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ABSTRACT

Charged colloidal particles—on both the nano and micron scales—have been instrumental in enhancing our understanding of both atomic
and colloidal crystals. These systems can be straightforwardly realized in the lab and tuned to self-assemble into body-centered-cubic (BCC)
and face-centered-cubic (FCC) crystals. While these crystals will always exhibit a finite number of point defects, including vacancies and
interstitials—which can dramatically impact their material properties—their existence is usually ignored in scientific studies. Here, we use
computer simulations and free-energy calculations to characterize vacancies and interstitials in FCC and BCC crystals of point-Yukawa
particles. We show that, in the BCC phase, defects are surprisingly more common than in the FCC phase, and the interstitials manifest as
so-called crowdions: an exotic one-dimensional defect proposed to exist in atomic BCC crystals. Our results open the door to directly observe

these elusive defects in the lab.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0047034

I. INTRODUCTION

Suspensions of charged colloids are among the most funda-
mental systems in colloidal science. These systems, consisting of
charged colloidal spheres suspended in a solvent containing salt,
which screens the Coulombic repulsions between the spheres, have
been extensively studied using experiments, simulations, and the-
ory."”"” In the case of single-component spherical colloids, the bulk
phase behavior is extremely well understood, with impressive quan-
titative comparisons between theory and experiment.””"” These
quantitative comparisons have been facilitated by the highly tun-
able nature of experimental systems of charged colloids.”'*'” From
these studies we know that for sufficiently high densities or strongly
charged particles, identically charged colloids self-assemble into one
of two crystal structures, depending on the degree of screening.
Broadly, for low salt concentrations, where the screening is weak,
the system forms a body-centered-cubic (BCC) crystal, while high
salt concentrations result in a face-centered-cubic (FCC) crystal.

In equilibrium, such crystalline phases always feature a finite
concentration of defects. These defects, like vacancies and intersti-
tials, can have a profound impact on the mechanical, optical, and

electronic properties of crystalline materials. In the realm of col-
loid science, where the creation of new materials to manipulate light
is one of the overarching goals, the presence of defects strongly
affects optical properties.” " It is, therefore, perhaps surprising that
despite the massive body of literature on crystals formed by charged
colloids, little is known about how defects manifest in their 3D
crystalline phases.

In three dimensions, some of the earliest work on defects in
colloidal crystals focused on point defects (vacancies and intersti-
tials) in single-component hard-sphere crystals.”' ** This colloidal
model system forms an FCC crystal, with relatively few point defects
in equilibrium: at melting, the crystal is predicted to have approx-
imately 107 vacancies and 10™% interstitials per lattice site. Sub-
sequent studies have explored, e.g., the local structural impact of
defects,”?° the diffusion of vacancies and interstitials,”””” and the
emergence of stacking faults” ' in hard-sphere systems. However,
in general, defects in 3D colloidal crystals have received relatively lit-
tle attention due to, at least in part, the expectation that they do not
occur in large quantities in equilibrium.

A notable exception is the relatively recent prediction that
simple cubic crystals of repulsive particles frequently exhibit large
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numbers (~0.06 per lattice site) of vacancies that are spread over a
row of lattice sites in one dimension.””>* These 1D vacancies, pre-
dicted for simple cubic crystals, are reminiscent of so-called inter-
stitial crowdions. This intriguing type of interstitial defect was pro-
posed by Paneth in 1950™ to explain anomalous self-diffusion in
BCC crystals of alkali metals. In this picture, the defect is expected
to spread out over multiple lattice sites arranged along a one-
dimensional line, resulting in preferential diffusion along that direc-
tion. In the atomic realm, explorations of these defects have been
largely focused on simulations,” "’ and simple theoretical models
have been used to capture their behavior.”'

To date, an analog to these defects in a colloidal realization of a
BCC crystal—which would allow for direct observation in real time
using, e.g., confocal microscopy—is lacking. It is therefore intriguing
to explore how interstitials manifest in colloidal BCC crystals and, in
particular, in systems that can be directly, and even quantitatively,
reproduced in an experimental setting.

Here, we use computer simulations to explore both the concen-
tration and structure of point defects in BCC and FCC crystals of one
of the most fundamental models for screened charged particles—
the point Yukawa model. Our results predict that this fundamental
system forms a direct colloidal realization of crowdion interstitials
in BCC crystals. Moreover, we find that BCC exhibits significantly
higher concentrations of point defects and, hence, expect that these
crowdions play an important role in controlling the material prop-
erties of the crystal. Importantly, given the substantial concentration
of crowdions predicted to occur in equilibrium, our results pave the
way for directly observing these rare and elusive defects in colloidal
experiments.

Il. MODEL

We consider a system of N charged colloids of diameter
o suspended in a solvent containing ions characterized by an
inverse Debye screening length xp and Bjerrum length Ap. Within
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the effective
potential between the colloids is given by

Po(r) =~ M

where
ZZ /\B eKDU

T Urro2)? @
with Z being the charge of the colloids in electron charges, and
B = 1/kgT, with kg being the Boltzmann constant and T being
the temperature. Note that the so-called Yukawa potential not only
describes charged colloids but also has been widely applied in the
study of dusty plasmas.”’

Conveniently, the phase behavior of this system can be fully
characterized by two dimensionless parameters, namely,

£
r=——,
akBT
K = akp,
N
witha = (%) * being the Wigner-Seitz radius.
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The phase diagram for this system has been explored exten-
sively using theory, simulations, and experiments. In Fig. 1, we show
the phase behavior using the phase boundaries approximated in
Refs. 6 and 7. It consists of a fluid phase and two crystal phases:
face-centered-cubic (FCC) and body-centered-cubic (BCC), with
all phase boundaries corresponding to first-order phase transitions.
Note that the coexistence regions here are all small and have been
simply presented as lines, similar to Refs. 6 and 7. In this paper, we
will explore the behavior of point defects associated with the crystals
that appear in this 2D phase diagram.
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FIG. 1. (a) Phase diagram of Yukawa systems in the (x, I) plane, with the phase
boundaries from Refs. 6 and 7. Vacancy and interstitial concentrations plotted
along (b) the fluid—crystal phase boundary and (c) the BCC-FCC phase bound-
ary. We estimate an error of up to 0.2kg T in our calculation of the 42, leading
to an approximate error of a factor of 1.2 in the concentrations.
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I1l. METHODS
A. General simulation details

We used Monte Carlo simulations in the NVT-ensemble with
periodic boundary conditions,”® where the particles interact via the
point Yukawa potential [Eq. (1)]. The potential was truncated and
shifted such that the shift was never more than 10~°kzT. The Sys-
tem size was always chosen to be large enough to accommodate this
choice such that the cutoff range is less than half the box length.

The system sizes were chosen depending on the phase in ques-
tion. For studying defect concentrations, we used systems containing
between 250 and 1500 particles. For select points of the smallest sys-
tems, we examined whether doubling the system size mattered, and
in all cases, it had no discernible effect on the defect concentrations.
For studying the shape of the defects, we used a system ranging from
1000 to 3500 particles and again ensured that the system size was not
affecting the results.

B. Concentration of defects

To determine the vacancy concentration, we make the assump-
tion that the defect concentration is sufficiently low that (i) the
defects do not interact and (ii) the equation of state of the crystal
is unaffected by the presence of defects. In this case, the free energy
of a system of N particles in a volume V at temperature T can be
written as

BF“(N,V, T) = BMf¥(N, V, T) + B(M - N)f**
M-N
=,

+Nlog%+(M7N)log 3)

where M > N is the number of lattice sites, /% is the free energy
per particle of the defect-free crystal, and f'* is the free energy
associated with creating a single vacancy at a specific lattice site.

Taking the Legendre transform to turn this Helmholtz free
energy into a Gibbs free energy and minimizing with respect to the
number of lattice sites M, we find that the equilibrium concentration
of vacancies is given by

M -

(mac) = () = exolu™) @

where ' is defined as f"*“(pum, T) + ydf(P, T), with ydf(P, T) being
the chemical potential of a defect-free crystal and py = M/V being
the density of lattice sites. Note that P is the pressure.

For a crystal containing interstitials, where M < N, we use a sim-
ilar approach yielding an equilibrium concentration of interstitials,

() = {57 ) = xpl-u™) ©)

with @™ = f™(py, T) — u¥(P, T). Here, ™ (pu, T) is the free
energy associated with creating an interstitial at a specific lattice
site. In order to obtain the concentration of point defects for var-
ious points along the phase boundary of the Yukawa crystal, we
thus need to measure f**(pu, T), fi"t(pM, T), and ydf(P, T) in a
Yukawa crystal. Because it is not possible to measure these free
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energies directly in a Monte Carlo simulation, we use thermody-
namic integration as described below.

To obtain the chemical potential uf of the defect-free crystals,
we first use the Frenkel-Ladd method" to obtain the Helmholtz free
energy. We then combine this with the pressure, measured via the
virial expression,” to determine the chemical potential.

We now turn our attention to the method for finding the free
energies f™ (py, T) and f**“(pu, T) associated with creating point
defects. In the case of a vacancy, we break f** up into two contribu-
tions: £ = fehrink 4 gremove ‘(uhere fhrink is associated with turning
one of the particles of a defect-free crystal into a non-interacting
particle and f™"° is associated with removing this non-interacting
particle. Similarly, in the case of an interstitial, we first compute the
free energy, *4, associated with inserting a non-interacting parti-
cle and then calculate the free energy, f8°", associated with turning
this non-interacting particle into a normal-interacting particle. Note
that in all cases, the particle associated with a defect is confined to a
single Wigner-Seitz cell.

We then calculate the total free energy for the interstitial using
fint = ferow 4 £24d The free energies associated with £ and fremeve
are given by

. VWS
£ = —kBTln(F) (6)
and
remove VWS
f =kBT1H(1X3), (7)

where V'S is the volume of the Wigner-Seitz cell and A is the
thermal de Broglie wavelength.

To calculate £k
auxiliary Hamiltonian,

, we use thermodynamic integration with an

U)L = /on + (1 - /\) Unon-int) (8)

with Uy being the normal interaction potential of our system and
Unon-int the potential energy of a system where one particle is non-
interacting. Following standard thermodynamic integration, the
free-energy difference between a crystal with one non-interacting
particle and a defect-free crystal is then given by

fshrmk = prom-int _ Fdf =— ‘/0 dA(Unon—int -Uo )A’ ©)

with F"*"™ being the Helmholtz free energy of a crystal containing
one non-interacting particle. The ensemble average, (---),, is evalu-
ated using the auxiliary potential given in Eq. (8). The free energy
f¥" is determined following the same method. Note that in both
cases, we evaluate the integral numerically using 34 different values
of .

However, while in theory this method works fine, in practice,
the sampling can become very slow. When the system is at A = 0,
we evaluate the energy difference in Eq. (9) using the potential
Uj=0 = Unon-int. This means that without any energy penalty, the
non-interacting particle can come very close to other particles if
those particles are near their Wigner—Seitz cell boundary. Because
we compute the potential energy difference with the system where
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our particle does have interactions, the term (Uson-int — Uo),_, can
become very large—in the interstitial case, even infinitely large. Due
to these large energy differences, the simulation needs a long time to
get a reliable answer for the value (Unon-int — Ub),_y-

To circumvent this problem, we alter the potential. Instead of
letting it diverge at r = 0 as it normally would do, we assume that
the potential increases linearly below a certain defined value 7,jer.
By doing so, the potential has a finite value, Unax, at r = 0. If we
evaluate (Unon-int — Up),_, for higher A values, this altered potential
will not have any influence as the particles will never have a distance
r with 7 < ryer due to the energy penalty. However, for small A, we
avoid the large energies. Because in the end, we integrate over the
energy difference [see Eq. (9)], this alteration to the potential has no
influence on the final free energy. We find that the precise values
for Umax and 7, do not matter as long as we make sure 7,y is
sufficiently small that for higher values of A, r will almost never be
smaller than r,jer. We checked this by running the same simulation
twice for different values of Upmax and 7jger-

IV. RESULTS

We start our investigation by exploring the equilibrium con-
centration of vacancies and interstitials in both crystals. As a starting
point, we focus on state points in the vicinity of the fluid-crystal
phase boundary—the region on the phase diagram that is expected
to have the highest concentration of defects. To predict these con-
centrations, we make the assumption that the defects do not interact
and that their effect on the pressure of the system is negligible. We
can then use a combination of Monte Carlo simulations and thermo-
dynamic integration to extract the defect concentrations. The result
is shown in Fig. 1(b).”"

Clearly, along the fluid-crystal line, BCC appears to have more
defects of both types than FCC. More specifically, for BCC, both
the vacancy and interstitial concentrations are on the order of 1074,
while for FCC, the concentrations are closer to 10™°. For vacan-
cies, these concentrations are similar to those found for hard spheres
at coexistence (107*).”” However, the interstitial concentration in
both cases is orders of magnitude higher than the 107* predicted
for interstitials in hard-sphere crystals at the fluid-crystal phase
boundary.”’

To make a more direct comparison of the behavior of the
two crystals, we then calculated the defect concentrations along the
FCC-BCC phase line. From Fig. 1(c), we observe again that BCC
generally has more defects than FCC; while the difference in the
interstitial concentration is small, the difference in the vacancy con-
centration varies from two to eight orders of magnitude. Clearly,
BCC generally exhibits more equilibrium point defects than FCC.

To explore the large differences we observe between FCC and
BCC, we now turn our attention to the structure of the point defects
in these two crystals. To determine the structure, we performed
NVT MC simulations with a single vacancy or interstitial present.
To prevent the defect from hopping during our analysis, we con-
fined all particles to their Wigner-Seitz cells’”" and then measured
the average location of each particle during the simulation.

The results for a vacancy in FCC are shown in Figs. 2(a)
and 2(b), while Figs. 2(e) and 2(f) depict the average deformation
associated with a vacancy in a BCC crystal. In both crystals, as
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FIG. 2. Average lattice deformation due to a point defect in (a)—(d) the FCC crystal
at x = 3.5 and T = 2565 and (e)—(h) the BCC crystal at x = 3.5 and T’ = 2400.
(a), (b) and (e), (f) Deformation due to a vacancy (indicated by red or a dotted
sphere) and (c) and (d) and (g) and (h) deformation due to an interstitial (indicated
by a black sphere). Left: 3D representation of part of the simulation box. The gray
points represent the lattice sites. Right: projection of the displacement vectors on
two (100) planes on top of each other. The black points represent the lattice sites
that lie in the plane of the defect and the gray points denote the lattice sites in
the neighboring plane. In all panels, the size of the arrows is exaggerated, but the
color of the arrows indicates the deformation in terms of the Wigner—Seitz radius a.

expected, the largest deformation is associated with the first shell of
neighbors—however, it is approximately twice as large in the case of
the BCC crystal (note the different scaling on the color bars). This
likely arises due to the lower number of particles in the first shell
of BCC, 8 in comparison to the 12 in FCC. In the BCC crystal, the
particles are less strongly caged by their neighbors and are, hence,
more free to move into the space opened up by the vacancy. More
interesting is the behavior of the second shell of neighbors. While
in FCC all particles again deviate in the direction of the vacancy,
in BCC half the particles move toward the vacancy while the other
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half move away from the defect. The end result is a much larger
change in energy of the crystal upon removing the particle: in the
system shown in Fig. 2, the average difference is BAUrcc = —35.6 and
BAUpcc = —42.9 in the FCC and BCC crystals, respectively. This dif-
ference contributes directly to the difference in free-energy cost for
creating a vacancy in the two crystals. In short, the BCC structure is
better able to take advantage of the vacancy to reduce its local poten-
tial energy, which helps to alleviate the cost of creating a vacancy
and, hence, makes them more prevalent.

The interstitials turn out to be an even more interesting case. In
Figs. 2(c), 2(d), 2(g), and 2(h), we plot the average displacement of
particles from their lattice sites in FCC and BCC crystals, respec-
tively. In comparison to the vacancy case, these defects appear at
first rather similar: in both crystals, the average deviations due to
the interstitial are mainly along the lines pointing along the nearest-
neighboring directions and decay slowly through a number of neigh-
boring shells. In the FCC crystal, this means that particles lying along
the six (110) lines are displaced the most, similar to what was found
in hard-sphere crystals.”” In the BCC crystals, it is the particles lying
along the four (111) lines.

Interestingly, however, the averaged displacements do not tell
the full story. If we examine the instantaneous realization of an
interstitial, there is a spontaneous symmetry breaking in the dis-
placement of neighboring particles along different directions, espe-
cially in the case of BCC. One clear way of demonstrating this is
to quench a system containing an interstitial to high values of T
such that the system minimizes its potential energy. As shown in
Fig. 3, this quench has a particularly remarkable effect on the BCC
crystal. While in the case of FCC [Fig. 3(a)], the defect takes on a
normal dumbbell structure with a 3D displacement field around it,
in BCC, the defect becomes one-dimensional [Fig. 3(b)]: only parti-
cles along one of the four (111) lines are displaced significantly. With
this knowledge in mind, we can recalculate the average displacement
field for an interstitial by first rotating each configuration so that the
defect is always oriented along the same axis. The result is shown

ARTICLE scitation.org/journalljcp

in Fig. 3 for the quenched system and in Fig. 4 for the system at
finite T.

This one-dimensional configuration strongly resembles a so-
called crowdion: an exotic 1D defect proposed to exist in some
metallic BCC crystals.”” In order to characterize the structure of
the defects, we measure the average particle displacements u, = x;,
— ainn near the interstitials along the defect direction, where x,
is the position of particle n along the defect and ai1; is the crystal
lattice spacing along the (111) direction. We choose n = 0 to corre-
spond to the particle just before the defect center and use “standard”
boundary conditions: #y-— oo = a111 and Uu-0o = 0. We plot this dis-
placement field for a BCC crystal with x = 3.5 and T = 2400 in Fig. 4,
along with the displacement field along the three other (111) lines.
Clearly, particle positions along the defect direction are strongly
affected by the presence of the interstitial, while along the other
(111) directions, they remain essentially unperturbed—indicating
that the defect is one-dimensional.

A classic characteristic of a crowdion is that the defect shape
can be well captured by the Frenkel-Kontorova model.""** This
model describes a one-dimensional chain of particles that are con-
nected to their neighbors via springs and embedded in a periodic
external potential. Defects are included as missing or extra parti-
cles with respect to the number of external periodic wells. In the
continuum limit, the average particle positions near a defect follow
the soliton solution to the sine-Gordon equation, which has a sin-
gle free parameter that captures the extent of the defect. Hence, to
further confirm that the interstitials are realizations of crowdions,
we compare our results to the soliton solution of the sine-Gordon
equation [black dashed line in Fig. 4(b)] using the extension of the
defect as a fit parameter. We observe excellent agreement. Curious
as to how the shape of the defect is dependent on where we are
on the phase diagram, we performed the same analysis for a range
of different state points with different values of x and I'. Remark-
ably, in the area of the phase diagram close to the melting line,
we see very little effect of either parameter on the structure of the

FIG. 3. Quenched lattice deformation
due to an interstitial in (a) the FCC crystal
and (b) the BCC crystal, both at x = 3.5.
The gray points represent the lattice sites
of part of the simulation box, and the
black spheres represent the actual posi-
tions of the interstitial and its compan-
ion. The size of the arrows is exagger-
ated, but the color of the arrows indicates
the deformation in terms of the Wigner—
Seitz radius a. (c) Displacement uj, along

the four (111) directions for the same
system as (b). The blue dots indicate
up along the direction of the crowdion,
and the dashed line represents the cor-
responding fitted soliton solution. (d) u,
along the direction of the crowdion for
five different x. The lines represent the
corresponding fitted soliton solutions.
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FIG. 4. (a) Lattice deformation due to an interstitial in the BCC crystal at x = 3.5 and T = 2400. The gray points represent the lattice sites of part of the simulation box, and
the black spheres represent the positions of the interstitial and its companion. The size of the arrows is exaggerated, but the color of the arrows indicates the deformation in
terms of the Wigner—Seitz radius a. Note that these deformations are averaged over multiple configurations, which have been rotated so that the defect always points along
the same direction. (b) Displacement u, along the four (111) directions for the same system as (a). The blue dots indicate u, along the direction of the crowdion, and the
dashed line represents the corresponding fitted soliton solution. (c) u, along the direction of the crowdion for ¥ = 2.0 and T = 1000, 1100, and 1205 (blue dots); x = 2.5 and
' =1000, 1100, and 1205 (yellow squares); x = 3.0 and I’ = 1205, 1400, and 1600 (green diamonds); x = 3.5 and T = 2200, 2300, and 2400 (orange triangles); and x = 4.0
and I = 4000, 4100, and 4200 (purple triangles). The lines represent the corresponding fitted soliton solutions.

crowdion. In Fig. 4(c), we show the displacement fields along the
defect axis for 15 different state points and obtain essentially the
same curve every time. This indicates that in this regime, the exten-
sion of the defect is largely independent of both the interaction
strength and screening parameter. We note, however, that the crow-
dions do slowly get longer as T is increased far beyond the melting
point. This can be observed from the shape of the quenched defects,
as shown in Fig. 3(d).

V. CONCLUSIONS

In summary, we have characterized the point defects that
appear in crystals of charged colloids, an archetypical colloidal
model system. Surprisingly, we found dramatic differences between
the two—fairly similar—crystal phases FCC and BCC. As a first
observation, the BCC crystals contain dramatically more vacancies,
as well as more interstitials, than their FCC counterparts. One log-
ical explanation for this is the relatively small number of nearest-
neighbors in the BCC crystals, which makes it easier for particles to
partially emerge from their cages and make use of the extra room
opened up by a vacancy—or adapt to the encroachment of a nearby
interstitial.

Not only BCC exhibits significantly more defects but its inter-
stitials manifest as exotic one-dimensional defects called crow-
dions.” The delocalized nature of such defects would be expected
to promote fast and strongly anisotropic diffusion of the defects
through the crystal.”®"”""* In combination with the relatively large
concentration of interstitials in BCC near melting, these defects are
expected to strongly impact the transport properties of the crystal,
including self-diffusion and the diffusion of dopants.”

The observation of a crowdion defect in an easy-to-realize
and highly tunable colloidal system is important not only for our

understanding of this system itself but also for understanding the
nature of crowdions. In atomic systems, crowdions are both rare and
hard to observe directly (almost all studies are based on simulations
and theory™* "), In contrast, charged colloids can be studied in
real space and real time using, e.g., confocal microscopy and, hence,
are an ideal experimental playground for studying these defects.

Surprisingly, despite decades of intense studies, it appears that
this fundamental colloidal model system has not yet given up all of
its secrets.
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