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ABSTRACT
Simulations of colloidal suspensions consisting of mesoscopic particles and smaller species such as ions or depletants are computationally
challenging as different length and time scales are involved. Here, we introduce a machine learning (ML) approach in which the degrees of
freedom of the microscopic species are integrated out and the mesoscopic particles interact with effective many-body potentials, which we fit
as a function of all colloid coordinates with a set of symmetry functions. We apply this approach to a colloid–polymer mixture. Remarkably,
the ML potentials can be assumed to be effectively state-independent and can be used in direct-coexistence simulations. We show that our
ML method reduces the computational cost by several orders of magnitude compared to a numerical evaluation and accurately describes the
phase behavior and structure, even for state points where the effective potential is largely determined by many-body contributions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0063377

I. INTRODUCTION

Colloidal suspensions consist of mesoscopic particles sus-
pended in a solvent. The effective interactions between the col-
loids can be modified by the addition of smaller species such as
ions, depletants, ligands, or polymers. For instance, the addition of
non-adsorbing polymers to a colloidal suspension induces an effec-
tive attraction between the colloids. This arises from an increase
in the configurational entropy of the polymer as colloidal particles
approach each other and their depletion zones overlap as described
by Asakura and Oosawa in 1954.1 The strength and range of this
depletion interaction can be independently tuned by varying the
polymer fugacity and polymer size.2–6 The possibility of tailoring the
effective interactions enriches the physics of colloidal systems com-
pared to simple atomic fluids and leads to a wide range of potential
applications.

Computer simulations of these systems remain computation-
ally expensive due to slow dynamics as very different length and
time scales are involved for the various species and as the number
of microscopic species outweighs by orders of magnitude the num-
ber of colloidal particles.7 Much effort has been devoted to speed-
ing up equilibration in highly asymmetric mixtures by the imple-
mentation of (rejection-free) cluster moves,8–13 lattice discretization

methods,3,14,15 or exploiting a sophisticated field-theoretic descrip-
tion of the smaller species in the external field of a fixed col-
loid configuration within a density functional framework16,17 in the
same spirit as the “ab initio” method of Car and Parrinello for
ion–electron systems.18 However, all these approaches have their
own limitations, and as a consequence, higher densities, larger
system sizes, and larger size asymmetries are still unattainable,
thereby leaving many intriguing experimental observations unex-
plained such as void formation, gas–liquid and gas–solid coexistence
in like-charged colloidal suspensions,19–23 and hampering investiga-
tions of interesting phenomena such as capillary wave fluctuations,
long wavelength fluctuations of marginal colloidal liquids at their
triple point, and density oscillations at the gas–liquid interface in
colloid–polymer mixtures.24–27

An alternative strategy to circumvent slow equilibration is to
formally integrate out the degrees of freedom of the microscopic
species in the partition sum and to derive an exact expression for
the effective one-component Hamiltonian of the colloids. The effec-
tive Hamiltonian, which depends on all colloid coordinates and
involves many-body interactions, can be employed in standard sim-
ulation schemes, but its evaluation becomes extremely computa-
tionally demanding when three- and higher-body interactions are
important.28,29
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In the past years, machine learning (ML) techniques have
been employed to efficiently approximate the many-body inter-
atomic potentials in atomistic systems by fitting large datasets from
electronic structure calculations.30–32 These ML potentials can be
used in molecular simulations, thereby combining the accuracy of
“first-principles” calculations with the efficiency of simple atomistic
“force-fields.”31

In this paper, we introduce a general ML approach to efficiently
represent the effective many-body interactions in colloidal systems.
We consider a model suspension of sterically stabilized colloidal
particles and non-adsorbing ideal polymers for which a wealth of
data exist on the phase behavior and structure, from both numeri-
cal evaluations of the exact one-component Hamiltonian and direct
simulations of the true binary mixture.6,12,28,33 Moreover, exempli-
fying our method using this model system is convenient as the
importance of two-, three-, and higher-body contributions to the
effective potential can be tuned by the polymer size and colloid den-
sity, allowing for a systematic exploration of the validity of our ML
approach. We fit the effective many-body potentials as a function of
all colloid coordinates with the symmetry functions (SFs) as intro-
duced by Behler and Parrinello,34 which were also recently used to
fit the many-body interactions between microgel particles.35 We find
that the fitted ML potential reduces the computational cost by up
to almost four orders of magnitude in comparison to a numerical
evaluation and accurately describes the effective many-body inter-
actions for a wide range of colloid densities and polymer fugacities.
Hence, the ML potential can be assumed to be state-independent
and can straightforwardly be used in Monte Carlo (MC) simula-
tions to observe the direct coexistence of a dilute colloidal gas and
a dense colloidal liquid phase. Using these ML potentials, we find
good agreement with the structure, phase behavior, and interfacial
tension as obtained in previous studies for mixtures of different size
ratios.

The remainder of this paper is structured as follows: In Sec. II,
we describe the model colloid–polymer mixture and its formal map-
ping onto the corresponding effective one-component representa-
tion. The employed SFs and fitting procedure of the ML potentials
are presented in Sec. III, whereas the results of the MC simulations
using the ML potentials, demonstrating the accuracy of the model,
are discussed in Sec. IV. We conclude with a final discussion in
Sec. V.

II. EFFECTIVE ONE-COMPONENT DESCRIPTION
OF THE ASAKURA–OOSAWA MODEL

The simplest model that captures the essence of polymer-
induced effective interactions between colloidal particles1,36 was
introduced by Vrij.37 In this so-called Asakura–Oosawa (AO)
model, the colloidal particles are regarded as hard spheres of diam-
eter σc, whereas the polymer coils with radius of gyration Rg are
treated as ideal point particles as regards their mutual interactions.
The colloid–polymer pair interaction is hard-sphere-like such that
their distance of closest approach is σcp = (σc + σp)/2 with polymer
diameter σp = 2Rg. We consider a system consisting of Nc colloidal
hard spheres at coordinates {Ri} with i = 1, . . . , Nc and Np polymer
coils at positions {rj}with j = 1, . . . , Np with a size ratio of q = σp/σc
in a volume V at temperature T. The pair interactions of the AO

model read

ϕcc(Rij) =
⎧⎪⎪⎨⎪⎪⎩

∞ for Rij < σc,

0, otherwise,
(1)

ϕcp(∣Ri − rj∣) =
⎧⎪⎪⎨⎪⎪⎩

∞ for ∣Ri − rj∣ < σcp,

0, otherwise,
(2)

ϕpp(rij) = 0, (3)

with Rij = ∣Ri − Rj∣ being the center-of-mass distance between col-
loids i and j. This binary mixture of colloids and polymers is
described by the total interaction Hamiltonian ℋ =ℋcc +ℋcp
+ℋpp with

ℋcc =
Nc

∑
i<j

ϕcc(Rij), (4)

ℋcp =
Nc

∑
i=1

Np

∑
j=1

ϕcp(∣Ri − rj∣), (5)

ℋpp ≡ 0. (6)

It is convenient to treat the polymer coils grand-canonically,
in which the fugacity of the polymers zp, or equivalently the poly-
mer reservoir packing fraction ηr

p ≡ πσ3
pzp/6, is fixed. The ther-

modynamic potential F(Nc, zp, V , T) of this binary system reads

exp[−βF] =
∞
∑

Np=0

zNp
p

Nc!Λ3Nc
c Np!∫V

dRNc∫
V

drNp exp[−β(ℋcc +ℋcp)]

= 1
Nc!Λ3Nc

c
∫

V
dRNc exp[−βℋcc] exp[−βΩ]

= 1
Nc!Λ3Nc

c
∫

V
dRNc exp[−βℋeff], (7)

where β = (kBT)−1 with kB being the Boltzmann constant, and Λα
is the thermal wavelength of species α = c, p. By integrating out
the degrees of freedom of the polymers, this binary mixture can
be mapped onto an effective one-component system described by
an effective colloids-only Hamiltonian ℋeff =ℋcc +Ω, where Ω

= −β−1 ln[∑∞Np=0
z

Np
p

Np! ∫V drNp exp(−βℋcp)] denotes the grand poten-

tial of a “sea” of ideal polymers at fugacity zp in the external field of a
fixed configuration of Nc colloids.6,28,38 For the AO model, the grand
potential Ω is simply the negative of the product between polymer
fugacity and the free volume available for the polymer in the fixed
configuration of Nc colloids, i.e.,

Ω = −zpVf({Ri}), (8)

which is the volume outside the Nc depletion zones, and which can
be decomposed into a zero-, one-, two-, three-, and higher-body
contribution,

Vf = V(0)f +
Nc

∑
i=1

V(1)f (Ri) +
Nc

∑
i<j

V(2)f (Ri, Rj) + V(3+)f , (9)
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i.e., the number of colloids k = 0, 1, 2, . . . , Nc that interact simulta-
neously with the “sea” of ideal polymer, and where V(3+)f denotes
the three- and higher-body term. Analytical expressions exist for
k = 0, 1, and 2. The zero-body contribution V(0)f = V simply cor-
responds to the volume of the system, V(1)f = −v1 is the vol-
ume excluded to a polymer by a single colloid with v1 = πσ3

cp/6,
and V(2)f = 8v1(1 − 3x/4 + x3/16) with x = Rij/σcp < 2 is the well-
known depletion potential of the AO model, representing the lens-
shaped overlap volume of two colloidal spheres of diameter σcp at
separation Rij.

For q < 0.1547, the higher-order contributions incorporated
in V(3+)f are zero, and hence, a mapping onto an effective one-
component system with an effective Hamiltonian based on pair-
wise additive depletion potentials is exact.2,6 For larger q, the model
based solely on the pairwise approximation exhibits a phase behav-
ior that strongly differs from that observed in the system where
three- and higher-body interactions V(3+)f are considered. The main
effect of the many-body interactions in colloid–polymer mixtures
is to enhance the zp regime of stable gas–liquid coexistence at the
expense of that of the gas–solid coexistence.6,28 V(3+)f can be com-
puted by measuring the overlap volume of three or more depletion
zones, which can only be evaluated numerically as shown in Ref. 28.
The key ingredient in the numerical evaluation of V(3+)f in Ref. 28 is
the introduction of a spatial descriptor n = n(r), which for a given
colloid configuration measures the number of simultaneously over-
lapping depletion layers at spatial coordinate r. In Fig. 1, we show
a pictorial representation of a configuration of colloidal particles
(solid blue spheres) and their depletion zones (surrounding gray-
shaded spheres). The values of n in different regions of space are also
reported. Upon the introduction of n(r), the many-body correction
V(3+)f can be computed as

V(3+)f = −1
2∫n≥3

dr[n(r) − 1][n(r) − 2], (10)

where the integration is performed over the regions with n ≥ 3.28

Conceptually, V(3+)f can be seen as a correction to the overestimated
overlap volume of the depletion zones in V(2)f .

FIG. 1. Left: Schematic configuration of a colloid (blue sphere) with its corre-
sponding depletion zone (gray-shaded sphere). Right: The values of the descriptor
n = n(r), indicating the number of simultaneously overlapping depletion layers,
are drawn for different regions in the triplet configuration. The region highlighted
in pink, with n = 3, corresponds to the three-body correction, V(3+)

f , that is added
on top of the pairwise approximation of the total free volume. In general, non-zero
contributions to V(3+)

f will stem from regions where n ≥ 3.

III. FITTING THE MANY-BODY POTENTIAL
As described above, V(3+)f is a function of the colloid config-

uration RNc . Therefore, its evaluation requires to sample the whole
volume V in order to identify those regions where n ≥ 3. In practice,
n(r) can be measured using a spherically symmetric grid of M points
around each colloid. The number of points needs to be sufficiently
high (on the order of M ∼ 105) to accurately sample V(3+)f , making
its implementation computationally feasible only for a few hundreds
of colloids. Here, we use an ML approach to fit V(3+)f as a function
of all colloid coordinates using a set of SFs introduced by Behler and
Parrinello.34,39

A. Training dataset
Since V(3+)f depends on the size ratio q, we use a differ-

ent ML fit for each q. To build the training datasets, we perform
MC simulations of Nc = 108 colloids for q = 0.4, 0.8, and 1.0, poly-
mer fugacity zp = 0, and colloid packing fraction ηc = πσ3

c Nc/6V
∈ [0.15, 0.65] with a packing fraction spacing of δηc = 0.005. From
each simulation, we collect 500 equilibrated, essentially uncorrelated
configurations40 and measure V(3+)f using a spherically symmet-
ric [r3, cos(θ), ϕ] grid of 100, 50, and 50 points, respectively.28 The
resulting dataset for each q contains a total of 49, 500 representative
particle configurations at different colloid densities, from which 80%
are used for training and 20% are used for testing. It is worth men-
tioning that the selected case of zero polymer fugacity corresponds
to a single-component system of hard spheres, which is computa-
tionally extremely inexpensive to simulate. Therefore, equilibration
in this system is achieved rapidly, and we were able to access a large
number of decorrelated configurations with relevant local environ-
ments of the individual particles in low- and high-density fluid and
solid phases, which are also present in colloid–polymer mixtures.
Learning V(3+)f instead of the full grand potential Ω significantly
reduces the size of the training dataset and lowers the computa-
tional effort while still giving access to non-zero polymer fugacity
via Eq. (8).

B. Symmetry functions
To describe the local environment of a particle, we use the

SFs introduced by Behler and Parrinello for constructing high-
dimensional neural network potentials.34 These SFs are described
in great detail in Refs. 39 and 41 and have been used as inputs for
atomic feed-forward neural networks in order to provide the atomic
energy contributions of different materials and molecules.34,42–45

Recently, they have also been used in combination with linear
regression to fit effective many-body interactions between elastic
spheres.35

Since the three- and higher-body term V(3+)f in Eq. (10) does
not include any two-body contributions, we consider only the angu-
lar three-body SFs G3(i) for particle i, which are defined as

G3(i) = 21−ξ∑
j,k≠i
(1 + λ cos θijk)

ξe−η(R2
ij+R2

ik+R2
jk) fc(Rij) f c(Rik) f c(Rjk),

(11)
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where the indices j and k run over all the neighbors of particle i, and
ξ, η, and λ are three parameters that determine the shape of the func-
tion. The parameter λ can have the values +1 or −1 and determines
the angle θijk at which the angular part of the function has its maxi-
mum. The angular resolution is provided by the parameter ξ, while η
controls the radial resolution. Additionally, f c(Rij) is a cutoff func-
tion: a monotonically decreasing function that smoothly goes to 0 in
both the value and slope at the cutoff distance rc. Here, we consider
a cutoff function of the form

f c(Rij) =
⎧⎪⎪⎨⎪⎪⎩

tanh3(1 − Rij/rc) for Rij ≤ rc,

0 for Rij > rc.
(12)

Using the training set consisting of representative colloid configura-
tions at different colloid densities, we fit V(3+)f with a linear combi-
nation of Ns SFs in Eq. (11) and select the optimal subset of SFs using
the feature selection scheme of Ref. 35, which we summarize in the
following. We note that we also implemented other feature selection
schemes such as those introduced by Imbalzano et al.,46 but the one
of Ref. 35 turns out to be more efficient (see the Appendix).

The first step of the method involves the creation of a large
but manageable pool of candidate SFs. This is done by calculat-
ing, for every configuration in the dataset, several SFs with differ-
ent sets of parameters. Specifically, we generate the G3(i) SFs by
setting rc = 2σcp, λ ∈ {−1, 1}, η ∈ {0.001, 0.01, 0.1, 1, 2, 4, 8}, and
ξ ∈ {1, 2, 4, 8}. With these choices, our pool of candidates consists
of D = 56 SFs.

Then, an optimal subset of Ns < D SFs is selected from the
pool in a step-wise fashion. First, the SF is selected with the largest
correlation with the many-body term as quantified by the Pearson
correlation coefficient ck,

ck =
∑j(∑iG

3
k(i)∣j −∑iG3

k(i))(V(3+)f ∣j − V(3+)f )

σSD(∑iG3
k(i))σSD(V(3+)f )

, (13)

where ∑iG
3
k(i)∣j represents the sum of the kth SF over all col-

loidal particles i in configuration j and V(3+)f ∣j denotes the many-
body correction evaluated for this configuration. ∑iG3

k(i) and

V(3+)f correspond to arithmetic means over the whole dataset, and

σSD(∑iG
3
k(i)) and σSD(V(3+)f ) correspond to their standard devi-

ations. The next SF is then selected based on the highest increase
in the linear correlation between the currently selected set and the
target many-body term as determined by

R2 = cTR−1c, (14)

where cT = (c1, c2, . . .) is the vector whose jth component is given
by the Pearson correlation coefficient (13) between the jth SF and
the many-body term, and R is the correlation matrix of the current
set of SFs with elements ℛ ij representing the Pearson correlation
function between the ith and jth SF. This choice guarantees that
only SFs that add relevant information are selected, while penaliz-
ing highly correlated SFs with only redundant information as well as
SFs that are sensitive to aspects of the particle’s environment that
poorly correlate with the target many-body term. This process is
repeated iteratively, and new SFs are selected until the correlation
stops increasing appreciably. Finally, the selected subset of SFs is
used to approximate the target many-body term via simple linear
regression.

C. Accuracy of the ML potentials
In Fig. 2, we report the correlation coefficient R2 and the root

mean squared error (RMSE) of the linear fits with the actual V(3+)f as
a function of the number of SFs for q = 0.4, 0.8, and 1.0, for both the
training set and the test set. We note that RMSE and R2 are related
by a simple relation R2 = 1 − RMSE2/σ2

SD(V(3+)f ). Upon increasing
q, we clearly observe that an increasing number of SFs are required to
accurately approximate V(3+)f , which can be understood as the thick-
ness of the depletion layers increases with q, thereby enhancing the
many-body effects. To quantify the importance of the many-body
contributions to the effective potential, we calculate P(n), the prob-
ability that we find n = n(r) overlapping depletion layers at spatial
coordinate r in a system of Nc colloids in a volume V at polymer
fugacity zp, and size ratio q. In Fig. 3, we show P(n) for the three con-
sidered size ratios q = 0.4, 0.8, and 1.0 at varying packing fraction ηc
and ηr

p = 0. For q = 0.4, we find that the largest number n with non-
zero probability is n = 4, and hence, the effective potential consists
of up to four-body contributions. For q = 0.8 and 1.0, we find that
six- and seven-body contributions become non-negligible at high
colloid densities. We choose Ns = 12, 23, and 25 for q = 0.4, 0.8, and

FIG. 2. Square of the correlation coefficient R2 and root mean squared error (RMSE) as a function of the number of selected SFs Ns for a colloid–polymer mixture with size
ratios q = 0.4, 0.8, and 1.0. The RMSE is shown for both the training and test sets. The optimal value of the number of SFs is indicated with the vertical dashed line for each
case. Note that R2 is plotted on a linear scale and RMSE is plotted on a logarithmic scale.
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FIG. 3. Probability of n overlapping depletion layers for a colloid–polymer mixture with a polymer reservoir packing fraction of ηr
p = 0 and colloid packing fraction ηc as

labeled for varying size ratios q = 0.4, 0.8, and 1.0.

1.0, respectively, for which we find good agreement between the ML
fits and the actual many-body V(3+)f term.

D. Efficiency of the ML potentials
To quantify the efficiency of our ML potentials, we determine

the ratio between the computational time for the numerical evalu-
ation of the many-body term (τN) and the ML potential (τML) for
different values ηc and q. The ratios τN/τML are extracted by selecting
10 decorrelated configurations for each colloid packing fraction ηc
from the training dataset, evaluating the serial computing times for
the calculation of the many-body term and repeating this procedure
100 times to get the average ratios. Note that the implementations
of both algorithms were simple and no neighbor lists were used.
Moreover, both codes were compiled with the same compiler opti-
mizations. From Fig. 4, we find that our ML potentials speed up the
many-body term evaluation at least by two orders of magnitude for
size ratio q = 1.0 up to almost four orders of magnitude for q = 0.4.
The speed up decreases with colloid density ηc (due to the increas-
ing number of neighbors) and with polymer size as the cutoff value
of the interaction depends on q. The observed speed up achieved
with our ML potentials can be rationalized by comparing the order

FIG. 4. Ratio between the computational time required for the numerical evaluation
of the many-body term (τN) and the ML potential (τML) as a function of colloid pack-
ing fraction ηc of a colloid–polymer mixture with varying size ratio q and polymer
fugacity zp = 0.

of the computations on which both algorithms are based. When
the many-body correction is evaluated in a system of Nc colloids
through numerical integration, the time needed for such a compu-
tation scales as N2

c M, with M being the number of grid points. In
contrast, if no tricks are used, the time required for the evaluation
of V(3+)f using the three-body SFs scales as N3

c . Thus, as it is verified
in our case, a significant speed up using the ML potentials can be
achieved as long as Nc <M.

IV. VALIDATION
In the following, we focus on the validation of the effective one-

component ML many-body potential. It is important to note that we
fit the V(3+)f term for a fixed q with a single ML potential for all
colloid packing fractions ηc ∈ [0.15, 0.65] and ηr

p = 0. We now inves-
tigate the transferability of the ML potentials to state points outside
the training set by considering colloid configurations at finite non-
zero polymer fugacities zp. In Fig. 5, we show the ensemble average
of V(3+)f of a colloid–polymer mixture with size ratios q = 0.4, 0.8,
and 1.0 as a function of colloid packing fraction ηc and varying poly-
mer reservoir packing fraction ηr

p as obtained from independent MC
simulations of Nc = 108 colloidal particles using the ML potential
along with the actual V(3+)f as obtained from a numerical evaluation.
The values of V(2)f are also included to appreciate the importance
(magnitude) of the many-body and two-body terms at different state
points. We find good agreement between the ML predictions and the
actual many-body V(3+)f term for the whole range of colloid pack-
ing fractions ηc and polymer fugacities zp, demonstrating the trans-
ferability to finite zp outside the training set. Some deviations are
observed for q = 1.0 at high ηc, where four- and higher-body inter-
actions are predominant. Hence, the ML potential can be assumed to
be effectively state-independent, allowing us to simulate direct coex-
istence of an extremely dilute colloidal gas phase with a very dense
colloidal liquid phase in a single simulation box (see Fig. 6).

Given that the ML potentials accurately describe the
many-body V(3+)f term at different state points, we now test
the ability of the ML potential in reproducing the structure
of a colloid–polymer mixture. To this end, we measure the
colloid–colloid, polymer–polymer, and colloid–polymer pair
correlation functions gαβ(r) with α, β = c, p from MC simulations
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FIG. 5. Two-body V(2)
f (pentagons), and three- and higher-body V(3+)

f contribution to the effective many-body potential as predicted by the ML potential (ML)
(squares) for a colloid–polymer mixture with size ratios q = 0.4, 0.8, and 1.0 as a function of colloid packing fraction ηc and varying polymer reservoir packing frac-

tion ηr
p along with the actual V(3+)

f as obtained from a numerical evaluation (N) (plus). The inset plots correspond to the percentage errors of the many-body term,

ΔV(3+)
f = [∣V(3+)

f (N) − V(3+)
f (ML)∣]/V(3+)

f (N) × 100. Note that for ηr
p ≠ 0, we consider only state points outside coexistence regions.

of Nc = 1372 particles interacting with the ML potential at three
different state points for each of the size ratios of q = 0.4, 0.8, and
1.0. At first sight, it may seem surprising that it is possible to recover
information about the structure of the polymer as we traced out
the polymer degrees of freedom. However, as the polymer coils are
ideal, the number density of the polymer is constant in the free
volume (or holes) of the system.28 Therefore, we can determine the
colloid–polymer and polymer–polymer pair correlation functions

from 10 000 randomly inserted polymer coils in an instantaneous
colloid configuration, provided that no overlap exists between
the polymer and colloids. In Fig. 7, we plot gαβ(r) denoted by
the symbols for the three size ratios considered at varying state
points along with the ones obtained by a numerical evaluation
of V(3+)f or from previous work28 as denoted by the solid lines.
The agreement between the pair correlation functions as obtained
using the ML potentials with the ”exact” results is evident in all
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FIG. 6. Typical configuration of a colloidal gas–liquid phase coexistence of a
colloid–polymer mixture as obtained from direct-coexistence simulations using the
ML potential. The blue solid spheres represent the colloidal particles, whereas the
gray layers surrounding the colloids illustrate their depletion zones. The polymers
are integrated out and invisible.

cases, especially for mixtures with q = 0.4 and 0.8, which reflects
the ability of our ML potential to correctly describe the structure
of the mixture, regardless of ηr

p and ηc. However, it is important
to note that mapping of four- and higher-body potentials onto a
linear combination of angular three-body SFs does not necessarily
guarantee that the structure of the colloid–polymer mixture is well
captured (see, e.g., Refs. 47 and 48). Indeed, small deviations are
observed for the contact value of the colloid–colloid pair correlation
function gcc(r) for the highest q = 1.0, where four- and higher-body
interactions become dominant.

As the ML potentials accurately describe V(3+)f and the struc-
ture of colloid–polymer mixtures, we now investigate whether the
ML potentials can be used to determine the coexistence densities
of the colloidal gas and liquid phases using direct-coexistence sim-
ulations. To this end, we perform MC simulations of Nc = 1372
particles in an elongated box. We determine the packing fraction

FIG. 7. Colloid–colloid (squares), colloid–polymer (pentagons), and polymer–polymer (circles) pair correlation functions gαβ(r) with α, β = c, p of a colloid–polymer mixture
with q = 0.4, 0.8, and 1.0 obtained from MC simulations using the ML potential at ηc and ηr

p as labeled. In the top and middle panels, the solid lines are the results obtained

from MC simulations based on a numerical evaluation of V(3+)
f , whereas in the bottom panel, the solid lines correspond to the results reported in Ref. 28. For clarity, gcp(r)

and gcc(r) are shifted in the vertical direction.
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FIG. 8. Colloidal gas–liquid binodals in the colloid packing fraction ηc–polymer reservoir packing fraction ηr
p plane of a colloid–polymer mixture with size ratios q = 0.4,

0.8, and 1.0 as obtained from direct-coexistence simulations using the ML potentials (open squares) and from earlier reports (solid circles), either by Dijkstra et al.28 using
a numerical evaluation of the effective many-body interactions or by Lo Verso et al.33 employing simulations of the true binary mixture. The dashed lines represent the
binodals predicted by free-volume theory (FVT).6,28 The inset plots correspond to the percentage error of the average density of the coexisting gas (solid pentagons) and
liquid (empty circles) phases at fixed ηr

p, Δηc = [∣ηc(N) − ηc(ML)∣]/ηc(N) × 100.

of the coexisting gas and liquid phases, ηL
c and ηG

c , by measuring
the equilibrium density profiles. We plot the resulting gas–liquid
binodals in Fig. 8 for colloid–polymer mixtures with size ratios
q = 0.4, 0.8, and 1.0. For q = 0.4 and 0.8, we compare our results
with those obtained from grand-canonical MC simulations using the
full binary mixture,33 whereas the results for q = 1.0 are compared
with those obtained using the full effective one-component system.28

Our ML results show good agreement with the previously obtained
gas–liquid binodals from the critical point at low ηr

p all the way to the
triple point at high ηr

p, even for q = 1.0 where the four- and higher-
body terms contribute for more than 75% to the effective potential at
the triple point, as shown in Fig. 3. This is an interesting result, as we
expect a reduced correspondence at large q as the number of deple-
tion layers that can simultaneously overlap increases due to larger
depletion layers. In addition, we plot the results from free-volume
theory for q = 0.8 and 1.0 and find good agreement, except near the
critical point where the free-volume theory is less accurate.4,28 In
Fig. 9(a), we show the ηc profiles for q = 0.8. Surprisingly, we find
weak oscillations at the “colloid-rich” liquid side of the density pro-
files near the triple point. These oscillations were predicted in fun-
damental measure theory49 but were not observed in both a square-
gradient density functional approach50 and recent experiments on
colloid–polymer mixtures.27 Here, we show for the first time such
density oscillations, although weak, at a free gas–liquid interface
of a colloid–polymer mixture. The amplitude of these oscillations
is reduced significantly by thermally induced capillary wave fluc-
tuations,24 making the oscillations hard to detect in experiments27

and simulations.51 Such capillary wave fluctuations are related to the
ultra-low interfacial tensions of colloidal systems.49

To investigate if our ML potentials can also be used to measure
the interfacial gas–liquid tension γ, we use the so-called Test Area
MC (TAMC) technique, which is based on thermodynamic pertur-
bation theory.52,53 In particular, we sample γ in our MC simulations
by performing test area perturbations once every cycle and averag-
ing over 5 × 105 cycles. We report the interfacial tension βγσ2

c as a

FIG. 9. Colloid packing fraction profiles for the free interface between coexisting
gas and liquid phases of a colloid–polymer mixture with a size ratio of q = 0.8
at different polymer reservoir packing fractions ηr

p, showing weak oscillations at
the “colloid-rich” liquid side near the triple point (a). Gas–liquid interfacial ten-
sion βγσ2

c for the same mixture as a function of the difference in gas and liquid
packing fractions ηL

c − ηG
c as obtained from direct-coexistence simulations using

the ML potential (open squares) and reported by Vink and Horbach12 (solid
circles) (b).
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function of the difference in the coexisting densities of the gas and
liquid phases ηL

c − ηG
c in Fig. 9(b) for a colloid–polymer mixture with

q = 0.8. The reported error bars are obtained by dividing the aver-
aging run into ten subaverages. We find qualitative agreement with
results for the true binary mixture reported by Lo Verso.33

V. CONCLUSIONS
In conclusion, we have introduced a coarse-graining ML

approach for colloidal systems in which we trace out the degrees
of freedom of the microscopic species and fit the resulting effective
many-body potential with a set of SFs using simple linear regression.
We have applied this approach to a model suspension of colloidal
particles and non-adsorbing polymers and found that the ML poten-
tial accurately describes the effective many-body potential for a wide
range of colloid densities and polymer fugacities. The ML potential
can therefore be assumed to be effectively state-independent and can
even be used to simulate direct phase coexistence. Given the com-
putational efficiency of the fitted model, we were able to test the
validity of the ML approach by measuring the gas–liquid binodals
using MC direct-coexistence simulations. We found good agree-
ment with previous results obtained by using simulations of the true
binary mixture or using the full effective Hamiltonian that includes
all many-body interactions, even for the largest q that we studied,
where four- and higher-body interactions are most pronounced. In
addition, the structure was also well captured by the ML poten-
tials, but deviations appear when four- and higher-body contri-
butions become predominant. Constructing higher-body encoders
(SFs) seems to be necessary to describe more accurately the structure
of the fluid. A generalization of the method to non-spherical bod-
ies is important to account for the effective many-body interactions
of anisotropic colloids, such as mixtures of non-adsorbing polymers
with colloidal rods,54,55 core-corona nanorods,56 polyhedral-shaped
particles,57 and superballs.58 It will also be interesting to investi-
gate whether this ML approach can be extended to charged colloids,
ligand-stabilized nanoparticles, and starpolymers, which will be the
subject of future work.
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APPENDIX: FEATURE SELECTION PROCEDURE

In this appendix, we compare the efficiency of the feature selec-
tion procedure used in this work (introduced in Ref. 35) with two
of the established selection methods by Imbalzano et al.46 In partic-
ular, we test the Pearson Correlation (PC) method and the Farthest

FIG. 10. Root mean squared error (RMSE) as a function of the number of selected
SFs Ns for a colloid–polymer mixture with size ratios q = 0.4, 0.8, and 1.0. We
show the results for the selection procedure used in our work (Ref. 35) and the PC
and FPS schemes by Imbalzano et al.46
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Point Sampling (FPS) scheme when using a linear regression scheme
like we did in this work.

The PC and FPS methods introduced by Imbalzano et al. are
based solely on the knowledge of the geometry of the particles’ envi-
ronments and do not rely on the energy (or V(3+)f in our case) nor
on the performance of the model that results from a given choice
of the SFs. Instead, the common idea behind those methods is to
choose SFs that are as diverse as possible by, e.g., minimizing their
linear correlation or maximizing their difference (in terms of their
Euclidean distance), with the goal of minimizing the redundancy
in the selected subset. The method we use, instead, aims at max-
imizing the correlation between the selected subset and the target
V(3+)f by iteratively selecting SFs that add relevant information (i.e.,
relevant to the task of fitting V(3+)f ) to the previously selected set,
while penalizing both (i) highly correlated SFs with only redundant
information and (ii) SFs that are sensitive to aspects of the particle’
s environment, which poorly correlate with V(3+)f . The inclusion of
point (ii) is arguably the main difference with the other methods and
guarantees a more efficient selection.

To demonstrate this, we show in Fig. 10 the performance of
the three methods in terms of the RMSE on the test set as a func-
tion of the number of selected SFs for three different values of q. In
all cases, the selection procedure of Ref. 35 clearly outperforms the
other methods, leading to a higher accuracy of the fit. Note that, in
all cases and for all three methods, the first SF that is selected is the
one with the largest correlation with V(3+)f .
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