In suspensions of colloidal nanorods,
Liang et al. reported the first experimental evidence of
hexagonal symmetry breaking in mono- and multilayer
superlattices of parallel aligned octagonal gold nanorods
[36]. By modulating the effective interactions between the
ligand-stabilized nanorods through surface functionaliza-
tion, they observed a transition from high-density hexago-
nal to tetragonal molecular arrays, which exhibited an
enhanced thermal stability and stronger plasmonic cou-
pling. The authors concluded that this transition is gov-
erned entirely by an effective attractive interaction between
pairs of standing rods. More recently, hexagonal-to-tetrago-
nal transitions have been reported to take place in smectic
phases of titanium oxide nanorods by controlling the
grafting density of organic ligands [37]. In the latter case,
the cores of the elongated particles were parallelepipeds
with a square or rhombic cross section. Therefore, in
addition to effective attractive interactions, the effect of
the facets (core shape) on determining the symmetry of the
packed structures cannot be easily ruled out.
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Inspired by these ideas, here we investigate the poly-
morphism in the equilibrium phases of spherocylindrical
particles interacting via a double-scale purely repulsive
potential. To demonstrate how soft-repulsive interactions
between anisotropic particles can lead to a rich set of
equilibrium phases beyond the conventional liquid-
crystalline behavior, we consider elongated rods modeled
as softened-square-shoulder spherocylinders (SS-SCs). The
continuous pair potential for such a model can be written as

ϕSS-SCðr;ΩÞ=ϵ ¼
�

σ

dm

�
14

þ 1 − tanh ½kðdm − λÞ�
2

; ð1Þ

where r and Ω denote, respectively, the center-of-mass
distance and relative orientation in space, dm ¼ dmðr;ΩÞ is
the minimum distance between a pair of particles, σ is the
hard-core diameter, λ is the characteristic length of the soft
shoulder, ϵ is the energy-scale parameter of the shoulder,
and the constant k controls the steepness of the potential.
This two-body potential for uniaxial rodlike particles is an
extension of the Fermi-Jagla-like potential introduced by
Ryzhov and co-workers [13], which has been widely
employed to study the phase behavior of spherical particles
in two and three dimensions [38]. Here, we investigate the
phase behavior of a system of SS-SCs with a length-to-
diameter ratio L� ≡ L=σ ¼ 5 and shoulder length
λ� ≡ λ=σ ¼ 1.35. The pair potential is characterized by
kσ ¼ 10, which was also used in previous studies on three-
and two-dimensional fluids of spherically symmetric par-
ticles [13,27]. A pictorial representation of a SS-SC along
with its pair potential is shown in Fig. 1
We study the phase behavior of SS-SCs by standard

Metropolis Monte Carlo simulations in the isothermal-
isobaric ensemble (NPT-MC) using rectangular simula-
tion boxes with three-dimensional periodic boundary

conditions. In particular, we calculate the pressure-density
equations of state (EOS) at reduced temperature 0.12 ≤
T� ≤ 0.30 and reduced pressure 0.05 ≤ P� ≤ 10.0, with
T� ≡ kBT=ϵ, P� ≡ Pσ3=kBT, and kB as the Boltzmann
constant. To this end, we expand systems of N ¼ 1120
particles initially arranged in a close-packed face-centered-
cubic (fcc) lattice of four layers at ρ� ¼ Nσ3=V ¼ 0.15
[39]. Compression runs from low- to high-density states are
also performed in the vicinity of phase transitions to check
for hysteresis. To characterize the mesophases observed,
we employ several global-order parameters. In particular,
the degree of layering in the systems, indicating the
occurrence of SM and crystal phases, is determined by
measuring the smectic-order parameter, which reads

τ ¼ max
d

����
XN
i¼1

exp

�
2π

d
iri · n̂

�����; ð2Þ

where d is a real number related to the layer dimension, ri
denotes the position of particle i, and n̂ is the nematic
director. Additionally, the two-dimensional bond-order
parameters, Ψ4, Ψ6, and Ψ12 are calculated to identify
4-, 6-, and 12-fold bond angular order, respectively, in the
discrete layers of SM and crystalline phases. More spe-
cifically,

Ψn ¼
�

1

Nl

����
XNl

j¼1

1

Nj

XNj

m¼1

expðinθjmÞ
����
�

l

; ð3Þ

where n is the symmetry of interest, Nl is the number of
particles in layer l, Nj is the number of nearest neighbors
around particle j [40], θjm is the angle between the center-
of-mass distance vector between particles j and m, and an
arbitrary reference axis in the plane of layer l (with normal
n̂), and the brackets h� � �il denote an ensemble average over
the layers. To fully characterize the phase symmetry, in-
layer structure factors and two-dimensional pair-correlation
functions, g⊥;lðrÞ perpendicular to the main director, are
also calculated.
The temperature-density (T� − ρ�) phase diagram is

reported in Fig. 2, whereas isotherms of the EOS and
order parameters are reported in the Supplemental Material
[41] (also see [42]). Overall, we detect the formation of
seven different stable phases in the studied parameter
space: isotropic fluids I, with nearly vanishing values of
τ and no long-ranged orientational correlations; smectic
phases with τ ∼ 1 and no overlap (SM�) or partial overlap
(SM) between the particle coronas; low-density hexagonal,
high-density hexagonal, and square solid phases; and,
remarkably, dodecagonal quasicrystal phases. In the
LDH, HDH, and SQ solid phases, ordered adjacent layers
display the typical ABC fcc stacking. The isostructural
LDH and HDH solids display different lattice spacings
between the in-layer rods. While in the LDH phase, parallel

FIG. 1. SS-SC potential ϕSS-SCðr;ΩÞ as a function of the
interparticle minimum distance dm with kσ ¼ 10 and
λ=σ ¼ 1.35. Inset: a SS-SC with hard core of length-to-diameter
ratio L=σ ¼ 5 and soft corona of thickness ∼ðλ − σÞ=2.
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aligned rods organize into hexagonal arrays in order to
avoid overlap of their shoulder λ, in the HDH solid, the
shoulders fully overlap and the rods are at close contact at
a distance corresponding to the hard-core diameter σ.
Simulation snapshots and structure factors, showing the
typical ordering of the parallel aligned rods in the quasi-
two-dimensional layers are illustrated in Fig. 2.
In light of these preliminary observations, we now

discuss the conditions driving the formation of the phases
shown in Fig. 2. At the highest temperature (T� ¼ 0.30),
the system is found in a typical I phase for densities
ρ� < 0.054. Upon increasing density, the system exhibits a
first-order I-SM phase transition as suggested by the steep
increase in the smectic-order parameter, which equals τ ¼
0.854 at ρ� ¼ 0.062. First-order I-SM transitions are also
observed in systems of hard spherocylinders (HSCs) with
length-to-diameter ratio 3.1 < L� < 3.7 [3]. For larger
values of L�, the I-SM transition in HSCs is preempted
by the N phase. While the SS-SC fluid becomes nearly
equivalent to the HSC fluid with L� ¼ 5 in the high-
temperature limit, at the finite temperatures explored here
and at low densities, it can be regarded as being composed
of HSCs with an effective length-to-diameter ratio L�

eff ¼
L=λ ∼ 3.7 [43]. Such a smaller aspect ratio, as also
observed for HSCs, inhibits the formation of N phases,
while promoting a direct I-SM transition. The resulting
SM phase is stable in a wide range of densities
(0.062 < ρ� ≤ 0.136) due to the interplay between the
two relevant length scales of the pair potential, which
permits compression without any phase transformation.
The existence of these two competing length scales is

evinced by the in-layer pair-correlation function g⊥;lðrÞ
reported in Fig. 3. In particular, the pronounced second
peak of g⊥;lðrÞ in the low-density SM phase suggests that
particles are preferentially found at relative distances
slightly larger than λ, where their soft shoulders are in
close contact to each other. However, at such low densities,
close contact between hard cores is also observed as
indicated by the first peak of g⊥;lðrÞ. At larger densities,
the second peak in g⊥;lðrÞ becomes irrelevant with respect
to the first peak, indicating a high degree of overlap
between the particle coronas. The layers of low-density

FIG. 2. Left: phase diagram of a system of SS-SCs of shoulder length λ=σ ¼ 1.35 in the temperature T� ¼ kBT=ϵ–density ρ� ¼
Nσ3=V plane with N as the number of particles and V as the volume of the system. Labels indicate isotropic I fluids; smectic liquid
crystals with (SM) or without (SM�) overlap between particle coronas; square (SQ), low-density hexagonal (LDH) and high-density
hexagonal (HDH) crystals; and dodecagonal quasicrystals (QC12). Gray-shaded areas indicate the coexistence regions. Right:
representative simulation snapshots (top view) showing the in-layer arrangement of LDH, SQ, QC12, and HDH phases formed by SS-
SCs at T� ¼ 0.12. The corresponding structure factors and Voronoi tessellations are also included. The coloring scheme of the particles
is the same as in Fig. 1.

FIG. 3. Two-dimensional (in-layer) pair-correlation function
g⊥;lðrÞ of SS-SCs as a function of distance r in the SM phases at
temperature T� ¼ 0.30 and varying density ρ� as labeled.
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SM phases can therefore be regarded as pseudobinary
mixtures of rodlike particles of diameter σ and of diameter
λ. Upon increasing pressure, the prevailing characteristic
length σ ultimately leads to the extinction of the latter set of
particles and to a first-order SM-HDH phase transition
observed at ρ� ¼ 0.136–0.143.
At temperature T� ¼ 0.25, an I-SM transition is

observed at ρ� ¼ 0.051–0.057. In this case, the SM phase
is stable up to ρ� ¼ 0.130, where a smooth transition to a
crystal phase is detected. Interestingly, in this solid phase,
the large value of Ψ4 confirms that particles in the same
layer arrange into a square lattice (SQ phase). The
subsequent transformation of the SQ to the HDH phase
at this temperature occurs at ρ� ¼ 0.131–0.143. At temper-
ature T� ¼ 0.22, a similar sequence is observed and the SQ
phase becomes stable in a relatively wider range of
densities. When the system is at T� ¼ 0.20, the I phase
transitions into a smectic SM� phase upon increasing density.
We differentiate this phase from the typical SM phase based
on the in-layer arrangement of particles. As discussed above,
both phases present unidimensional translational order along
the director (large τ values) and exhibit in-plane fluidlike
structure (vanishingΨn values). However, in the SM� phase,
no overlaps between the particles’ coronas occur,while in the
SM phase, a large degree of overlap is detected. Such a
difference can be appreciated in the pair-correlation func-
tions (Supplemental Material [41]) and is ultimately due to
the increased energetic penalty associated with shoulder
overlap at low temperatures. Since this transition only
involves the continuous compression of particles without
significant symmetry rearrangement, no density jumps are
detected and, therefore, no coexistence occurs. By further
compressing the SM phase, a SQ crystal that spans the range
of densities 0.119 ≤ ρ� ≤ 0.136 is formed. As the SM-SQ
transition is closely related to the freezing of the quasi-two-
dimensional liquid layers, it is relevant to compare the
density at which this transition occurs with the analogous
freezing density of softened-square-shoulder disks. At
T� ¼ 0.20, the quasi-two-dimensional in-layer densities of
the coexisting SM and SQ phases are ρ�2D;SM ¼ 0.772 and
ρ�2D;SQ ¼ 0.796, respectively. In two-dimensional systems of
softened-square-shoulder disks, the transition from liquid-
like to square lattices, at the same temperature, occurs at
ρ�2D ∼ 0.8 [27,35,44].
It is important to mention that one of the most interesting

features of two-dimensional square-shoulder disks is their
apparent ability to form dodecagonal quasicrystals, which
have been typically found in between square and high-
density hexagonal phases at 0 < T� < 0.3 [21,27,35]. For
the particular case of softened-square-shoulder disks, with
similar potential parameters to those employed in our MC
simulations, the stability of such an intriguing quasicrystal
is limited to a rather narrow portion of the phase diagram,
covering only the approximate range 0.92 < ρ�2D < 0.95.
Interestingly, for the three-dimensional anisotropic SS-SCs,

we detect stable layered phases exhibiting a marked 12-fold
rotational symmetry for temperatures T� < 0.20 and den-
sities intermediate between the SQ and HDH crystals. As in
the case of two-dimensional systems [21], we obtain such
QC12 phases byMC-NVT simulations, whereHDHcrystals
are cooled from a high to a low temperature (T� ¼ 1.0 to
0.12), keeping the quasi-2D density in the range 0.92 <
ρ�2D;QC12 < 0.95 [45]. Dodecagonal quasicrystals have been
also observed in three-dimensional systems of particles
interacting through different isotropic potentials [46–48],
aswell as in purely hard polyhedra [49,50]. The ability of SS-
SCs to form QC12 phases makes them the first exemplary
case of prolate spherocylindrical particles able to form soft-
matter dodecagonal quasicrystals.
The dual-scale character of SS-SCs becomes more

evident at lower temperatures, sparking the stability of
another phase. In particular, we observe that, at T� ¼ 0.18,
the continuous SM�-SM transition is inhibited. Instead, due
to the increasing energy penalty associated with the overlap
of the particle coronas, a LDH phase is found immediately
after compressing the SM� phase. The analogous transition
between an isotropic fluid and a low-density hexagonal
lattice occurs in 2D systems at ρ�2D ∼ 0.45 [35], whereas the
quasi-two-dimensional in-layer density at which the LDH is
formed in our system is ρ�2D;LDH ¼ 0.467. This atypical low-
density solid phase, eventuallymelts as a result of the partial
overlap between the particle coronas when the density is
increased. The resulting SM phase is bounded at ρ� > 0.117
by a SQ phase, which eventually transitions into a QC12
at ρ� ≥ 0.138, and finally into a HDH solid at ρ� ≥ 0.145.
The quasi-2D density at which the HDH appears in this
case corresponds to ρ�2D;HDH ¼ 0.997, which is again in
partial quantitative agreement with the 2D system, where the
transition from a dodecagonal quasicrystal to a high-density
hexagonal lattice takes place at ρ�2D ∼ 0.99 [35]. In the range
of temperatures 0.12 ≤ T� ≤ 0.16, all seven phases are
stable. In particular, we observe that, as the regions for the
LDH and SQ phases widen, the SM and SM� phases with
fluidlike in-layer structure occupy a narrower range of
densities. In spherically symmetric particles with double-
scale isotropic interactions, glass transitions have already
been reported [17]. Investigating the dynamics of the SS-SC
fluid and resolving whether these anisotropic particles can
lead to the formation of orientational glasses is left as a
future task.
Finally, in order to verify whether an N phase is stable in

the SS-SC system, the isotherm of the EOS of a system of
N ¼ 1600 SS-SCs with L=σ ¼ 10 (effective L=λ ∼ 7.4) is
computed at T� ¼ 0.12 (Supplemental Material [41]). We
find that upon increasing density, an I − N transition
precedes the transformation into the layered states present-
ing distinct in-layer symmetries as observed in systems
with L=σ ¼ 5. Interestingly, the range of packing fractions
where this N phase is stable matches the case of HSCs with
L=D ¼ 7.4. The effect of the energy and length scale of the
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pair potential, as well as particle shape anisotropy on the
phase behavior of SS-SC particles, will be the subject of a
work currently in preparation.
In summary, our MC simulations evidence the non-

conventional phases that can be stabilized in SS-SC
systems by the interplay of particle shape anisotropy,
which determines the liquid crystalline phase behavior
and the competition between the two length scales of the
purely repulsive pair potential, which can stabilize quasi-
two-dimensional layers with distinct complex symmetry. In
particular, at the studied temperatures and at low densities,
the SS-SCs display the features of HSCs with an approxi-
mate effective length-to-diameter L=λ. When layered
phases form, the reversible transitions detected between
different in-plane lattices closely fit into the phase behavior
of truly two-dimensional softened-square-shoulder disks
[27,35]. Interestingly, our results suggest that nonhexago-
nal assemblies of standing aligned colloidal rods can be
realized by purely repulsive interactions and not necessarily
by the introduction of effective highly nonmonotonic
attractive interactions as recently suggested [36]. The
observations discussed herein may open up a new way
for controlling the assembly of anisotropic nanoparticles
into structures with symmetry-dependent mechanical, opti-
cal, and electrical properties demanded in optoelectronic
devices, enhanced spectroscopies, and solar cells [51].
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