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Abstract
For biologically relevant macromolecules such as intrinsically disordered proteins, internal degrees
of freedom that allow for shape changes have a large influence on both the motion and function of
the compound. A detailed understanding of the effect of flexibility is needed in order to explain
their behavior. Here, we study a model system of freely-jointed chains of three to six colloidal
spheres, using both simulations and experiments. We find that in spite of their short lengths, their
conformational statistics are well described by two-dimensional Flory theory, while their average
translational and rotational diffusivity follow the Kirkwood–Riseman scaling. Their maximum
flexibility does not depend on the length of the chain, but is determined by the near-wall in-plane
translational diffusion coefficient of an individual sphere. Furthermore, we uncover
shape-dependent effects in the short-time diffusivity of colloidal tetramer chains, as well as
non-zero couplings between the different diffusive modes. Our findings may have implications for
understanding both the diffusive behavior and the most likely conformations of macromolecular
systems in biology and industry, such as proteins, polymers, single-stranded DNA and other
chain-like molecules.

1. Introduction

For biologically relevant (macro)molecules, internal degrees of freedom that allow for shape changes have a
large influence on both the motion and function of the compound [1–5]. Examples of flexible systems found
in nature include bio-polymers such as DNA and transfer RNA [6], antibodies [2, 4, 7, 8] and intrinsically
disordered proteins (IDPs) [9, 10]. IDPs in particular display large shape changes, due to unstructured (and
therefore flexible) regions of small hydrophilic units that typically function as linkers between more
structured domains. These are involved in important cellular processes such as signaling and transcription.
Additionally, they are often involved in disease-related gene truncations or translocations. The coupled
binding and folding of these flexible regions lead to a large number of possible interactions within the same
set of proteins [9]. Even for more rigid proteins, shape changes can be an important factor, for example in
protein breathing, that involves slow collective movements of larger secondary structures [11]. Therefore,
quantitative knowledge of structural flexibility is necessary to understand the transport properties and
function of flexible biopolymers and proteins [12].

Measuring molecular shape changes calls for single-molecule techniques with a simultaneously high
spatial and temporal resolution. As a simpler alternative, colloidal particles have been widely used as model
systems for (macro)molecular structures since the early 20th century [13–15], because of their unique
combination of microscopic size and sensitivity to thermal fluctuations. Although colloidal particles are
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frequently used as model systems, the study of colloidal particles is interesting in its own right, as colloids can
in principle form the building blocks of materials with novel properties, such as photonic bandgap
materials [16]. Colloidal structures of reconfigurable shape are expected to aid in the assembly of these
structures, because they allow the formed materials to quickly relax towards their thermodynamic
equilibrium configuration, thereby mitigating the random parking problem [17]. In addition, they could
provide ways to build switchable materials [18].

While the Brownian motion of rigid colloids of various shapes has been extensively studied, for example
for ellipsoids [19–21], boomerangs [22–24], and clusters [25, 26], most compounds found in nature show
some degree of flexibility, which may affect their transport properties. It was proposed to calculate their
diffusive properties in an approximate way, by treating the structure as an (instantaneously) rigid body and
take the ensemble average of all possible ‘snapshots’ of conformations, the so-called rigid body
approximation [2, 27–29]. However, the accuracy of this approximation is as of yet unclear: importantly,
deviations between this approximation and the real transport properties can become larger as function of the
flexibility of the molecule [30].

Recently, we have studied both numerically and experimentally the effect of segmental flexibility [31] in a
simple model system consisting of a freely-jointed chain of three spherical colloidal particles, also called
trimers or trumbbells [32, 33]. This was made possible for the first time thanks to the development of
colloidal structures with freely-jointed bonds [34]. Similar to rigid particles, we found that shape affects the
diffusive motion of the colloid at short timescales and that displacements are larger in directions that
correspond to smaller hydrodynamic drag. By comparing our flexible trimers to rigid ones, we found that the
flexibility of the trimers led to a higher translational diffusion coefficient. Furthermore, we uncovered a
Brownian quasiscallop mode, where diffusive motion is coupled to Brownian shape changes. At longer
timescales, in addition to the rotational diffusion time, an analogous conformational diffusion time governs
the relaxation of the diffusive motion, unique to flexible assemblies [31]. These effects taken together show
that the rigid body approximation is not sufficient to model the rich behavior of flexible objects. However, in
the case of long polymer chains, Kirkwood–Riseman theory [27], which is based on the rigid body
approximation, is able to at least describe equilibrium properties such as the average translational diffusion
coefficient [35]. This is attractive because, if accurate, it would provide a simple and quick way to calculate
the equilibrium long time diffusion coefficients typically measured in light scattering experiments.

Here, we study flexible chains of three to six particles using both experiments and simulations.
Conceptually, the longer chains most resemble a flexible polymer, modeled by beads on a chain, while the
shorter chains are expected to show deviations from predictions based on polymer theory. We set out to test
to what extent the conformations of our bead chains can be described by polymer theory and to what extent
their equilibrium diffusivity can be described by simple scalings such as the Kirkwood–Riseman model. First,
we analyze their conformational free energy in several different ways and compare our findings to
two-dimensional Flory theory. Then, we study the shape-dependent short-time diffusivity of the trimer and
tetramer chains and calculate the full diffusion tensor as function of instantaneous shape. By also
determining the shape-averaged translational diffusivity, rotational diffusivity and flexibility for chains of
three to six spheres, we show how these scale as function of chain length. Overall, we find a good agreement
between the experimental measurement and the simulations, except for translational diffusivity. In that case,
we hypothesize that the difference in surface slip in the experiments, where the substrate has a finite slip
length due to the hydrogel surface, and simulations, where we use a no-slip boundary condition, lead to the
higher translational diffusivity in the experiments. We hope our work aids the study of diffusivity of flexible
objects found in complex mixtures relevant in, for example, the cosmetic, pharmaceutical and food
industries, as well as in biological systems. There, our findings may have implications for understanding both
the diffusive behavior and the most likely conformations of macromolecular systems, such as polymers,
single-stranded DNA and other chain-like molecules.

2. Materials andmethods

2.1. Experimental
Flexible chains of colloidal supported lipid bilayers (CSLBs) were prepared as described in previous work
[34, 36–38], specifically, we followed the exact same procedure as in [31] and used silica particles of two
different radii to test the generality of our findings. We now briefly summarize the experimental procedure
from Verweij et al [31].

The CSLBs consisting of (2.12± 0.06) µm silica particles were prepared as described in our
recent works [31, 38]. Briefly, the particles were coated with a fluid lipid bilayer by deposition and rupture of
small unilamellar vesicles consisting of 98.8 mol% DOPC ((∆9-cis)-1,2-dioleoyl-sn-glycero-3-
phosphocholine), 1 mol% DOPE-PEG(2000) (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-
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Figure 1. Flexibly linked colloidal chains. (a) Flexibly linked colloidal chains are created from DNA functionalized colloid
supported lipid bilayers (CSLBs). The particles are bound by the DNA linkers, which can diffuse in the fluid lipid bilayer, yielding
reconfigurable assemblies. Bottom: Confocal image of a tetramer chain, where the different colors, stemming from fluorescently
labeled lipids, indicate the two different particle types that are functionalized with complementary DNA linkers. Scale bar is 2µm.
(b) The coordinate system used for quantifying the diffusion of tetramer chains, relative to the center of diffusion (see
section 2.5.2). (c) Schematics of possible configurations for the tetramer, as function of the two opening angles θ1,θ2. Some
configurations are sterically prohibited because the particles cannot interpenetrate (as indicated by the dark grey area). The
dashed lines indicate the two symmetry axes of the opening angles, θ2 = θ1 and θ2 = 360◦–θ1. (d) The free energy of both
experimental (left) and simulated (right) chains of four particles in terms of θ1,θ2. (e) Confocal microscopy images of, left to
right, a trimer (n= 3), tetramer (n= 4), pentamer (n= 5) and hexamer (n= 6) chain. Scale bars are 2 µm. (f) The free energy in
terms of the opening angles of groups of three particles (‘trimer segments’), of, left to right, trimers, tetramers, pentamers and
hexamers. The main contribution to the free energy is the configurational entropy of the chains. ◦ Experimental, ⋄ simulated and
permutation data (Perm.) are shown, different colors indicate different opening angles.

N-[methoxy(polyethylene glycol)-2000]) and 0.2 mol% TopFluor-cholesterol (3-(dipyrrometheneboron
difluoride)-24-norcholesterol) or DOPE-Rhodamine (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-
(lissaminerhodamine B sulfonyl)). The bilayer coating was performed in a buffer at pH 7.4 containing 50 mM

sodium chloride (NaCl) and 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). We added
double-stranded DNA (of respectively strands DS-H-A and DS-H-B, see the supplementary information of
Verweij et al [31]) with an 11 base pair long sticky end and a double stearyl anchor, which inserts itself into
the bilayer via hydrophobic interactions (see figure 1(a), top panel). The sticky end of strand DS-H-A is
complementary to the sticky end of strand DS-H-B, which allows them to act as linkers. Self-assembly
experiments were performed in a different buffer of pH 7.4, containing 200 mM NaCl and 10 mM HEPES.
Chains of 2.12 µm CSLBs were formed by self-assembly in a sample holder made of polyacrylamide coated
cover glass [31]. Confocal microscopy images of the coated particles are shown in figure 1(e), for chain
lengths of n= 3–6 particles.

Additionally, we analyzed chains of (1.93± 0.05) µm CSLBs, with silica particles purchased from
Microparticles GmbH (product code SiO2–R-B1072). We followed the same protocol with two minor
modifications: first, the lipid composition was 91.2 mol% DOPC, 8.7 mol% DOPE-PEG(2000) and 0.1
mol% DOPE-Fluorescein. Second, we added double-stranded DNA with a self-complementary 12 base pair
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Table 1. Overview of the amount of measurements, the total duration and the total number of frames per chain length n, for the
experimental and simulated data.

Measurements Total length (min) Total frames

n Exp. Sim. Exp. Sim. Exp. Sim.

3 30 30 275 900 9.3× 104 3.8× 107

4 69 50 305 1500 2.5× 105 6.4× 107

5 13 20 75 600 4.7× 104 2.5× 107

6 5 20 41 600 4.1× 104 2.5× 107

sticky end (i.e. a palindromic sequence) and a cholesterol anchor that inserts itself into the lipid bilayer due
to hydrophobic interactions (see supplementary material of Verweij et al [31], strands PA-A and PA-B). To
image the 1.93 µm CSLBs we used a flow cell coated with poly(2-hydroxyethyl acrylate) polymers [31].
Self-assembly experiments were performed in a buffer of pH 7.4, containing 50 mM NaCl and 10 mM HEPES.

2.2. Microscopy
Chains were imaged for at least 5 min (frame rates between 5 and 19 fps) at room temperature using an
inverted confocal microscope (Nikon Eclipse Ti-E) equipped with a Nikon A1R confocal scanhead with
galvano and resonant scanning mirrors. A 60× water immersion objective (NA = 1.2) was used. 488 and 561
nm lasers were used to excite, respectively, the Fluorescein or TopFluor and Rhodamine dyes. Laser emission
passed through a quarter wave plate to avoid polarization of the dyes and the emitted light was separated by
using 500–550 and 565–625 nm filters.

To complement the data obtained from self-assembled chains, we used optical tweezers to assemble
specific chain lengths. Briefly, we employed a homemade optical setup consisting of a highly focused
trapping laser manufactured by Laser QUANTUM (1064 nm wavelength). The laser beam entered the
confocal microscope through the fluorescent port, after first passing through a beam expander and a
near-infrared shortpass filter. The same objective was used for imaging and to focus the trapping laser beam.
During the trapping, the quarter wave plate was removed from the light path.

Particle positions were tracked using a custom algorithm [38] available in TrackPy by using the
locate_brightfield_ring function [39] or using a least-square fit of a Mie scattering based model
implemented in HoloPy [40]. Both methods agree to an accuracy of at least 1 px, however we have found that
the Mie scattering based model is more robust for tracking multiple particles in close proximity to each
other. For all analysis, we only selected clusters that showed all bond angles during the measurement time,
experienced no drift and were not stuck to the substrate. An overview of the total number of measurements,
the total duration and the total number of frames per chain length is shown in table 1.

2.3. Simulations
We have performed Brownian dynamics simulations with hydrodynamic interactions following the method
outlined in Sprinkle et al [41] using the open-source RigidMultiblobsWall package [42]. Hydrodynamic
interactions are calculated using the Stokes equations with no-slip boundary conditions. The hydrodynamic
mobility matrix is approximated using the Rotne–Prager–Blake (RPB) tensor [43], which is a modified form
of the Rotne–Prager–Yamakawa (RPY) tensor [44–46] and accounts for a bottom wall, which is unbounded
in the transverse directions. These corrections to the RPY tensor are combined with the overlap corrections
described in Wajnryb et al [46] to prevent particle-particle and particle-wall overlap. The RPB mobility
inaccurately describes near-field hydrodynamic interactions and therefore breaks down for small separation
distances. This can be overcome by adding a local pairwise lubrication correction to the RPB resistance
matrix as described in detail in Sprinkle et al [41]. Based on the full lubrication-corrected hydrodynamic
mobility matrix, the Ito overdamped Langevin Equation is solved to describe the effect of thermal
fluctuations.

We include a gravitational force on the particles to confine them to diffuse close to the bottom wall, as in
the experiments. Inter-particle bonds are modeled by harmonic springs of stiffness 1000kBT/R2 and
equilibrium length 2R, where R= 1.06 µm is the particle radius. The bond angle is not restricted. We set the
temperature T = 298 K, the viscosity of the fluid η = 8.9× 10−4 Pa s, the gravitational acceleration
g = 9.81 m s−2, the particle massmp = 9.5× 10−15 kg (by assuming a particle density of 1900 kgm−3) and
the simulation timestep∆t = 1.42 ms. For the firm potential that prevents overlap, we use a strength of 4kBT
and a cutoff distance δcut = 10−2R [41, 47]. We initialized the particle chains in a linear configuration (all
opening angles 180◦). Then, these initial configurations were randomized by running the integration for a
simulated time of 60 s prior to saving the configurations, to ensure a proper equilibration of the particle
positions, bond lengths, velocities and opening angles. The particle positions were saved every 8 simulation
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Table 2. Permutation data. For all chain lengths n, we generated the P(Nθ,n–2) configurations obtained by permuting all possible
combinations of opening angles. Interpenetrating configurations, which are forbidden due to short-range repulsive forces between
particles, were removed from this permutation data and the percentages of these configurations relative to the total number of
configurations between 60◦ and 300◦, as well as between 0◦ and 360◦ (fully freely-jointed case) are shown.

Interpen. (%) Interpen. (%)
n δθ (◦) P(Nθ,n–2) (60◦–300◦) (0◦–360◦)

3 0.01 2.4× 104 0 33.3
4 0.04 4.4× 107 6.3 58.3
5 0.68 4.4× 107 15.3 74.6
6 3.00 4.3× 107 27.1 84.6

steps to obtain a final framerate of approximately 90 fps. An overview of the total number of simulations, the
total duration and the total number of saved frames per chain length is shown in table 1.

For comparison to the simulated and experimental data, we generated data in which the chains are
completely non-interacting and freely-jointed up to steric exclusions in the following manner: we
generated all (n−2)-permutations of the Nθ opening angles θi, which gives a total number of
P(Nθ,n− 2) = Nθ!/(Nθ − (n− 2))! combinations of θi. Here, the number of opening angles is
Nθ = (360− 2× 60)/(δθ), where δθ denotes the bin width. Then, we removed those combinations that are
forbidden because of steric exclusions between particles, resulting in the final allowed combinations, which
we call ‘permutation data’. In table 2, we show the bin widths δθ for each n, as well as the total number of
generated permutations P(Nθ,n− 2). The percentage of permutations that was removed due to steric
exclusions is shown, as well as the total number of configurations that would result in interpenetrating
particles for the completely freely-jointed case, where θ can vary between 0◦ and 360◦.

2.4. Data analysis
For all fits reported in this work, we used a Bayesian method to find an estimate of the posterior probability
distribution, by using an Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler method as
implemented in the Python packages lmfit [48] and emcee [49]. This allowed us to obtain accurate
estimates of the error and the maximum likelihood estimate (MLE) of the parameters. Parameter values were
initialized using a standard least-square fit, appropriate bounds on the parameter values were implemented
as priors. We estimated the autocorrelation time τ acor of the MCMC chain using the built-in methods and
ran the analysis for at least 100τ acor steps, where we discarded the first 2τ acor steps (corresponding to a burnin
phase) and subsequently used every other τ acor/2 steps (known as thinning). We used 500 independent
chains (or walkers). The reported values correspond to the MLE of the resulting MCMC chains, the reported
uncertainties correspond to the 16th and 84th percentiles of the obtained posterior probability distribution.

2.5. Diffusion tensor analysis
2.5.1. Definition of the diffusion tensor
We determined the short-time diffusivity of the clusters, both as function of their instantaneous shape, as
well as averaged over all possible configurations. Because the chains are sedimented to the bottom substrate,
we consider only the quasi-2D, in-plane diffusivity. For the flexible trimers, we followed the methods
outlined in Verweij [31]. For the flexible tetramer chains, we calculated a 5× 5 diffusion tensor, where the
five degrees of freedom correspond to translational diffusivity in x and y, rotational diffusivity and the
flexibilities of the tetramer, which are described by the diffusivities of the opening angles θ1,θ2. Specifically,
the x- and y-directions are schematically shown for one configuration in figure 1(b) and defined by (4). The
rotation angle used for determining the rotational diffusivity is indicated in figure 1(b) and is the angle of the
x(τ ) relative to x(τ = 0), i.e. the angle of the body-centered x-axis of the current frame relative to the
body-centered x-axis of the reference frame at τ = 0. The flexibilities are calculated from the mean-squared
displacements of the opening angles θ1,θ2, which are depicted in figure 1(b). θ1 is defined in such a way that
it is always less than or equal to 180◦ and this defines how we assign the magnitude of θ2, specifically,
whether it is acute or obtuse.

The diffusion tensor elements of the tetramer chains were determined analogously to the trimers [31].
Briefly, for each pair of frames, we determined the initial shape of the chain, which is determined by θ1,θ2.
The short time diffusion tensor is then calculated from the trajectories in the following way:

D[ij](θ1,θ2)≡
1

2

∂⟨∆i(θ1,θ2)∆j(θ1,θ2)⟩τ
∂τ

, (1)

with τ the lag time between frames, ⟨· · · ⟩τ denotes a time average over all pairs of frames τ apart and
∆i(θ1,θ2) = i(θ1,θ2, t+ τ)− i(θ1,θ2, t) is the displacement of the ith diffusion tensor element, which
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depends on the instantaneous shape given by θ1,θ2. The average diffusion tensor elements D[ij] were
obtained by fitting the overall slope of the mean (squared) displacements as a function of lag time τ . We
considered lag times up to 0.17 s, given by the frame rate of the experimental data. We only considered
trajectories where the variation in θ1,θ2 did not exceed the edges of the bin describing the initial shape. Then,
we calculated the diffusion tensor elements separately for each initial shape. For fitting the slopes, we used a
MCMC sampling method described in section 2.4, where we used a linear model without an offset. For
longer chains, we only considered the shape-averaged, quasi-2D translational diffusion coefficient DT , which
corresponds to in-plane diffusivity above the wall. Additionally, we determined the rotational diffusion
coefficient D[αα] from the mean squared angular displacement of the x-axis (defined in (4), see figure 1(b)
for a schematic depiction), which describes the rotational diffusivity around an axis perpendicular to the
substrate. Finally, we determine the overall cluster flexibility D[θθ] by calculating the mean squared
displacements of the (n−2) opening angles θi as follows:

⟨|∆θ|2⟩= ⟨|(∆θ1, . . . ,∆θn−2)|2⟩, (2)

so that the flexibility D[θθ] is given by:

⟨|∆θ|2⟩= 2(n− 2)D[θθ]t, (3)

analogously to the other diffusion tensor elements.

2.5.2. The influence of the tracking point
As tracking point, we considered the center of mass (c.m.) and the center of diffusion (c.d.), because the
choice of origin is expected to affect the magnitude of the diffusion tensor [50, 51]. The c.d. was calculated
from Aij defined by equation (2.16) of Cichocki et al [51] using the RPB tensor [43] with lubrication
corrections as the inter-particle mobility matrix µij. This tensor includes wall corrections, as discussed
previously in section 2.3. The c.d. was determined from the simulated particle positions, because the height
above the bottom wall was not measured experimentally, but is needed to calculate the wall corrections. The
direction of the body-centered x- and y-axes was determined as function of the tracking point rt.p., which
defines the origin of the body-centered coordinate frame. We define rt.p. = ρ1r1 + ρ2r2 + · · ·+ ρnrn where
ρ= (ρ1,ρ2, . . . ,ρn), which defines the location of the tracking point as a linear combination of the particle
positions (equations (2.2) and (2.3) of Cichocki et al [51]). ρ is a weight vector which determines how much
weight is accorded to each particle in the calculation of the tracking point rt.p.. As an example, for a trimer,
ρ= (1/n= 1/3,1/3,1/3) when the tracking point is chosen to be the center of mass.

The direction of the x-axis was chosen as:

x̂=±
[
rt.p.,1 + · · ·+ rt.p.,s1

ρ1 + · · ·+ ρs1
−
rt.p.,s2 + · · ·+ rt.p.,n

ρs2 + · · ·+ ρn

]
, (4)

where rt.p.,i is the ith coordinate of the tracking point and the bead chain is split into two parts of the same
number of particles according to: {

s1 = s2 = ⌈ n
2 ⌉ for odd n

s1 = ⌈ n
2 ⌉, s2 = s1 + 1 for even n

. (5)

Note that for a trimer, with the tracking point at the c.m. (i.e. ρ= (1/3,1/3,1/3)), x̂ is parallel to the
end-to-end vector, which is the same definition as in our previous work [31]. ŷ is then chosen such that x̂ and
ŷ form a right-handed coordinate system, where the direction of ŷ is chosen to point away from the central
part of the cluster towards the tracking point, i.e. along rt.p. − (rs1 + rs2)/2. This orientation was determined
for every frame, which fixed the orientation of the body-centered coordinate system x(τ = 0),y(τ = 0). For
subsequent lag times, the direction of y(τ) was chosen such that y(τ = 0) · y(τ)> 0, i.e. the direction of y
does not change sign. The resulting coordinate system relative to the c.d. is visualized for the tetramer chains
in figures 1(b) and (c).

3. Results and discussion

3.1. Conformations of flexible chains
3.1.1. Shape as function of the trimer segments
Does a diffusing flexible chain of micron-sized spherical particles have preferred configurations? This is a
natural question to ask, because increasing the number of spheres per chain increases the percentage of
overlapping configurations (see table 2) and could potentially change the hydrodynamic interactions. We
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answer this question by considering the free energy of such chains, which were made by the assembly of
colloid supported lipid bilayers (CSLBs) [31, 34, 36–38]. These particles are bonded by DNA linkers, which
provide specific bonds between the particles. Because the linkers can diffuse in the fluid lipid bilayer, the
bonded particles can move with respect to each other, as schematically depicted in figure 1(a). We compared
our experimental data to Brownian dynamics simulation data, where hydrodynamic interactions between
particles and the substrate are taken into account via the RPB tensor [43], overlap corrections [46] and a
local pairwise lubrication correction [41] (see section 2.3 for details).

We analyzed the free energy of clusters of n= 3–6 particles as function of their conformation using
different methods. For a chain of three particles, a trimer, a single parameter, the opening angle θ, can
describe the conformations [31]. We have shown before that flexible trimers do not show a preference for any
given opening angle and therefore conformation [31, 38]. For a chain of four of such particles (see figure 1(a)
for a microscopy image), there are two angles that characterize the shape of the cluster, θ1 and θ2, which are
the opening angles of the two ‘trimer segments’ (groups of three adjacent, bonded spheres) that make up the
chain. The definition of the opening angles is shown in figure 1(b). For the tetramer chains, we obtained a
2D-histogram of opening angles for θ1,θ2 between 60◦ and 300◦, using the simulated and experimental data.
These two internal degrees of freedom lead to a large number of possible chain configurations, as shown in
figure 1(c). Some configurations are forbidden because of steric exclusions, as indicated by the grey areas.
The symmetry lines of the opening angles θ2 = θ1 and θ2 = 360◦ − θ1 are indicated as well. The
configurations are symmetric around these lines except for the fact that we break this symmetry by choosing
which angle to label as θ1 and which as θ2, because this has consequences for the orientation of the body
centered coordinate system, as shown in figure 1(b) and defined in (4).

From the probability density function calculated from the histogram, we determined the free energy
using Boltzmann weighing,

F

kT
=− lnp+

F0
kT

, (6)

where F is the free energy, k is the Boltzmann constant, T is the temperature, p is the probability density and
F0 is an arbitrary constant offset to the free energy that we have chosen such that the average free energy is
equal to zero. Except for steric restrictions and hydrodynamic interactions, we expect inter-particle
interactions to be weak. Therefore, we hypothesize that there are mainly entropic contributions to the free
energy and that enthalpic contributions are small. The resulting free energy is shown in figure 1(d). Like
flexible trimers [31, 38], chains of four particles are freely-jointed, as evidenced by the fact that differences in
their free energy as function of opening angles θ1,θ2 are on the order of 1 kT in figure 1(d) in the
experiments and below 0.1 kT in the simulations. Differences smaller than or comparable to the thermal
energy are difficult to measure experimentally and are of limited physical relevance. Therefore, we conclude
that there is no appreciable preference for any given conformation and the tetramer chains are thus
freely-jointed. We use the term ‘freely-jointed’ in the sense that the chains are free to move without any
preferred state, up to steric exclusions stemming from short-range repulsions between the particles that
prevent them from interpenetrating.

Increasing the number of beads in the chain increases the percentage of sterically inaccessible
configurations (see table 2) and could potentially alter the hydrodynamic interactions. To answer whether
these effects lead to preferred configurations, we study chains consisting of n = 3–6 particles, as shown in
confocal microscopy images in figure 1(e). Because visualization as a joined histogram becomes increasingly
complex as the chain length increases, we first consider the free energy of their separate (n−2) opening
angles, as shown in figure 1(f). First, we obtained probability density functions of their n−2 opening angles
θi, where θi is the ith opening angle, as defined in figure 2(a), analogously to the choice of opening angles
θ1,θ2 in figure 1(b). In other words, we consider the free energy as function of the opening angles of the
trimer segments of the chains. We label the first particle with i= 1 and number the rest of the chain
consecutively. Because the first particle on either end of the chain can be given an index i= 1, there are also
two choices of index labels for each opening angle, except for the central opening angle when n is uneven.
Therefore, we include both choices in our analysis. Additionally, we include both choices of defining θ1 as
either obtuse or acute and then use the same convention for the other opening angles.

Whilst a trimer (n = 3) shows no preference for any specific configuration [31, 38], the tetramer chains
do show a small preference for straight opening angles, as evidenced by the differences in free energy between
compact opening angles and straight opening angles in figure 1(f). These deviations are largest in the
experimental data, but also present to a lesser degree in the simulation data and the permutation data. The
deviations in the permutation data can only stem from steric exclusions, which cause some configurations to
be inaccessible: for a tetramer chain, angles below 60◦ or above 300◦ and combinations where θ1 + θ2 < 180◦

or θ1 + θ2 > 540◦ are not possible due to steric restrictions. Seeing that we have strong indications that the
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Figure 2. Conformations of flexible colloidal chains. Markers for the ◦ experimental and ⋄ simulated data, together with the color
coding legend for the different chain lengths n, as used in panels (d)–(i) are shown above those panels. (a) Top left: the end-to-end
distance Re. Top right: definition of the radius of gyration Rg . Bottom: we define a quantity∆ϕ which measures how much the
chain shape deviates from a straight line. (b) Average Re and fit of (12) (fit values shown). (c) Average Rg and fit of (13) (fit values
shown). (d)–(f) Comparison between the free energy calculated for experimental, simulated and the P(Nθ,n− 2) permutation
data, as function of∆ϕ (panel d), Re (panel e) and Rg (panel f). (g) Free energy in terms of∆ϕ and fit of (8) (fit values shown in
the insets). Additionally, we fit (9) to determine the scaling of κ as function of n, as shown in the inset. (h) Free energy in terms of
r̂e and fit of (14) (fit values shown). (i) Free energy in terms of r̂g and fit of (15) (fit values shown).

bond angles are freely-jointed up to steric exclusions in the simulated and permutation data, we believe that
the larger deviations in the experimental data in figures 1(d) and (f), compared to the simulation and
permutation data, are mostly caused by experimental noise. This can be mitigated by collecting more data,
however, the amount of data needed to characterize the free energy in sufficient angular detail is very large, as
can be inferred from table 1, by comparing the amount of simulated and experimental data. Because the
experimental deviations are below the thermal energy, we conclude that also in the experiments, there is no
preference for any of the sterically allowed configurations.

For the free energy of the pentamer chains in figure 1(f), we observe some larger deviations of the
experimental data compared to the permutation and simulated data. Specifically, the central angle
seems to show a preference for closed angles, as evidenced by the lower free energy for θ2 = 60◦ and 300◦.
However, the difference between the compact angles and the stretched angles is small, i.e. less than 1.5 kT.
Considering the free energy of the hexamer chains, we observe that the distribution of the outer opening
angles θ1,θ4 is flatter than the distribution of the inner opening angles θ2,θ3, especially in the simulated and
permutation data. Interestingly, there is a clear trend in the free energy of flexible chains, going from a flat
free energy for n= 3 to a free energy that shows a minimum at 180◦ and becomes increasingly smooth as the
chain length increases. The location of the minimum and the good agreement with the permutation data
show that the deviations from a flat free energy most likely stem from the steric exclusions at compact
opening angles.

8



J. Phys. Mater. 4 (2021) 035002 R W Verweij et al

3.1.2. Shape as function of the average bending angle∆ϕ

So far, we have considered the free energy in terms of the individual opening angles or trimer segments. To
analyze the overall shapes these colloidal chains can adopt in more detail, we define the average bending
angle∆ϕ, as shown schematically in figure 2(a). This allows us to study the overall shape of the chains by
collapsing the (n−2)-dimensional description of the shape in terms of opening angle, onto a single measure
of chain shape. We converted all pairs of opening angles to the single average bending angle,

∆ϕ=
1

n− 2

n−2∑
i=1

|ϕi| , (7)

as defined in figure 2(a). We then obtained the probability density function in terms of∆ϕ and converted
this to a free energy using (6), as shown in figure 2(d). By taking this approach, we find that as the number of
particles n is increased, a preferred average bending angle arises at∆ϕ0 = (56± 4)◦, close to the average of
60◦ between no bending (0◦) and maximal bending (120◦), for the experimental, simulated and permutation
data. Additionally, the free energy profiles of all chain lengths show the same shape, where the difference in
free energy between the most likely and least likely configurations increases as the chain length increases.

The free energy in terms of∆ϕ effectively quantifies the average bending angle bending free energy,
which is expected to be harmonic based on the worm like chain model [52]. We fitted a harmonic potential V
to the resulting free energy of the form:

V=
κ

2b
(∆ϕ−∆ϕ0)

2
, (8)

with fit parameters κ the stiffness of the potential well in units of kT/deg2 and∆ϕ0 the center of the potential
well in deg, as shown in figure 2(g). We find that the potential well stiffness κ increases as the number of
particles increases (see second inset of figure 2(g)) as predicted by polymer theory [52]. Namely, we fit,

κ= α
b

4
(n− 1)ν −κ0, (9)

where κ0 = (5.1 ± 0.7) × 10−3 kTdeg−2 fixes the value of κ for n= 3 and α= (13 ± 1) × 10−3 kTdeg−2 is
a positive constant. We added κ0 to the model described by Wiggins and Nelson [52] to ensure that κ= 0 for
n= 3 as we observe from our data. Additionally, we added the scaling parameter α to ensure the proper
magnitude of κ. Clearly, for n= 3, the chain is freely-jointed and therefore κ= 0. For larger chains, the
probability to observe deviations from a straight configuration decreases as the number of configurations
with steric exclusions increases (see table 2), as is evidenced by the agreement between the permutation, the
experimental and the simulated data in figure 2(d). Therefore, the bending stiffness that we measure is an
effective parameter, purely arising from these steric exclusions.

3.1.3. Distribution of the end-to-end distance and radius of gyration: a comparison with polymer theory
We now compare the behavior of our flexibly linked particle chains to predictions from two-dimensional
Flory theory for self-avoiding polymers. We are interested in first testing whether our colloidal chains show
the same behavior as long polymers in terms of root mean square (RMS) end-to-end distance and radius of
gyration, as was shown for chains of flexibly linked oil droplets [53]. Then, we compare the distributions of
the end-to-end distance and radius of gyration of the colloidal chains to predictions from polymer theory, to
elucidate where finite-size effects start to play a dominant role in the configurational free energy of chain-like
molecules. In figures 2(b), (c), (h) and (i), we have compared different measures for the conformations
found in our experimental and simulated data, which we will discuss shortly. We compare these to
predictions from polymer theory by simultaneously fitting equations (12)–(15) to the corresponding values.
We used a, b, ν,K, γ and Cg as fit parameters and report the MLEs, the error is given by the 16th and 84th
percentiles of the posterior probability distributions, as explained in detail in section 2.4.

To compare our data to predictions based on polymer theory, we calculated the end-to-end distance Re,
where

Re = |rn − r1| , (10)

here ri is the position of the ith sphere. Additionally, we determined the radius of gyration Rg as follows,

Rg =

[
1

n2

n∑
i=1

|ri − rc.m.|2
]1/2

, (11)
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with rc.m. the center of mass (c.m.) of the cluster. Both Re and Rg were normalized by the average
interparticle distance B of each measurement and are schematically shown in figure 2(a). For long polymers,
the RMS value of Re can be described by a power law [54],

⟨R2
e⟩1/2 = b(n− 1)ν , (12)

where b is the Kuhn length (we expect b≈B) and the Flory exponent ν = 3/(d+ 2) = 3/4 for a self-avoiding
walk in d= 2 dimensions [55]. Analogously, the RMS of Rg scales as [54]:

⟨R2
g⟩1/2 = ab[(n2 − 1)/n]ν , (13)

where the scaling constant a≈ 1/
√
6≈ 0.41 [56]. We first test whether the behavior of our colloidal chains is

comparable to long polymers in terms of RMS end-to-end distance and radius of gyration, as was shown for
chains of flexibly linked oil droplets [53].

Indeed, we find that the scaling of the RMS end-to-end distance and the RMS radius of gyration of these
colloidal chains agree well with the predictions from polymer theory, as shown in figure 2(b) for the RMS
end-to-end distance and in figure 2(c) for the RMS radius of gyration. For the Flory exponent we find
ν = 0.726± 0.005, which is close to the exact value of 3/4 for self-avoiding polymers in 2D and in agreement
with the value found for flexibly linked chains of droplets (ν = 0.72± 0.03) [53]. The Flory exponent is
slightly lower than the expected value of 3/4, this might be explained by the fact that we study a quasi-2D
system, in which the particles have some freedom to move in the out-of-plane direction. This would lead to a
lower value of ν, because in three dimensions ν≈ 0.6 [56]. In the simulations, we find an average center
height of (1.03+0.05

−0.02)R above the substrate, calculated over a random subset of 1% of the data, or 7× 105

positions. Although these excursions are small, they may lead to the slightly lower value of ν. On top of that,
the slightly lower ν may be caused by the small number of beads per chain.

Next, we find that the Kuhn length b= (1.03± 0.01)B is in agreement with the hypothesis that it should
be equal to the average bond length. In the experiments, the bond length is approximately twice the particle
radius, plus the thickness of the bilayer (≈4 nm) and the length of the DNA linkers (≈30 nm). This leads to
an estimated experimental bond length of B≈ 1.03(2R). In the simulations, because of the harmonic
potential that keeps the particles bonded, we find an average bond length of B≈ (1.01± 0.01)2R, calculated
over a random subset of 1% of the data, or 6× 107 bonds. The fact that the Kuhn length is slightly greater
than the bond length Bmay be explained by the greater-than-zero bending stiffness we have found in
figure 2(g). As shown in figure 2(c), we find a shape factor a= 0.349± 0.002, which is close to the expected
value of a≈ 0.41 [56] and the value found for flexibly linked chains of droplets (a= 0.30± 0.02) [53].

So far we have found that the RMS end-to-end distance and radius of gyration of our colloidal chains
show the same behavior as long polymers. When we look in greater detail into the free energy as function of
end-to-end distances in figure 2(e), we see that our simulated data agrees very well with the permutation
data, as well as the experimental data. Slightly larger deviations can be seen in the experimental data for
n = 5 and 6, this is due to the fact that because the number of configurations is very large for longer chains,
increasingly larger amounts of data are needed to probe the equilibrium distribution, as can be seen from
table 1 by comparing the amount of simulated data to the amount of experimental data.

Based on polymer theory, the free energy of the reduced end-to-end distance r̂e ≡ Re/⟨R2
e⟩1/2 should

collapse onto a master curve. For long, self-avoiding polymers, the free energy Fe(̂re) is expected to be equal
to [57, 58]:

Fe(̂re)

kT
= (Kr̂e)

δ − (t+ 2) ln r̂e −Kδ, (14)

with δ = 1/(1− ν), t= (γ− 1)/ν, K a positive constant and γ a positive exponent. This is indeed what we
observe in figure 2(h). Furthermore, we see the agreement between model and simulated data is better for
longer chains of n= 5, 6 compared to the shorter chains of n= 3, 4, where finite size effects play a larger role.

Finally, the free energy as function of the radius of gyration in figure 2(f) is also very well described by
the permutation data. It can be collapsed onto a master curve as function of the reduced radius of gyration
r̂g ≡ Rg/⟨R2

g⟩1/2 as given by [59]:

Fg(̂rg)

kT
= 2Cg

[
1

α
(̂rg)

−dα +
d

δ
(̂rg)

δ + 1− d

]
, (15)

with α= 1/(dν− 1) and Cg a positive normalization constant. The resulting free energy is shown in
figure 2(i). In terms of the reduced radius of gyration, deviations from the model are small even for n = 4,
while only the shortest chains of n = 3 spheres show some deviations because of their finite size.
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In summary, in this section we have characterized the conformations of flexibly linked colloidal chains of
n = 3–6 spheres. We find that while the chains are completely freely-jointed, some configurations are
forbidden because they would result in interpenetrating particles. This affects the measured end-to-end
distance and radius of gyration, especially for the shorter chains of n= 3 and 4. Despite these finite size
effects, we conclude that the conformations of all chains can be well described by polymer theory based on
self-avoiding random walks. Based on the generality of the model and the agreement between model and
data, we expect this to be true in general for other micron-sized objects in which self-avoidance plays a
significant role.

3.2. Shape effects in the diffusion of flexible trimer and tetramer chains
Having characterized the equilibrium conformations of flexibly linked colloidal chains, we now analyze their
shape-dependent short-time diffusive properties. Recently, we have studied the effect of flexibility on the
diffusivity of the shortest chain, a freely-jointed trimer [31]. Similar to rigid particles, we found that shape
affects the diffusive motion of the colloid at short timescales and that displacements are larger in directions
that correspond to smaller hydrodynamic drag. Furthermore, we uncovered a Brownian quasiscallop mode,
where diffusive motion is coupled to Brownian shape changes. At longer timescales, in addition to the
rotational diffusion time, an analogous conformational diffusion time governs the relaxation of the diffusive
motion, unique to flexible assemblies [31].

The choice of coordinate system affects the magnitude of the diffusion tensor. For all rigid objects, there
exist a tracking point relative to which the diffusion elements are independent of the lag time considered,
called the center of hydrodynamic stress. Although such a point does not exist in general for flexible
objects [60], an analogous tracking point can be found where the magnitude of the diffusion tensor elements
is minimal and therefore, close to the time-independent values at long lag times, called the center of
diffusivity (c.d.) [51]. We compare the results of two choices of tracking points, namely, the center of mass
(c.m.) of the cluster which is another common choice, and the center of diffusivity (c.d.) [50, 51].

The calculation of the c.d. is described in section 2.5. We find that the c.d. is very close to the c.m. for all
chain lengths, but a slightly larger weight is given to the outer particles compared to the particles in the center
of the chain, as shown in the supplementary information (available online at stacks.iop.org/JPMATER/4/
035002/mmedia) [61]. The directions of the x- and y-axis of the body-centered coordinate system depends
on the choice of reference point as given by (4). For the trimer and tetramer chains, using the c.d. as tracking
point, the body centered coordinate systems are shown in figures 1(b, c) and 3(a), respectively. The rotational
diffusivity is calculated from the angular displacements of the x-axis, or equivalently, rotations around an
out-of-plane z axis perpendicular to x and y, as indicated in figures 1(b) and 3(a). All diffusion tensor
elements are calculated from (1), the method is explained in detail in section 2.5. The magnitude of the
diffusion tensor elements relative to the c.m. compared to their magnitude relative to the c.d. is given in the
supplementary information [61] for a trimer. We find that for a trimer, differences in diffusivities relative to
the c.m. and c.d. are only measurable for the rotational-translational coupling term and the Brownian
quasiscallop mode, because the c.m. is very close to the c.d, as is shown in figure 3(a) and in the
supplementary information [61].

3.2.1. The diffusivity of flexible trimers: simulations compared to experiments
We have analyzed the diffusivity of flexibly-linked trimers with respect to the c.d. and we now compare the
experimental measurements to our simulations. As shown in figure 3(b), for the shape-dependent short-time
rotational diffusivity, there is a quantitative agreement between the experiments and simulations for most
opening angles. Next, we consider the flexibility, which is defined as half the slope of the mean squared
angular displacements of the opening angle θ and defines how fast the chain changes its shape, defined
analogously to (1) for the tetramer chains and given for the trimers in our previous work [31]. As shown in
figure 3(c), we measure a lower flexibility in the experiments compared to the simulations. This is caused by
inter-particle friction stemming from the DNA linker patch embedded in the lipid membrane. Namely, it was
found that increasing the DNA linker concentration leads to a decrease in the flexibility [37].

Finally, we note that the experimental translational diffusivity is higher than the translational diffusivity
obtained from the simulated data, as can be seen in figure 3(d). As a consequence, the experimentally
determined translation-rotation coupling in figure 3(e), as well as the Brownian quasiscallop mode in
figure 3(f) are also higher than the values determined from the simulations. This is likely caused by the fact
that we model the substrate as a no-slip surface in the simulations, whereas in the experiment the substrate is
coated with a hydrogel to prevent particles from sticking, which has a non-zero slip length. We think that this
non-zero slip length in the experiments leads to higher translational diffusivities in the experiments, because
the particles move further away from the glass and so there is less friction caused by the effectively more
viscous water layer close to the no-slip glass substrate.
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Figure 3. Diffusivity of flexible trimers: experimental and simulated values. Comparison between • experimental data and ⋄
simulated data (both 0.1 ⩽ τ ⩽ 0.25 (s). (a) Schematic depiction of the coordinate system of a trimer, as given by (4). The colored
arrows are calculated with respect to the c.d., while the black arrows are relative to the c.m. The difference between the two
tracking points is very small (see the supplementary information [61] for details). (b) The experimental rotational diffusivity is
very close to the simulated values. (c) The experimental flexibility is lower than the simulated values, because of friction stemming
from the DNA linker patch. (d) The experimental translational diffusivities are larger than the simulated ones, most likely caused
by the difference in slip conditions in the experiments and simulations. (e) Translation-rotation coupling term D[xα].
(f) Translation-flexibility coupling term: the Brownian quasiscallop mode D[yθ] [31].

3.2.2. The diffusivity of flexible colloidal tetramer chains
Having established that the simulations can faithfully describe the short-time shape dependent diffusivity of
flexible trimers, in addition to the equilibrium conformations of flexible chains, we now analyze the
diffusivity of flexible tetramer chains. In figure 4(a), we show that the rotational diffusivity for compacter
shapes is higher than that of more extended shapes for two examples, θ1,θ2 = 65◦,120◦ (compact) and
θ1,θ2 = 141◦,185◦ (extended). Furthermore, we conclude that the simulated data agrees with the
experimental data, within experimental error. This can also be seen for the rotational diffusivity as function
of opening angles θ1,θ2 in figure 4(d). The symmetry lines of the opening angles θ2 = θ1 and θ2 = 360◦ − θ1
are indicated as well. The configurations are symmetric around these lines except for the fact that we break
this symmetry by choosing which angle to label as θ1 and which as θ2, because this has consequences for the
orientation of the body centered coordinate system, as shown in figure 1(c) and defined in (4). However, for
the rotational diffusivity we only consider angular rotations of the x-axis and therefore the rotational
diffusivity is indeed symmetric with respect to the symmetry lines of the opening angles.

For the translational diffusivity in the x-direction (figure 4(b)) and y-direction (figure 4(c)) we note that
the experimental diffusivity is again slightly larger than the simulated one, similar to the trimers in
figure 3(d). Again, this is because of the no-slip condition in the simulations versus the hydrogel surface used
in experiments to prevent particles from sticking, which has a non-zero slip length. Because the translational
diffusivity does not depend on whether the x-axis points to one end of the chain or the other, or equivalently,
whether the y-axis points towards one side or the other, we expect that translational diffusivity is symmetric
with respect to the symmetry lines of the opening angles. This is indeed true: we observe little shape
dependence for translational diffusivity in the x-direction in figure 4(b), variations are likely due to
experimental noise. On the contrary, the diffusivity in the y-direction in figure 4(c) is lower for more
extended shapes, which correspond to larger surface areas and therefore, a larger hydrodynamic drag. We
note that it is also symmetric with respect to the opening angle symmetry lines.

Interestingly, for the diffusivity of the opening angles in figure 4(e) (θ1) and figure 4(f) (θ2), we note that
the flexibility is highest for opening angles θ1,θ2 close to 180◦, i.e. for the more extended chains. This is in
agreement with the trends we have observed for the flexible trimers in figure 3(c) and our previous work [31]
and suggests that hydrodynamic interactions between the particles slow down shape changes for small
inter-particle separation distances. Furthermore, we note that the flexibility is not symmetric around the
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Figure 4. Diffusion of flexible tetramer chains. In panels (b)–(f), the left plot shows experimental data and the right plot shows
simulated data. For fitting, we use a maximum lag time τ = 0.17 s. The dashed lines in panels b–f indicate the two symmetry axes
of the opening angles, θ2 = θ1 and θ2 = 360◦–θ1. (a) The mean squared angular displacement for a compact configuration
(green) is larger than that of an extended configuration (purple). The elements of the diffusion tensor are obtained by fitting the
slope of mean squared displacements. (b) The translational diffusivity in the x-direction as function of the opening angles θ1,θ2,
as depicted in figures 1(b) and (c). (c) Translational diffusivity in the y-direction, which is lower for chains with a stretched angle
(θ1,θ2 close to 180◦). For both translational terms, we use different color scales for the experimental and simulated data, because
the experimental diffusivities are higher than the simulated ones. (d) The rotational diffusivity is highest for compact shapes.
(e) The flexibility in the opening angle θ1 shows a maximum for θ1 = 180◦. (f) The flexibility in the opening angle θ2 also has its
maximum value for θ2 = 180◦.

opening angle symmetry lines, because we have broken the symmetry in this case, by labeling one angle as θ1
and the other one as θ2.

The experimental flexibility data in figure 3(c) show the same trends as the simulated data but are lower
in magnitude. Because the flexibility depends on the concentration of DNA linkers [37], which cause
additional friction in the bond area, this could also explain the lower flexibility found in the experimental
data, absent in the simulations. Similarly to what we have found for the trimers in figure 3(c), we find that
the experimental flexibility in θ1 is (71± 12)% of the simulated one, for θ2 this is (75± 14)%. Therefore, we
conclude that the lower magnitude is indeed caused by friction stemming from the DNA linker patch.

The off-diagonal elements of the diffusion tensor describe possible coupling terms. We have calculated
those terms and find that there is no significant coupling between rotational diffusivity and flexibility, as
shown in figure 5(a) for the coupling between α and θ1 and in figure 5(b) for D[αθ2]. This is the same result
we have found for flexible trimers [31] and we hypothesize this can be generalized to larger chain lengths as
well.

However, there is a strong negative coupling between diffusivities in the two opening angles θ1,θ2, as
shown in figure 5(c), which is symmetric with respect to the symmetry lines of the opening angles. In fact,
the negative coupling is strongest around the symmetry line θ1 = θ2 and lowest for zig-zag like structures
near θ1 = 60◦ and θ2 = 300◦. By comparing figure 5(c) to the schematics of possible conformations in
figure 1(c), the configurations where the negative couplings are highest, are those where the outer particles
are both on the same side of the coordinate system, namely the positive y plane. There, the hydrodynamic
interactions between the particles are largest and therefore also the negative coupling is largest.

Interestingly, we also find small, but non-zero coupling terms for translation-rotation coupling. By
comparing the two translation-rotation coupling terms, we note that yα in figure 5(g) is small compared to
xα in figure 5(d), for both the experimental and simulated data. This means that displacements in the
positive x-direction (see figure 1(c)) will lead to counter-clockwise rotations of the chain, similarly to the xα
coupling we found for the trimers [31], as also shown here in figure 3(e).
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Figure 5. Diffusion of flexible tetramer chains: coupling terms. In all panels, the left plot shows experimental data and the right
plot shows simulated data. The color scales of the experimental and simulated data are different for terms involving translational
diffusivity in panels (d)–(i), because the experimental translational diffusivity is higher than the simulated one. For fitting, we use
a maximum lag time τ = 0.17 s. The dashed lines indicate the two symmetry axes of the opening angles, θ2 = θ1 and
θ2 = 360◦–θ1. (a) The rotation-flexibility coupling D[αθ1] is close to zero. (b) The rotation-flexibility coupling D[αθ2] is also
close to zero. (c) There is a strong negative coupling in flexibilities of the two opening angles θ1,θ2. (d) There is a small
translation-rotation coupling D[xα]. (e) The translation-flexibility coupling D[xθ1] is close to zero. (f) The translation-flexibility
coupling D[xθ2] is also close to zero. (g) The translation-rotation coupling D[yα] is zero as well. (h) There exists a non-zero
translation-flexibility coupling D[yθ1]. (i) The translation-flexibility coupling D[yθ2] is also non-zero.

Lastly, by comparing the translation-flexibility coupling terms for both opening angles in the x-direction,
shown in figure 5(e) for xθ1 and figure 5(f) for xθ2, and in the y-direction, see figure 5(h) for yθ1 and
figure 5(i) for yθ2, we observe that the coupling terms related to the y-direction are larger in magnitude than
those in the x-direction. For the x-direction, there are no clear trends for either opening angle, in both the
simulated and the experimental data, as shown in figures 5(e) and (f). On the contrary, for translation-
flexibility coupling terms in the y-direction, we find couplings, analogously to the Brownian quasiscallop
mode we have found for trimers [31], also shown in figure 3(f).

By looking closely at the coupling between y and θ1 diffusivity in figure 5(h), we observe that the
coupling is positive for angles above the symmetry line θ1 = θ2 and below the symmetry line θ1 = 360◦–θ2. If
we look at the configurations for these angles in figure 1(c), we observe that positive y-displacements lead to
an opening of one end of the chain, namely the trimer segment with opening angle θ1, similar to the
Brownian quasiscallop mode for trimers. We see the same effect for configurations below the symmetry line
θ1 = θ2 and in fact, the coupling is symmetric around this symmetry line. For configurations above the other
symmetry line, θ1 = 360◦–θ2, there are strongly negative correlation terms, especially near θ2 = 300◦. By
again studying the configurations for these angles in figure 1(c), we note that this is indeed what would be
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Figure 6. Average diffusivity of flexible colloidal chains. All panels: ◦ experimental data (τ ⩽ 0.25 (s), ⋄ simulated data (τ ⩽ 0.05
(s). (a) In plane translational diffusion coefficient DT as function of chain length. (b) Rotational diffusion coefficient D[αα],
around the axis normal to the substrate, as function of chain length. (c) Flexibility coefficient D[θθ] as function of chain length.
The flexibility does not depend on chain length, the median values plus standard deviations are indicated for both the
experimental and simulated data.

expected to happen for the trimer segment with opening angle θ1, based on our earlier findings of the
Brownian quasiscallop mode in trimers. Apart from the expected negative correlations we expect from the
Brownian quasiscallop mode of a trimer, there are also positive values in this region. However, we cannot
compare them directly, because the coordinate system, and therefore the direction of the y-axis, is different in
the case of a tetramer chain. Specifically, it is not centered on the trimer segment. Therefore, the coupling we
have observed is similar to, but more complex than the Brownian quasiscallop mode in trimers.

Analogously, we observe the same effects for the coupling between diffusivity in the y-direction and the
other opening angle θ2, as shown in figure 5(i). Starting below the symmetry line θ1 = θ2, the coupling is
positive, as expected. Above the other symmetry line θ1 = 360◦–θ2, we observe the opposite, negative
coupling, which is in line with our previous results for the opening angle θ1. Between the two symmetry
lines, something more complicated happens, analogous to the area above the symmetry line θ1 = 360◦–θ2 for
the D[yθ1] coupling discussed previously. There, we observe a positive coupling for configurations close to
θ1 = 60◦, as expected from the Brownian quasiscallop mode and the other coupling term D[yθ1]. For the
other configurations in the area between the symmetry lines, we observe both positive and negative coupling
terms. Therefore, we conclude that there the behavior is also more complex than one would expect based on
the assumption that the individual trimer segments show Brownian quasiscallop modes. This is likely due to
the displacement of the coordinate system from the center of the trimer segment, as well as possible
hydrodynamic couplings between shape changes, as we have observed in figure 5(c).

In summary, in this section we have shown that for both trimers and tetramers, the flexibility determined
from the experimental data is reduced to approximately 75%–80% of the flexibility determined from
simulations, because of friction of the DNA linker patch, which is not modeled in the simulations. We have
found marked flexibility-induced effects on the diffusivity of flexible tetramer chains, namely an increase in
flexibility for the more elongated configurations and non-zero couplings between translational diffusivity
and both rotational diffusivity and flexibility, as well as a strongly negative coupling between diffusivity of
the two opening angles. We have established that the simulations can adequately model our experimental
findings, especially for terms that do not relate to translational diffusivity. For the translational terms, the slip
conditions on the surface play a crucial role and require further careful consideration in future works.

3.3. Shape-averaged diffusion of flexible chains
We have studied the short-time, shape dependent diffusivity of flexible trimer and tetramer chains. For the
longer pentamer (n = 5) and hexamer (n = 6) chains, studying the diffusion tensor as function of shape is
more challenging because of the greater number of opening angles and consequently, greater number of
degrees of freedom. Therefore, we take an approach known as the rigid-body approximation [2, 27–29] and
study the shape-averaged short-time diffusivity.

In figure 6(a) we show the translational diffusivity as function of chain length for experimental and
simulated data, relative to the c.d. and the c.m. As we have argued before in section 3.2, different choices of
tracking points can lead to different magnitudes of the diffusion tensor elements. For flexible objects, the c.d.
is the most appropriate tracking point to use, because it gives the smallest values of the diffusion tensor
elements and therefore the obtained values are closer to the long time diffusivities [51]. For the flexible
colloidal chains, the c.d. turns out to be very close to the c.m. for all chain lengths, but a slightly larger weight
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is given to the outer particles compared to the particles in the center of the chain, as shown in the
supplementary information [61]. Because the c.m. is very close to the c.d., we conclude that for our flexibly
linked chains, there is no appreciable difference between the two different choices of tracking point, both for
the experimental and simulated data.

In figure 6(a), we see a clear scaling of diffusion coefficient DT with chain length and hypothesize that
this scaling can be described by polymer theory. In Kirkwood–Riseman theory [27], the translational
diffusion coefficient is expected to scale as ⟨R2

g⟩−ν/2. Indeed, we find that for the experimental data, the fitted
ν = 0.7± 0.5 is close to the expected value of 3/4. More clearly, for the simulated data, we find
ν = 0.77± 0.02. Again, the average experimental translational diffusivity is higher than the simulated one,
because of differences in the surface slip conditions, as explained in section 3.2. Based on the observed
behavior, Kirkwood–Riseman theory can be used to describe the scaling of the translational diffusivity of the
chains as function of their length.

Additionally, we have calculated the lower bound on the short-time diffusion coefficient Dc.d.,
because its value should be close to the long-time diffusion coefficient typically measured in scattering
experiments [51]. We determined Dc.d. from the matrix Aij defined by equation 2.16 of Cichocki et al [51]
using the RPB tensor [43] with lubrication corrections as the inter-particle mobility matrix µij, as explained
in section 2.5. Indeed, we find that its value is always lower than the simulated or experimental values, which
indicates that memory effects, or in other words, time correlations, play a large role in the translational
diffusivity of these flexible colloidal chains. We find the same scaling as function of chain length as for the
experimental and simulated data, namely, ν = 0.77± 0.02, as predicted by Kirkwood–Riseman theory.

Next, having characterized the translational diffusivity of the flexible chains, we now consider their
rotational diffusivity D[αα]. While there is no unique choice for which axis to use to quantify the rotational
diffusivity of a shape-changing object, we use the definition in (4) for consistency. As shown in figure 6(b),
the simulated data agree with the experimental data and the differences between using the c.m. or the c.d. as
tracking point are minimal. We use an approximate expression to describe the rotational diffusivity of our
flexible chains in the rigid rod limit [27]:

D[αα]∝ ln(2L/d)

L3
, (16)

with L the length of the rod and d its diameter. Setting d= b (the Kuhn length) and L= b(1+(n− 1)ν),
which is the average end-to-end distance plus the Kuhn length, we obtain a reasonable fit with ν close to the
expected 3/4, as shown in figure 6(b). Specifically, we find ν = 0.8± 0.2 for the experimental data and
ν = 0.83± 0.04 for the simulated data. Therefore, we conclude that while the shape dependent short time
diffusivity of flexible colloidal chains shows clear flexibility effects as discussed in section 3.2, the scaling of
the shape-averaged translational and rotational diffusion coefficients can be described very well by the rigid
body approximation.

In section 3.2, we have found couplings between translational diffusivity and both rotational diffusivity
and the flexibility of trimers and tetramers, for the shape-dependent diffusion tensor. As is shown in the
supplementary information [61], the translation-flexibility coupling term is averaged out for chains longer
than a trimer, presumably because of the negative correlations between opening angles we have found for the
tetramer chains, which could be present for longer chains as well. The translational-rotational coupling
mode is nonzero for all chain lengths and decreases as function of chain length, as shown in the
supplementary information [61].

Finally, we consider the shape-averaged flexibility D[θθ] by calculating the slope of the mean squared
angular displacements of the n−2 opening angles ⟨|∆θ|2⟩ as function of lag time, as defined by equations (2)
and (3). First, we observe that the mean squared displacements of∆θ increase linearly with lag time,
similarly to the other diffusion tensor terms. Moreover, we find that the flexibility is independent of the
length of the chain, as shown in figure 6(c).

As we have seen for the shape-dependent short-time flexibilities of the trimer and tetramer in figures 3(c)
and 4(e), (f) respectively, the average experimental flexibility is approximately 75%–80% of the average
flexibility in the simulations. We hypothesize that the lower flexibility in the experiments is caused by
inter-particle friction stemming from the DNA linkers. This is also supported by the observation that while
the experimental flexibility shows large fluctuations, that are due to experimental differences in DNA
concentration between particles and samples, the flexibility in the simulations shows a very narrow
distribution. For the shape-averaged flexibility, we find that the experimental flexibility averaged over all
chain lengths is (60± 15)% of the simulated one, where the spread is most likely caused by the spread in the
DNA linker concentration.

For trimers of flexibly-linked emulsion droplets, it was proposed that for small displacements of the
opening angle, the maximum value of the flexibility is expected to be dominated by the translational friction
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coefficient of the particles [53]. However, in the droplet-based system, the flexibility was found to be
unaffected by the DNA linker concentration [53]. Because of this difference, we test whether the same
behavior applies to our flexibly linked chains of colloidal particles, in spite of the presumably different
dynamics, caused by the friction of the DNA linker patch in the lipid bilayer and with the particle surface. By
considering small displacements of the particles, one can define an equivalent ‘translational’ flexibility
coefficient DT[θθ], which is linked to DT as DT[θθ] = (πR/180◦)−2DT. If the flexibility is dominated by
translational diffusivity of the individual spheres, we can calculate its maximum magnitude from DT . This
would in turn mean that the flexibility scales with the particle radius as 1/R, in the same way as translational
diffusivity and not as 1/R3, as we [31] and others assumed in previous works [32].

Indeed, using the methods explained in section 2.3, for an individual sphere at a height of (1.03+0.05
−0.02)R

above the substrate, which corresponds to the heights of the spheres in the chains as found in the
simulations, we find a translational diffusion coefficient between 0.046 and 0.071 µm2 s−1. For comparison,
the bulk diffusion coefficient of the spheres, far from the substrate, is 0.229 µm2 s−1. Note that even a small
change in the height above the substrate has a large effect on the calculated diffusion coefficient, therefore,
the spread in the translational diffusion coefficient in figure 6 is most likely larger than the reported spread,
which is estimated from the fit of a linear model to the MSD using the method described in section 2.4. In
the same way, the uncertainty in the expected flexibility calculated from the translational diffusivity of an
individual sphere is also large. The equivalent range of flexibilities DT[θθ] based on these values is shown in
green in figure 6(c). Because the value of the equivalent DT[θθ] of an individual sphere is very close to the
flexibilities we find in our simulations, we conclude that the maximum flexibility is indeed set by the
translational diffusion coefficient of the individual spheres.

4. Conclusions

In conclusion, we have studied flexibly linked colloidal chains of three to six spheres using both simulations
and experiments. We have analyzed their conformational free energy in several different ways. First, we
found that the chains are freely-jointed, except for configurations that are forbidden because of steric
restrictions due to interpenetrating particles. Furthermore, apart from some deviations because of their
finite length, two-dimensional Flory theory for infinitely long polymers can describe their conformational
free energy in terms of reduced end-to-end distance and radius of gyration very well. We found that the
effective bending stiffness, which measures deviations from opening angles close to straight angles, scales
according to the worm-like chain model.

Then, we have studied the shape-dependent short-time diffusivity of the trimer and tetramer chains. We
found that the simulations can adequately model the experimental diffusion tensor of flexible trimers. For
the flexibly-linked tetramers, we have found that shape affects the short-time diffusion tensor in ways similar
to what we have found for the shorter trimers. Namely, translational and rotational diffusivity are highest in
directions that correspond to the lowest projected surface area, in other words, the more compact shapes, and
the flexibility is highest for the more elongated shapes. Furthermore, there are non-zero couplings between
translational diffusivity and both rotational diffusivity and flexibility, similar to what we found for the flexible
trimers. Additionally, there is a strong negative coupling between the diffusivities of the two opening angles.

By determining the shape-averaged translational and rotational diffusivity for chains of three to six
spheres, we found that these scale as function of chain length according to Kirkwood–Riseman theory. Their
maximum flexibility does not depend on the length of the chain, but is determined by the near-wall in-plane
translational diffusion coefficient of an individual sphere. The experimental flexibility is approximately
75%–80% of the flexibility calculated from the simulated data, because of friction of the DNA linker patch.

Overall, we found a good agreement between the experimental measurements and the simulations,
except for translational diffusivity. In that case, we hypothesize that the difference in surface slip in the
experiments, where there is a finite slip length due to the hydrogel surface, and in the simulations, where we
use a no-slip boundary condition, lead to a higher translational diffusivity in the experiments. We hope our
work aids the study of diffusivity of flexible objects found in complex mixtures relevant in, for example, the
cosmetic, pharmaceutical and food industries, as well as in biological systems. There, our findings may have
implications for understanding both the diffusive behavior and the most likely conformations of
macromolecular systems, such as polymers, single-stranded DNA and other chain-like molecules.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

17



J. Phys. Mater. 4 (2021) 035002 R W Verweij et al

Acknowledgments

We thank Ali Azadbakht for the design and setup of the Optical Tweezers and his technical support. We are
grateful to Aleksandar Donev and Brennan Sprinkle for fruitful discussions and for providing us with
example code for the simulations. We thank Piotr Szymczak for useful discussions about the center of
diffusion. The simulations were partly performed using the ALICE compute resources provided by Leiden
University. J G wishes to thank the program for Chang Jiang Scholars and Innovative Research Teams in
Universities (No. IRT 17R40) and the 111 Project of the PRC. This project has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
program (Grant Agreement No. 758383) and from the NWO graduate program.

Author contributions

RW V, P M, L H, N L and I C performed the experiments. R W V and L H did the particle tracking, R W V
carried out the simulations and the data analysis. R W V and D J K conceived the experiments and wrote the
paper. All authors discussed the final manuscript.

ORCID iDs

Ruben W Verweij https://orcid.org/0000-0003-3925-5732
Daniela J Kraft  https://orcid.org/0000-0002-2221-6473

References

[1] Serdyuk I, Zaccai N and Zaccai J 2007Methods in Molecular Biophysics: Structure, Dynamics, Function (Cambridge: Cambridge
University Press)

[2] Garcia de la Torre J 1994 Eur. Biophys. J. 5 307
[3] Gregory L, Davis K G, Sheth B, Boyd J, Jefferis R, Nave C and Burton D R 1987Mol. Immunol. 24 821
[4] Yguerabide J, Epstein H F and Stryer L 1970 J. Mol. Biol. 51 573
[5] Illien P, Adeleke-Larodo T and Golestanian R 2017 Europhys. Lett. 119 40002
[6] Mellado P, Iniesta A, Diaz F and Garcia de la Torre J 1988 Biopolymers 27 177186
[7] Burton D 1987 New Compr. Biochem. 17 1
[8] Barbato G, Ikura M, Kay L E, Bax A and Pastor R W 1992 Biochemistry 31 5269
[9] Dyson H J and Wright P E 2005 Nat. Rev. Mol. Cell Biol. 6 197
[10] Ishino S et al 2014 J. Biol. Chem. 289 21627
[11] Makowski L, Rodi D J, Mandava S, Minh D D, Gore D B and Fischetti R F 2008 J. Mol. Biol. 375 529
[12] Rundqvist L, Ådén J, Sparrman T, Wallgren M, Olsson U and Wolf-Watz M 2009 Biochemistry 48 1911
[13] Einstein A 1905 Ann. Phys., Lpz. 322 549
[14] Sutherland W 1905 London, Edinburgh Dublin Phil. Mag. J. Sci. 9 781
[15] Perrin J 1909 Ann. Chim. Phys. 18 104
[16] He M, Gales J P, Ducrot E, Gong Z, Yi G R, Sacanna S and Pine D J 2020 Nature 585 524
[17] Mansfield M L, Rakesh L and Tomalia D A 1996 J. Chem. Phys. 105 3245
[18] Mihut A M, Stenqvist B, Lund M, Schurtenberger P and Crassous J J 2017 Sci. Adv. 3 e1700321
[19] Han Y, Alsayed A M, Nobili M, Zhang J, Lubensky T C and Yodh A G 2006 Science 314 626
[20] Meunier A 1994 J. Physique II 4 561
[21] Zahn K, Lenke R and Maret G 1994 J. Physique II 4 555
[22] Chakrabarty A, Konya A, Wang F, Selinger J V, Sun K and Wei Q H 2014 Langmuir 30 13844
[23] Chakrabarty A, Wang F, Sun K and Wei Q H 2016 Soft Matter 12 4318
[24] Koens L, Lisicki M and Lauga E 2017 Soft Matter 13 2977
[25] Kraft D J, Wittkowski R, Ten Hagen B, Edmond K V, Pine D J and Löwen H 2013 Phys. Rev. E 88 050301
[26] Fung J and Manoharan V N 2013 Phys. Rev. E 88 020302
[27] Riseman J and Kirkwood J G 1950 J. Chem. Phys. 18 512
[28] Iniesta A, Díaz F G and García de la Torre J 1988 Biophys. J. 54 269
[29] García de la Torre J and Carrasco B 2002 Biopolymers 63 163
[30] Schmidt R R, Cifre J H and García de la Torre J 2012 Eur. Phys. J. E 35 130
[31] Verweij R W, Moerman P G, Ligthart N E G, Huijnen L P P, Groenewold J, Kegel W K, van Blaaderen A and Kraft D J 2020 Phys.

Rev. Res. 2 033136
[32] Harvey S C, Mellado P and García de la Torre J 1983 J. Chem. Phys. 78 2081
[33] Roitman D 2005 The elastic trumbbell model for dynamics of stiff chains Rotational Dynamics of Small and Macromolecules

(Lecture Notes in Physics, vol 293) (Berlin: Springer)
[34] Van Der Meulen S A and Leunissen M E 2013 J. Am. Chem. Soc. 135 15129
[35] Yamada T, Yoshizaki T and Yamakawa H 1992Macromolecules 25 377
[36] Van Der Meulen S A J, Helms G and DogteromM 2015 J. Phys.: Condens. Matter 27 233101
[37] Chakraborty I, Meester V, Van Der Wel C and Kraft D J 2017 Nanoscale 9 7814
[38] Rinaldin M, Verweij R W, Chakraborty I and Kraft D J 2019 Soft Matter 15 1345
[39] Allan D et al 2019 soft-matter/trackpy: Trackpy v0.4.2 (available at: https://doi.org/10.5281/zenodo.3492186)
[40] Barkley S, Dimiduk T G, Fung J, Kaz D M, Manoharan V N, McGorty R, Perry R W and Wang A 2018 Holographic microscopy

with Python and HoloPy (arXiv:1806.00058)

18

https://orcid.org/0000-0003-3925-5732
https://orcid.org/0000-0003-3925-5732
https://orcid.org/0000-0002-2221-6473
https://orcid.org/0000-0002-2221-6473
https://doi.org/10.1007/BF00188655
https://doi.org/10.1007/BF00188655
https://doi.org/10.1016/0161-5890(87)90184-2
https://doi.org/10.1016/0161-5890(87)90184-2
https://doi.org/10.1016/0022-2836(70)90009-4
https://doi.org/10.1016/0022-2836(70)90009-4
https://doi.org/10.1209/0295-5075/119/40002
https://doi.org/10.1209/0295-5075/119/40002
https://doi.org/10.1002/bip.360271107
https://doi.org/10.1002/bip.360271107
https://doi.org/10.1016/S0167-7306(08)60153-2
https://doi.org/10.1016/S0167-7306(08)60153-2
https://doi.org/10.1021/bi00138a005
https://doi.org/10.1021/bi00138a005
https://doi.org/10.1038/nrm1589
https://doi.org/10.1038/nrm1589
https://doi.org/10.1074/jbc.M114.554998
https://doi.org/10.1074/jbc.M114.554998
https://doi.org/10.1016/j.jmb.2007.07.075
https://doi.org/10.1016/j.jmb.2007.07.075
https://doi.org/10.1021/bi8018042
https://doi.org/10.1021/bi8018042
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1080/14786440509463331
https://doi.org/10.1080/14786440509463331
https://doi.org/10.1038/s41586-020-2718-6
https://doi.org/10.1038/s41586-020-2718-6
https://doi.org/10.1063/1.472166
https://doi.org/10.1063/1.472166
https://doi.org/10.1126/sciadv.1700321
https://doi.org/10.1126/sciadv.1700321
https://doi.org/10.1126/science.1130146
https://doi.org/10.1126/science.1130146
https://doi.org/10.1051/jp2:1994141
https://doi.org/10.1051/jp2:1994141
https://doi.org/10.1051/jp2:1994146
https://doi.org/10.1051/jp2:1994146
https://doi.org/10.1021/la5037053
https://doi.org/10.1021/la5037053
https://doi.org/10.1039/C6SM00568C
https://doi.org/10.1039/C6SM00568C
https://doi.org/10.1039/C6SM02649D
https://doi.org/10.1039/C6SM02649D
https://doi.org/10.1103/PhysRevE.88.050301
https://doi.org/10.1103/PhysRevE.88.050301
https://doi.org/10.1103/PhysRevE.88.020302
https://doi.org/10.1103/PhysRevE.88.020302
https://doi.org/10.1063/1.1747672
https://doi.org/10.1063/1.1747672
https://doi.org/10.1016/S0006-3495(88)82956-4
https://doi.org/10.1016/S0006-3495(88)82956-4
https://doi.org/10.1002/bip.10013
https://doi.org/10.1002/bip.10013
https://doi.org/10.1140/epje/i2012-12130-x
https://doi.org/10.1140/epje/i2012-12130-x
https://doi.org/10.1103/PhysRevResearch.2.033136
https://doi.org/10.1103/PhysRevResearch.2.033136
https://doi.org/10.1063/1.444917
https://doi.org/10.1063/1.444917
https://doi.org/10.1021/ja406226b
https://doi.org/10.1021/ja406226b
https://doi.org/10.1021/ma00027a058
https://doi.org/10.1021/ma00027a058
https://doi.org/10.1088/0953-8984/27/23/233101
https://doi.org/10.1088/0953-8984/27/23/233101
https://doi.org/10.1039/C6NR08069C
https://doi.org/10.1039/C6NR08069C
https://doi.org/10.1039/C8SM01661E
https://doi.org/10.1039/C8SM01661E
https://doi.org/10.5281/zenodo.3492186
arXiv:1806.00058


J. Phys. Mater. 4 (2021) 035002 R W Verweij et al

[41] Sprinkle B, van der Wee E B, Luo Y, Driscoll M M and Donev A 2020 Soft Matter 16 7982
[42] Delong S et al 2020 stochasticHydroTools/RigidMultiblobsWall: Rigid Multiblobs in half-space (v. 427d241) (available at: https://

github.com/stochasticHydroTools/RigidMultiblobsWall)
[43] Swan J W and Brady J F 2007 Phys. Fluids 19 113306
[44] Rotne J and Prager S 1969 J. Chem. Phys. 50 4831
[45] Yamakawa H 1970 J. Chem. Phys. 53 436
[46] Wajnryb E, Mizerski K A, Zuk P J and Szymczak P 2013 J. Fluid Mech. 731 R3
[47] Balboa Usabiaga F, Delmotte B and Donev A 2017 J. Chem. Phys. 146 134104
[48] Newville M et al 2020 lmfit/lmfit-py 1.0.1 (available at: https://doi.org/10.5281/zenodo.3814709)
[49] Foreman-Mackey D, Hogg DW, Lang D and Goodman J 2013 Publ. Astron. Soc. Pac. 125 306
[50] Wegener W A 1985Macromolecules 18 2522
[51] Cichocki B, Rubin M, Niedzwiecka A and Szymczak P 2019 J. Fluid Mech. 878 R3
[52] Wiggins P A and Nelson P C 2006 Phys. Rev. E 73 031906
[53] McMullen A, Holmes-Cerfon M, Sciortino F, Grosberg A Y and Brujic J 2018 Phys. Rev. Lett. 121 138002
[54] De Gennes P G and Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
[55] Wang X and Wang K 1995 Polym. J. 27 515
[56] Doi M, Edwards S F and Edwards S F 1988 The Theory of Polymer Dynamics vol 73 (Oxford : Oxford University Press)
[57] Valleau J P 1996 J. Chem. Phys. 104 3071
[58] Bishop M and Clarke J 1991 J. Chem. Phys. 94 3936
[59] Victor J M and Lhuillier D 1990 J. Chem. Phys. 92 1362
[60] Agudo-Canalejo J and Golestanian R 2020 Eur. Phys. J. Spec. Top. 229 2791
[61] Verweij R W, Moerman P G, Ligthart N E G, Chakraborty I, Huijnen L P P, Groenewold J, Kegel W K, van Blaaderen A and

Kraft D J 2020 Supplementary information for ‘Conformations and diffusion of flexibly linked colloidal chains’

19

https://doi.org/10.1039/D0SM00879F
https://doi.org/10.1039/D0SM00879F
https://github.com/stochasticHydroTools/RigidMultiblobsWall
https://github.com/stochasticHydroTools/RigidMultiblobsWall
https://doi.org/10.1063/1.2803837
https://doi.org/10.1063/1.2803837
https://doi.org/10.1063/1.1670977
https://doi.org/10.1063/1.1670977
https://doi.org/10.1063/1.1673799
https://doi.org/10.1063/1.1673799
https://doi.org/10.1017/jfm.2013.402
https://doi.org/10.1017/jfm.2013.402
https://doi.org/10.1063/1.4979494
https://doi.org/10.1063/1.4979494
https://doi.org/10.5281/zenodo.3814709
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1021/ma00154a029
https://doi.org/10.1021/ma00154a029
https://doi.org/10.1017/jfm.2019.652
https://doi.org/10.1017/jfm.2019.652
https://doi.org/10.1103/PhysRevE.73.031906
https://doi.org/10.1103/PhysRevE.73.031906
https://doi.org/10.1103/PhysRevLett.121.138002
https://doi.org/10.1103/PhysRevLett.121.138002
https://doi.org/10.1295/polymj.27.515
https://doi.org/10.1295/polymj.27.515
https://doi.org/10.1063/1.471073
https://doi.org/10.1063/1.471073
https://doi.org/10.1063/1.460670
https://doi.org/10.1063/1.460670
https://doi.org/10.1063/1.458147
https://doi.org/10.1063/1.458147
https://doi.org/10.1140/epjst/e2020-900224-3
https://doi.org/10.1140/epjst/e2020-900224-3

	Conformations and diffusion of flexibly linked colloidal chains
	1. Introduction
	2. Materials and methods
	2.1. Experimental
	2.2. Microscopy
	2.3. Simulations
	2.4. Data analysis
	2.5. Diffusion tensor analysis
	2.5.1. Definition of the diffusion tensor
	2.5.2. The influence of the tracking point


	3. Results and discussion
	3.1. Conformations of flexible chains
	3.1.1. Shape as function of the trimer segments
	3.1.2. Shape as function of the average bending angle 
	3.1.3. Distribution of the end-to-end distance and radius of gyration: a comparison with polymer theory

	3.2. Shape effects in the diffusion of flexible trimer and tetramer chains
	3.2.1. The diffusivity of flexible trimers: simulations compared to experiments
	3.2.2. The diffusivity of flexible colloidal tetramer chains

	3.3. Shape-averaged diffusion of flexible chains

	4. Conclusions
	Acknowledgments
	References


