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ABSTRACT
We perform non-equilibrium Brownian dynamics simulations to investigate the out-of-equilibrium phase behavior of a suspension of charged
colloids under external oscillatory shear. We independently vary the frequency f and the maximum strain amplitude γmax of the oscillations
and map out an out-of-equilibrium phase diagram in the f –γmax plane. Similar to what has been observed in earlier studies on colloidal hard
spheres, we find the formation of a twinned face-centered-cubic phase in a specific range of γmax, which displays a martensitic transition to a
body-centered-cubic crystal within half of the oscillation cycle. We provide a comprehensive analysis of these structures and show how the
system transforms from one to the other. We also report evidence of a sliding layer phase and a string phase.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0045537., s

I. INTRODUCTION

Colloidal science has invested much research on understand-
ing the intricate coupling between the structure of matter and the
physical properties it exhibits. It is well known that the spatial orga-
nization of matter on the microscopic scale determines the proper-
ties of the system on the macroscopic scale. In reverse, it is possible
to fabricate a system that manifests the desired physical properties
by driving the formation of specific microstructures. The signifi-
cance of this branch of research is due to the numerous industrial
applications of colloidal suspensions in emerging technologies. For
instance, specific colloidal structures reveal intriguing optical prop-
erties such as photonic crystals, where the material exhibits a pho-
tonic bandgap that prevents the propagation of light along specific
directions.1,2 Other unexpected discoveries are made in rheology,
which studies the mechanical properties of fluids under shear stress.
In non-Newtonian fluids, the application of steady or oscillatory
shear is responsible for the aggregation of colloidal suspensions on
a local level, determining a change in the visco–elastic properties of
the system. These phenomena are known as shear thinning, shear
thickening, and shear banding.3–7

Although major steps toward the comprehension of soft con-
densed matter have been performed, having control over the self-
assembly process is still a major challenge. The self-assembly pro-
cess may be assisted by means of external fields, such as electric or
magnetic fields, laser-optical fields, and shearing8 or flow fields in
microfluidic devices.9,10

During the past three decades, a branch of research has focused
on the application of steady and oscillatory shear to suspensions
of hard spheres and charged particles.11 Surprisingly, it has been
discovered that steady and oscillatory shear induces crystal forma-
tion in a fluid of hard spheres, and the shear-induced crystal melts
back upon cessation of the shear.12,13 This out-of-equilibrium shear-
induced crystallization is the result of a delicate balance of direct
interparticle interactions, Brownian motion, shear-flow induced
dynamics, and hydrodynamic interactions.

Understanding shear-induced ordering of colloidal fluids is
technologically relevant for, e.g., ink printing, paints, or coatings.
Additionally, the possibility to switch between different states upon
application of an external field is promising for, e.g., electronic ink
displays, in which one can switch between an ordered state displaying
color by interference to a disordered state without any color.
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In a steady and oscillating shear flow, the strain amplitude
is one of the key parameters that drives the self-assembly pro-
cess. This parameter sets the distance of flow-induced interac-
tions between the particles. By varying the strain amplitude, a rich
out-of-equilibrium phase diagram displaying layering,14 string
formations,15 and 3D crystal-like ordering13,16 has been observed
in experimental and numerical studies of hard and nearly hard
spheres. For low values of the strain amplitude, the system forms
the twinned face-centred-cubic (fcc) structures.12,13,16,17 For higher
strain amplitudes, the crystal ordering is affected by the collisions
among particles, which become more frequent. The hexagonal order
on the velocity–vorticity plane is preserved, but the planes along
the gradient direction show random stacking. This different phase
is known as the sliding layer phase and was observed by several
experimental groups.13,16,17 A comprehensive investigation of the
out-of-equilibrium phase behavior of hard-sphere-like colloidal sus-
pensions is reported in Ref. 16, where the authors provide an analysis
of different ordered structures encountered by systematically vary-
ing the strain amplitude and the oscillation frequency. This com-
bined experimental and simulation study performed on hard-sphere
particles demonstrates that oscillatory shear is a valuable method
to generate non-equilibrium ordered structures out of a disordered
fluid phase.

In analogy, some work has been performed on charged col-
loidal particles. Yan et al. performed a light scattering study on
weakly repulsive charged colloids under oscillatory shear.18 They
distinguished two ordered structures by varying the strain ampli-
tude: the twinned fcc phase for low strain and the sliding layer phase
at high strain. These results are in agreement with the earlier men-
tioned studies on hard spheres, which is to be expected since the
Debye screening length is just about 6% of the particle diameter. In
addition, it was shown that the application of steady shear and con-
fining walls also induces a sliding layer phase in a charged colloidal
suspension19–21 and a transformation from a bcc-dominated to a
fcc-dominated crystal in a suspension of ultrasoft star polymers.22

Furthermore, Xue and Grest investigated the behavior of repul-
sive particles characterized by a longer range of interaction.23 They
implemented Non-Equilibrium Brownian Dynamics (NEBD) simu-
lations and found shear-induced string ordering in a system at tem-
peratures slightly below the melting point. The strings are aligned
along the velocity axis, forming hexagonal packing in the vorticity–
gradient plane. Beyond this result, they did not find any evidence of
3D ordered structures. However, they investigated only low values
of the Péclet number (Pe), where the Brownian forces might still be
sufficiently strong compared to the convective drag induced by the
shearing. To the best of our knowledge, a comprehensive study on
the effect of oscillatory shear on an equilibrium fluid of long-range
repulsive particles just below the fluid-bcc freezing transition is still
missing in the literature.

Hence, we investigate in this paper the effect of oscillatory
shear on a colloidal fluid of long-range repulsive particles using
NEBD simulations without including hydrodynamic interactions
among the colloids. We remark that the opposite phenomenon
of shear-melting colloidal crystals has already been investigated
in 1991.24 In the case of a hard-sphere fluid at a density just
below the freezing transition to an fcc phase, a twinned fcc phase
was observed upon application of oscillatory shear.12,16 Here, we
investigate whether such a twinned fcc phase is also induced by

oscillatory shear in a fluid of long-ranged repulsive spheres at a
density close to the fluid-bcc freezing transition. Rather remark-
ably, we, indeed, observe such an oscillatory shear-induced twinned
fcc phase in a long-range repulsive system, displaying a martensitic
transition to a body-centered-cubic (bcc) crystal. The martensitic
phase transition has been studied in various colloidal systems by
using electric fields,25,26 tuning the volume fractions,27–29 particle
shapes,30,31 depletants,32 and DNA linkers,33,34 and various trans-
formation pathways have been reported. In this paper, we analyze
in detail the transformation mechanism of the martensitic transi-
tion of the shear-induced twinned fcc phase. Finally, we map out
the out-of-equilibrium phase behavior as a function of maximum
strain amplitude and frequency of oscillation. The resulting out-of-
equilibrium phase diagram exhibits a fluid phase, a string phase, a
sliding layer phase, and a twinned fcc phase. We compare our obser-
vations with the oscillatory shear-induced phase behavior of a fluid
of hard-sphere colloids near the fluid-fcc phase transition.

This paper is organized as follows. In Sec. II, we describe our
model and present the methods that we use to simulate the system
and to analyze the results. The results are presented and discussed in
Sec. III, and we make some concluding remarks in Sec. IV.

II. MODEL AND METHODS
A. The model system

We consider a system of charge-stabilized colloidal particles
in the presence of an oscillating shear flow. We model the interac-
tion between two hard-sphere colloids with a diameter σ through a
screened Coulomb (Yukawa) potential,

βU(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

βε
exp[−κσ(r/σ − 1)]

r/σ r > σ

∞ r ≤ σ,
(1)

where r denotes the interparticle distance, βε is the repulsion
energy at contact distance r = σ, and κσ is the inverse Debye
screening length. We use 1/β = kBT as our unit of energy
with kB the Boltzmann constant and T the temperature of the
system. The phase diagrams of these hard-core Yukawa sys-
tems have been determined using Monte Carlo simulations as
a function of inverse screening length κσ and packing fraction
ϕ = πσ3N/6V, and display a stable fluid phase, an fcc phase, and a bcc
phase at sufficiently low screening.35 In this work, we simulate a fluid
phase at a volume fraction of ϕ = 0.085, βε = 80, and κσ = 2, which
is just below the fluid-bcc freezing packing fraction ϕf = 0.092. For a
system with such a dilute density ρ = N/V and high repulsion energy
βε, the averaged interparticle distance ρ−1/3 = 1.83σ is always larger
than σ, and hence, this system is well-described by a point-Yukawa
system, as demonstrated in Ref. 35 to which we refer the interested
reader for more details on this mapping. Consequently, we simplify
our simulation method by implementing only the Yukawa repulsion
term of Eq. (1), whereas we neglect the hard-core repulsion term and
perform a post-clearance verification that particles do not approach
each other closer than σ by analyzing the radial distribution function
of the system.
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As illustrated in Fig. 1, we confine the system in the z direc-
tion with two soft repulsive planar walls, located at z = 0 and
z = h, in order to match the experimental setup of a parallel plate
shear cell.16 Hence, a particle positioned at height z interacts with
the walls according to

βUw(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

βϵw(
σ
z
)

6
for z < σ/2

βϵw(
σ

h − z)
6

for z > h − σ/2
0 otherwise,

(2)

where βϵw = 2.5 is the wall–particle repulsion energy. Note that we
use periodic boundary conditions in the x- and y-direction. The
phase behavior of charged colloids confined between two planar
soft walls at small plate separations has been studied both experi-
mentally and in simulations,36 showing a sequence of multilayered
structures with rhombic, triangular, quadratic, and rectangular sym-
metry upon increasing plate separation. Here, we consider, however,
a fluid of charged colloids at a much larger plate separation, where
only pronounced layering of the fluid is induced in the vicinity of the
walls.

We perform simulations by implementing the Non-Equilibrium
Brownian Dynamics (NEBD) technique. This method enables us
to reproduce the colloidal dynamics in the presence of an external
oscillatory shear. Note that this technique does not include hydro-
dynamic interactions among the colloids. We integrate the position
ri of particle i over time t by implementing the integration method
of Ermak,37

ri(t + δt) = ri(t) −
δt
ξ
∇Ui(t) + δrGi + δtγ̇(t)zi(t)x̂, (3)

with δt being the integration time step, −∇U i(t) being the force
on particle i determined by the sum of all colloid–colloid and
colloid–wall interactions, ξ = kBT/D0 being the friction coefficient
with D0 the particle short-time self-diffusion constant, and δrGi a
random displacement sampled from a Gaussian distribution with
zero mean and variance ⟨(δrGiα)

2⟩ = 2D0δt and α ∈ {x, y, z}.
Finally, the term γ̇(t)zi(t)x̂ imposes a linear velocity profile on

FIG. 1. Schematics of the system. Long-range repulsive colloidal particles (blue
spheres) are confined in z by the presence of two soft repulsive planar walls at
z = 0 and z = h. The walls move in opposite directions along x with an oscillatory
motion, characterized by amplitude A and frequency of oscillation f. The shear
induces the formation of a linear velocity profile on the system, represented here
by black arrows. Particles are not subjected to any flow drag in the zero velocity
plane (zvp), shown with a red dashed line.

the system in order to account for the oscillating shear. Here,
γ̇(t) = γ̇max cos(2πft) denotes the shear rate, which is depen-
dent on the maximum shear rate γ̇max and the frequency of oscilla-
tions f. Note that the Gaussian displacement determines the diffusive
motion of the particle, while the displacement along x, correspond-
ing to the shear direction, is responsible for the formation of a
velocity profile in the colloidal fluid, which depends linearly on the
particle height zi(t). A previous experimental study38 showed that
the velocity profile deviates from linearity in the presence of crys-
tal domains or randomly stacked hexagonal planes in the system. In
the proximity of these regions, the shear rate is 1.5 times larger than
the one measured in the fluid phase. Despite this, we neglect possi-
ble deviations from the linear flow profile, since we believe that they
should not have a strong influence on the structures that we observe
after applying oscillatory shear.

We investigate the out-of-equilibrium phase behavior of the
system under external oscillatory shear, where we independently
tune the frequency f and maximum strain amplitude γmax of
the oscillations. The latter quantity is defined by γmax = 2A/h,
where A is the amplitude of the oscillation and h/2 is the
height of the wall from the zero velocity plane (zvp), illustrated
in Fig. 1 by a red dashed line. The previously defined maxi-
mum shear rate γ̇max is related to f and γmax via the relation
γ̇max = 2πf γmax.

We simulate a system of N ≃ 3000 charged colloidal parti-
cles in a box with dimensions Lx × Ly × Lz = 32 × 32 × 18σ3

and with periodic boundary conditions in the x- and y-directions.
The colloids interact with a long-range repulsive Yukawa inter-
action characterized by a Debye screening length of 1/κσ = 0.5
in order to model a long-range repulsion between the particles,
which is small enough that the interaction energy becomes neg-
ligible at the largest distances in our simulation box. We choose
a cutoff distance of rcut = 0.5Lx, where Lx is the smallest dimen-
sion with periodic boundary conditions. The potential energy of
two particles at a distance rcut is very small and measures βU(rcut)
= 5× 10−13. We set δt = 10−4τB and ξ = 4 kBTτB/σ2, where τB = σ2/D0
is the Brownian relaxation time. Finally, we define the Péclet number
Pe = γ̇maxησ3/(8kBT) = f τBγmax/3, where η is the shear viscosity of
the solvent.

B. Local structure analysis
We study the formation of out-of-equilibrium ordered struc-

tures in colloidal fluids under oscillatory shear. We analyze the oscil-
latory shear-induced structures with varying methods, which we
describe in this section.

As a preliminary investigation, we compute the radial distribu-
tion function g(r) = ⟨∑N

i,j≠i δ(r − ∣ri − rj∣)⟩/(Nρ), where ri ,j are the
position vectors of particle i and j, ρ = N/V is the number density
with N the number of particles and V the volume, and the angular
parentheses indicate an ensemble average. The expression above is
valid in homogeneous and isotropic systems. The latter condition
does not hold in our system due to the presence of the confining
walls orthogonal to z. Therefore, we cannot merely normalize the
quantity ⟨∑N

i,j≠i δ(r−∣ri−rj∣)⟩ by a constant ideal gas density ρ. On the
contrary, we compute the radial distribution of N ig ideal gas particles
confined in the same simulation box, thus obtaining the correctly
normalized radial distribution function for our system,
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g(r) =
⟨

N

∑
i,j≠i

δ(r − ∣ri − rj∣)⟩

⟨
N ig

∑
i,j≠i

δ(r − ∣rig
i − r

ig
j ∣)⟩
(N

ig

N
)

2

, (4)

where rig
i,j indicates the position vector of the ideal gas particle i or j.

The radial distribution function of long-range repulsive sys-
tems presents quite broad peaks due to the softness of the inter-
action potential, so this method is not sufficiently accurate to
distinguish the different crystal structures. To this end, we use
the bond-orientational order parameters,39,40 which enable us to
identify different crystal structures on a single particle level. In
particular, we implement the version reported by Lechner and
Dellago.41 This algorithm classifies the environment of each par-
ticle as described by the local arrangement of its neighbors Nb(i).
The algorithm associates to each particle i, a complex vector qlm(i)
defined by

qlm(i) =
1

Nb(i)

Nb(i)
∑
j=1

Ylm(rij), (5)

where l is a free integer parameter, m is an integer defined in the
range −l ≤ m ≤ l, and Y lm(rij) denotes the spherical harmonics. The
distance vector rij = ri − rj connects particle i to particle j, and the
sum is performed over the first shell of neighbors, which counts all
particles j within a radial cutoff distance of particle i. We set the cut-
off distance equal to the position of the first minimum of the radial
distribution function of the system. In order to quantify the cor-
relation of the local environments surrounding particle i and j, we
calculate the scalar product

ζl(i, j) =

l

∑
m=−l

qlm(i)q∗lm(j)

(
l

∑
m=−l
∣qlm(i)∣2)

1/2
(

l

∑
m=−l
∣qlm( j)∣2)

1/2 , (6)

where the symbol ∗ indicates the complex conjugate. We define par-
ticles i and j to be connected if ζ l(i, j) > 0.6. Finally, particle i belongs
to a crystal-like environment if nc ≥ 8, where nc is the number of
connections. If this is the case, we label it solid-like, otherwise liquid-
like. We perform this analysis by using l = 6 because of the hexag-
onal symmetry of the observed crystals. Along the lines of Ref. 41,
we compute the average bond-orientational order parameters
defined by

qlm(i) =
1

Ñb(i)

Ñb(i)
∑
k=0

qlm(k), (7)

where the sum is performed over the neighbors of particle i plus
particle i itself, thus leading to Ñb(i) = Nb(i) + 1. Beyond identi-
fying the crystalline particles as described above, we also like a way
to distinguish the different crystal structures. A system of hard-core
Yukawa particles can either form body-centered-cubic (bcc) or face-
centered-cubic (fcc) crystal structures, depending on the volume
fraction of the system and the specific parameters that characterize
the pair interaction potential, e.g., the Debye screening length 1/κσ
and the charge on the colloidal surface.35 On the basis of previous

experimental and numerical studies, we expect that the application
of an external oscillatory shear might promote the formation of any
of the aforementioned crystal structures. In order to identify the
different crystal structures, we also employ the rotational invariant
cubic averaged bond-order parameter

wl(i) =
∑

m1+m2+m3=0
( l l l
m1 m2 m3

)qlm1
(i)qlm2

(i)qlm3
(i)

(
l
∑

m=−l
∣qlm(i)∣2)

3/2 , (8)

where the term in parentheses is the Wigner 3-j coefficient,42 and the
sum runs over all possible combinations of mk ∈ {−l, l}, which satisfy
the relation ∑3

k=1 mk = 0. To be more specific, we use the w6 order
parameter to discriminate whether a solid-like particle belongs to a
bcc crystal indicated by w6 > 0 or belongs to an fcc or hexagonal-
close-packed (hcp) crystal in the case of w6 < 0. We further dis-
tinguish the two structures by computing w4, which gives w4 < 0
for a fcc and w4 > 0 for an hcp crystal. In order to minimize the
error caused by the presence of the boundaries in z, we exclude the
top and bottom layers from the computation of the local bond-order
parameter, while we exclude the second top and second bottom lay-
ers from the computation of the average bond-order parameters.
The full bond-order parameter analysis was done on ∼2000 particles
distributed over seven layers.

Ultimately, we compute the diffraction pattern of different
crystal planes in order to further characterize the crystal structure
and its orientation with respect to the direction of shear. We first col-
lect configurations of the system at specific times within every period
of oscillation. We analyze configurations obtained at γ(t) = 0 and
γ(t) = ±A, which correspond to the instantaneous zero strain ampli-
tude (the walls are aligned) and instantaneous maximum strain
amplitude (the walls are in opposite positions), respectively. This
enables us to investigate the structure of the system at different
moments of the oscillatory shear cycle and identify the transfor-
mation mechanism between different structures over time. To this
end, we average over about 100 configurations, which were collected
at the same period within the oscillation cycle, after a fixed num-
ber of cycles. We analyze the averaged configurations, identify the
crystal planes, and determine their structure. With this procedure,
we reduce the statistical noise due to thermal fluctuations, which is
more pronounced in the case of long-range interacting systems as
compared to hard spheres.16 Finally, we also compute the structure
factor S(q), which is defined by

S(q) = 1
N
⟨

N

∑
j=1

N

∑
k=1

eiq(rk−rj)⟩, (9)

where i denotes the imaginary unit. The angular parentheses indicate
an ensemble average and q is a vector in reciprocal space chosen such
that qα = 2πn/Lα, with n an integer, α ∈ {x, y, z}, and Lα the simulation
box dimension.

III. RESULTS AND DISCUSSION
We start the simulation runs with an initial configuration of

the system in the equilibrium fluid phase at a packing fraction
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ϕ = πσ3N/6V = 0.085 just below the fluid-bcc freezing density
ϕf = 0.092.35 We apply external oscillatory shear and perform sim-
ulations for different values of the oscillation frequency 1 ≤ fτB
≤ 100 and maximum strain amplitude 0.1 ≤ γmax = 2 A/h ≤ 2.
Comparing the amplitude A with the averaged distance between the
particles ρ−1/3, we find that this range of maximum strain amplitudes
corresponds to an amplitude of 0.5ρ−1/3 ≤ A ≤ 9ρ−1/3 for a system
with h = Lz = 18σ. The formation of a crystal structure occurs after
the application of shear for a number of oscillations, which varies
with frequency f. As a general trend, this number increases upon
increasing f and varies from a minimum of 200 until a maximum
of ∼3000 oscillations. As the initial equilibrium structure is near the
fluid-bcc freezing transition, we expect to observe crystallization of
a bcc structure upon the application of shear. Intriguingly, we find a
sliding layer phase, a string phase, and a twinned fcc phase. As the
twinned fcc phase is rather surprising and unexpected, we perform a
detailed analysis of the martensitic fcc phase transition below. Note
that the crystal structures formed via application of shear are out-of-
equilibrium structures, i.e., we observe the melting of each identified
ordered structure upon cessation of shear.

A. Twinned fcc and bcc–fcc martensitic
transformation

Previous studies have already shown that a hard-sphere fluid
close to the freezing density forms a twinned fcc phase when sheared
with a maximum strain amplitude of γmax ≃ 0.35.12,13,16,18,43 Around
this value, convective flows enhance collisions between particles and
the fluid transitions into a crystal structure, most likely to minimize
the stress.

For the long-range repulsive system under investigation here,
we also observe a transition from a fluid to an ordered structure
when we apply oscillatory shear with a maximum strain amplitude
of γmax ≃ 0.35 in a wide range of frequencies 3/τB < f < 100/τB, corre-
sponding to a Peclet number range of 0.35 < Pe < 11.7. To illustrate
this, we plot the radial distribution function g(r) of a system sheared
with γmax = 0.35 and f = 60.0/τB (Pe = 7) at the zero strain ampli-
tude (red) and maximum strain amplitude ±A (light green and dark
green) in Fig. 2 along with the g(r) of a quiescent fluid (black) as
measured before applying oscillatory shear.

We obtain the respective radial distribution functions by aver-
aging over 350 configurations selectively collected at zero and max-
imum (±A) strain amplitudes, respectively. The g(r)’s at zero and
maximum strain amplitudes display peaks that differ in position
and shape from the g(r) observed for a quiescent fluid. These dif-
ferences indicate a change in structure after applying shear. Note
that the g(r)’s at zero and maximum strain amplitudes also differ
from each other, suggesting that the two structures are different.
The g(r)’s obtained at the maximum strain amplitude ±A are very
similar, revealing the formation of the same structure at the two
extremes of the oscillation. This analysis offers only a preliminary
understanding of the local particle arrangement. In fact, a one-to-
one comparison of the peak positions of the g(r) with perfect crystals
is prevented by the broadness of the peaks, which is caused by the
softness of the repulsive pair interaction in combination with a low
particle density.

To characterize the shear-induced crystals, we perform a bond-
orientational order analysis as presented in Fig. 3. We compute the

FIG. 2. Radial distribution function g(r) of a system consisting of long-range repul-
sive charged colloids before (black) and after the application of shear with the
maximum strain amplitude γmax = 0.35 and frequency of oscillation f = 60.0τ−1

B
(Pe = 7). We selectively analyze configurations at zero strain amplitude (red) and
maximum amplitude of oscillation ±A (light green and dark green).

averaged q6 bond-order parameter in order to identify the crystalline
particles. We further compute the w6 order parameter to identify
crystalline particles that belong to a bcc environment and mark them
red. Finally, the w4 order parameter distinguishes between fcc and
hcp particles, which we visualize in green and blue, respectively. We
display three instantaneous configurations of the system (zoomed-
in) taken at γ = −A, 0, A from the left to the right in Fig. 3(a). We
observe that shear induces the formation of an fcc-like structure at
the two extremes of the oscillation, as demonstrated by the domi-
nant presence of green particles as compared to red and blue. This
structure deforms during a shearing cycle and transforms into a bcc-
like crystal at the zero strain amplitude, where the number of red
particles exceeds the number of green and blue particles. We illus-
trate a scatter plot of the system in the w4–w6 plane in Fig. 3(b).
Each plot shows the results obtained by averaging over 100 con-
figurations collected at the aforementioned strain amplitudes. For
γ = ±A, the cloud mostly covers the region characterized by w6 < 0
and w4 < 0, which denotes the formation of an fcc-like crystal. We
color the points that fall in this region in green, while those which
fall in the other two regions, denoted as “hcp” and “bcc” are colored
in blue and red, respectively. We observe that the cloud is com-
posed of these two colors as well, but in minor quantity, indicating
the presence of some defects associated with bcc-like and hcp-like
structures. As the walls move back to the resting position of the
zero strain amplitude, the cloud progressively migrates toward the
positive axis of w6, reaching the peak position at w6 = 0.01 for
γ = 0.

We visualize this continuous transition from the fcc-like into
the bcc-like phase by monitoring the crystallinity fraction of each
crystal structure over time. The crystallinity fraction χ of a particu-
lar crystal is defined by the number fraction of particles that belong
to that crystal structure. We report χ for the bcc, fcc, and hcp crys-
tals as represented with red, green, and blue points, respectively, in
Fig. 3(c). We show χ for one period of oscillation, starting from γ = 0,
where χ = 1 for bcc and χ = 0 for fcc and hcp. We observe that the
fraction of hcp crystal is quite low for the entire period of oscilla-
tion, reaching a maximum of χ ≃ 0.09 at γ = ±A. On the other hand,
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FIG. 3. Analysis of the bond-orientational order parameters of the twinned fcc phase in a system consisting of long-range repulsive charged colloids under external oscillatory
shear with a maximum strain amplitude of γmax = 0.35 and frequency of oscillation of f = 60.0τ−1

B (Pe = 7). (a) Sequence of three snapshots (zoomed-in) taken at the
maximum strain amplitude ±A (left and right) and zero strain amplitude (center). Particles that belong to the fcc, hcp, and bcc crystals are colored in green, blue, and red,
respectively. Fluid particles are colored in cyan and reduced in diameter to enhance visualization. (b) Scatter plot of the system in the w4–w6 plane. We identify bcc particles
if w6 > 0 and fcc particles if w4 < 0. Each plot represents the system in a moment of the oscillation cycle corresponding to the snapshot above it. Points are color-coded as
in (a), according to the region they fall into. (c) Crystallinity fraction of bcc (red), fcc (green), and hcp (blue) as a function of time in one period of oscillation.

the χ values for the bcc and fcc crystals oscillate counter-phase from
zero to one.

To summarize, the radial distribution function and the bond-
orientational order analysis reveal the formation of two different
crystals, namely, an fcc-like structure at maximum strain ampli-
tude that transforms continuously via a martensitic transition into
a bcc-like structure at zero strain amplitude.

In order to identify the phase transformation mechanism of the
oscillatory shear-induced bcc–fcc transition, we identify the under-
lying unit cell of the two structures and the orientation of the crystals
with respect to the shearing plane. We, therefore, proceed by slic-
ing single crystal planes and calculating the respective diffraction
patterns. In Fig. 4, we show three different crystal planes of the bcc-
like structure, together with the diffraction pattern and a schematics.

FIG. 4. Different crystal planes and diffraction patterns for the twinned fcc phase obtained at zero strain amplitude under external oscillatory shear characterized by γmax =
0.35 and f = 60/τB (Pe = 7). The schematics highlights the plane in a body-centered tetragonal unit cell. (a) (100) plane oriented parallel to the velocity–gradient plane. (b)
(111) plane oriented parallel to the vorticity–n̂1 plane. The unit vector n̂1 forms an angle of 52.6○ with the gradient–velocity plane. (c) (011) plane oriented parallel to the
velocity–vorticity plane (walls).
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The latter represents the more generic body-centered tetragonal
(bct) unit cell, where we indicate the lattice constants a1, a2, and
a3 and highlight the plane under examination with a red color. In
Fig. 4(a), we display the (100) plane, which forms parallel to the
velocity–gradient plane, with lattice constants a1 and a2 rotated by
45○ with respect to the z and x axes, respectively. This feature is vis-
ible by comparing the highlighted region in the velocity–gradient
plane and in the unit cell. The diffraction pattern exhibits bright
spots with a small elongation along z, which is a consequence of the
smaller system size in z as compared to x.

The diffraction spots show a four-fold symmetric pattern and
are positioned on the vertices of perfect squares, forming angles of
90○. This aspect reflects the orthogonality between the lattice vectors
a1 and a2. We measure the lattice spacings and obtain a1/σ = 2.41
± 0.02 and a2/σ = 2.40 ± 0.02, which are in very good agreement
with each other, and hence, we find within our statistical accuracy
that the two lattice constants a1 ≃ a2 = a. We retrace the orientation
of the (111) plane by rotation. We face the (100) plane as oriented in
Fig. 4(a) and rotate the system about x by 52.6○. This value is remark-
ably close to the angle formed by the intersection of the (100) and
(111) planes in a perfect bcc crystal, which is 54.7○. We show the
(111) plane in Fig. 4(b) and recognize two important features that
characterize also the (111) plane in a perfect bcc crystal. The first
one is the arrangement of particles in a hexagonal pattern, and the
second one is the visibly lower particle density as compared to other
planes such as the (100) and (011) shown in Fig. 4. The diffraction
pattern shows hexagonal symmetry, giving a spot-center-spot aver-
age angle of 60○ ± 3○. We measure the face diagonal d3/σ = 3.43
± 0.02, which is in very good agreement with a perfect bcc face diag-
onal

√
2a/σ = 3.40 with a the lattice constant. We also measure

d1/σ = 3.29 ± 0.01 and d2/σ = 3.27 ± 0.01, which also agree well
with each other, but less with d3. This feature might indicate that
the lattice constant a3 slightly differs from a. In order to verify this,
we locate the (011) plane by further rotating the crystal around x by
37.4○ from the (111) plane. This also implies that the intersection of
the planes (100) and (011) forms an angle of 90○, so a3 is orthogonal
to a1 and a2, in line with a bct crystal, where the lattice vectors are all

orthogonal to each other. We illustrate the (011) plane in Fig. 4(c).
This plane shows the highest particle density as also observed for a
bcc crystal and is oriented parallel to the walls. This preferred ori-
entation of the bcc crystal has already been observed in previous
experimental work, where a strongly repulsive fluid in confinement
crystallizes in a bcc structure with the (110) plane parallel to the
walls,21,44 and can be explained by the fact that the close-packed
plane usually has the lowest surface tension. The diffraction pattern
shows six bright spots with two angles α = 65.6○ ± 0.2○ and four
angles β = 57.0○ ± 0.8○, as indicated in Fig. 4(c). In the (011) plane
of a perfect bcc, particles form a pattern that resembles a distorted
hexagon, characterized by two angles α′ = 70.5○ and four angles
β′ = 54.7○. We observe that α and β differ by a few degrees to α′
and β′, respectively. This difference is determined by the length of
a3/σ = 2.20 ± 0.07, which is slightly smaller than a. The face diago-
nal d′3 is parallel to the velocity direction and coincides with the face
diagonal d3 of Fig. 4(b). As expected, we obtain d′3 = 3.42 ± 0.02,
which is in good agreement with d3.

This analysis has further characterized the aforementioned bcc-
like structure, which we now classify as a bct crystal with a3/a = 0.92.
Note that this ratio is lower, but relatively close to 1, which is the
ratio of lattice constants for a perfect bcc crystal.

In a similar way, we analyze the fcc-like structure at the max-
imum strain rate. In Fig. 5, we show three different crystal planes
of the fcc-like structure, together with the diffraction pattern and
a schematics of the face-centered orthorhombic (fco) unit cell. The
(110) plane forms parallel to the velocity–gradient plane, as shown
in Fig. 5(a). We measure the lattice constant b3/σ = 2.85 ± 0.03 and
the face diagonal D1/σ = 4.07 ± 0.03 from the diffraction pattern.
The latter quantity is in good agreement with the face diagonal of
an fcc with a lattice constant equal to b3, which is

√
2b3/σ = 4.04.

The angles measured from the diffraction pattern give an average of
90○ ± 2○. From this orientation, we retrace the (001) plane by imple-
menting two subsequent rotations, the first one about z by 90○ and
the second one about y by 36.3○. The (001) plane, shown in Fig. 5(b),
is orthogonal to (110) and enables us to measure the lattice constants
b1/σ = 2.93 ± 0.02 and b2/σ = 3.08 ± 0.02. The angles measured from

FIG. 5. Different crystal planes and diffraction patterns for the twinned fcc phase obtained at the maximum strain amplitude under external oscillatory shear characterized by
γmax = 0.35 and f = 60/τB (Pe = 7). The schematics highlights the plane in a face-centred orthorhombic (fco) unit cell. (a) (110) plane oriented parallel to the velocity–gradient
plane. (b) (001) plane oriented parallel to the vorticity–n̂2 plane. The unit vector n̂2 forms an angle of 36.3○ with the gradient–vorticity plane. (c) (11̄1) plane oriented parallel
to the velocity–vorticity plane (walls).
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the diffraction pattern show a small divergence from orthogonality,
being γ = 86.8○ ± 0.6○ and δ = 93.2○ ± 0.4○. Finally, we identify
the (11̄1) plane by rotating about y by 53.7○. The plane, shown in
Fig. 5(c), is oriented parallel to the velocity–vorticity plane, with one
of the close-packed directions almost perpendicular to x. Similar to
the bcc-like crystal, we observe here also the formation of the dens-
est plane parallel to the walls, which is in agreement with previous
studies. We find that one close-packed direction is either parallel to
y or it might form an angle of ±9○ with respect to y. This feature is
also observed in Ref. 16, where the authors apply oscillatory shear
on a system of hard-sphere particles. We measure the face diagonals
obtaining D2/σ = 4.1 ± 0.02, D3/σ = 4.07 ± 0.02, and D4/σ = 4.43
± 0.02, where the first two are in good agreement with each other
and the latter one is slightly larger, which is a direct consequence of
b2 being slightly larger than the other two lattice constants. The mea-
sured angles are on average 60.0○ ± 4.5○, where the mean value of
60○ reflects a coordination number of 6, and the standard deviation
of 4.5○ indicates a small deviation from the exact six-fold symme-
try. This deviation corresponds to the one we measure in the (011)
plane of the bcc-like structure. In fact, the two planes coincide as
they are both oriented parallel to the velocity–vorticity plane, and the
shearing mechanism affects only those interparticle distances that
have a component in the gradient direction, leaving unchanged the
interparticle distances in the velocity–vorticity plane.

On the basis of this analysis, we classify the fcc-like crystal as
a face-centred orthorhombic (fco) structure since the angles from
Figs. 5(a) and 5(b) are not exactly but nearly orthogonal and the unit
cell displays three different lattice constants. Due to the small differ-
ence between b1, b2, and b3, with a maximum of (b2 − b3)/b3 = 0.08,
we consider this fco structure to be very close to an fcc.

In support of this, we visualize two adjacent fcc-like unit cells
and identify the bct unit cell enclosed in them, as illustrated in
Fig. 6(a), where particles forming the bct unit cell are highlighted in
yellow. We estimate the ratio of the bct lattice constants b3/c = 1.34,
where c = (D1 + D4)/4, which indicates that the structure is relatively
close to an fcc where the same ratio gives

√
2 ≃ 1.41 and differs from

a bcc where the ratio is 1.
We explain the transformation mechanism from the bcc-like

to the fcc-like unit cell in Figs. 6(b) and 6(c). Figure 6(b) shows
a projection of the system in the velocity–vorticity plane, at the
maximum strain amplitude (left and right) and zero strain ampli-
tude (center). We illustrate a selection of 14 particles distributed in
three adjacent z-stacked planes, where particles belonging to the bot-
tom, middle, and top planes are colored gray, purple, and yellow,
respectively. We observe the (111) planes stacked with an A–B–C
structure in the left frame and its twinned structure stacked with an
A–C–B fashion in the right frame. We increased the particle radius
to enhance the visualization of the stacking sequence. The oscilla-
tory shear-induced twinned fcc phase was already observed for hard
spheres in 1988.12 In our study, we also find the formation of this
phase under oscillatory shear, but here, it occurs in a long-ranged
strongly repulsive system at a volume fraction lower than that of
the fluid-bcc freezing transition. The formation of this fcc struc-
ture is quite remarkable as this system in equilibrium is close to a
fluid-bcc instead of a fluid-fcc phase transition. For this long-range
repulsive system, the bcc structure is energetically more favorable
than the fcc phase due to its lower number of nearest neighbors.
Despite the energetic disadvantage, oscillatory shear preserves the
formation of a twinned fcc phase even in long-ranged repulsive
systems.

FIG. 6. (a) Schematics representing two adjacent fcc unit cells and the bct unit cell enclosed in them (yellow). (b) Sequence of snapshots showing 14 particles that belong
to three adjacent z-stacked planes. We recognize the A–B–C stacking of the fcc structure in the left frame and its twinned phase in the right frame, where the stacking
sequence changes to A–C–B. The middle frame shows the stacking of the planes at zero strain amplitude. The particle radius is increased to enhance the visualization of the
stacking sequence. (c) Sequence of snapshots covering one quarter of the oscillation period from the zero strain amplitude (left) to the maximum strain amplitude (right). The
yellow particles form a bct unit cell, which deforms with shear. The rest of the particles are colored according to whether they belong to a bcc-like (red) or an fcc-like (green)
crystal.
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We visualize the transformation from the bcc-like to the fcc-
like unit cell in Fig. 6(c). Note that we restore the particle dimen-
sions to their original size here. The sequence of snapshots shows
a projection of the system on the velocity–gradient plane. The first
frame to the left corresponds to the zero strain amplitude, while
the last frame corresponds to the maximum strain amplitude such
that the entire sequence covers a quarter of the oscillation period.
We highlight in yellow the particles forming a bct unit cell in the
bcc-like structure (first frame) and a bct unit cell in between two
fcc-like unit cells (last frame) as in Fig. 6(a). Note that the remain-
ing particles are colored in red or green depending on whether they
belong to a bcc-like or an fcc-like crystal, respectively. Monitor-
ing the system from this angle facilitates the visualization of how
the unit cell progressively deforms over time. The square of high-
lighted particles in the first frame corresponds to the (100) plane
in the bcc-like structure. The shear applied in the x–y plane con-
tinuously deforms this squared pattern, which eventually becomes
a rectangle in the last frame. Here, the rectangle lies on the (110)
plane of the fcc-like structure, and its surface area corresponds to
half the surface area of the (110) plane in a fcc-like unit cell, as visible
from Fig. 6(a). This transformation mechanism from this perspec-
tive bridges the two structures in a continuous fashion, providing an
intuitive comprehension of the structure deformation process in its
entirety.

B. Out-of-equilibrium phase diagram
Previous experimental and simulation studies showed that the

formation of out-of-equilibrium structures is highly dependent on
the maximum strain amplitude γmax and frequency of oscillation
f of the applied external oscillatory shear. We, therefore, study
the shear-induced structures that form in our long-range repulsive
colloidal suspension as a function of maximum strain amplitude
γmax and frequency of oscillation f. We first describe the struc-
tures that we observe upon the application of oscillatory shear, and
finally, we summarize our results in an out-of-equilibrium phase
diagram.

1. Fluid
For small values of γmax, the application of shear is not strong

enough to induce a phase transformation in the fluid, irrespective
of the frequency of oscillations f. In addition, larger values of γmax
prevent the formation of any ordered structures, due to the large
number of effective collisions between the particles. Note that in
a long-range repulsive colloidal suspension, particles never collide
with their colloidal surfaces, but approach each other down to dis-
tances where the repulsive potential steeply rises. For simplicity,
we refer to these events as “effective collisions” among long-range
interacting colloids in order to distinguish them from the collisions
between hard spheres. We display a typical configuration of the sys-
tem after the application of shear with γmax = 0.05 and f = 1τ−1

B
(Pe = 0.017) in Fig. 7(a). In addition, we present the density distri-
bution ρ(z) along z of the system before (red) and after (blue) the
application of shear with γmax = 0.05 and f = 1τ−1

B (Pe = 0.017) in
Fig. 7(b). We observe that the density profiles exhibit pronounced
layering, especially close to the walls and after the application of
shear. We, thus, conclude that the layering is mainly caused by
the confinement rather than by shearing. We further confirm the

FIG. 7. Structural properties of a long-range repulsive colloidal suspension before
(red line) and after (blue line) the application of oscillatory shear with γmax = 0.05
and f = 1τ−1

B (Pe = 0.017). (a) Typical configuration of the system after shear.
(b) Normalized density distribution ρ(z) as a function of z. (c) Radial distribution
function g(r). (d) Probability distribution function of the averaged q6 bond-order
parameter for the fluid phase before and after shear.

fluid nature of the system by analyzing the radial distribution func-
tion g(r) and the q6 probability distribution function in Figs. 7(c)
and 7(d), respectively. We compare the distributions obtained by
analyzing the system before and after applying shear, represented
here by the red and blue lines, respectively. The radial distribution
functions are nicely superimposed and present the typical density
oscillations in a fluid phase. The situation is similar for the q6 bond-
order parameter, where the blue and red probability distributions
display a maximum at q6 ∼ 0.15, which is below the peak of the
bcc probability distribution at q6 ∼ 0.35, thereby confirming that
the system is in the fluid phase. Additionally, for strain amplitudes
γmax ≳ 1.5, we again find that the system remains in a disordered
fluid phase upon application of oscillatory shear independent of the
frequency of oscillation. We did not explore the regime of higher
strain.

2. Twinned fcc-bcc martensitic transformation
In Sec. III A, we have already shown that this system under

external oscillatory shear with γmax ≃ 0.35 favors the formation of
an fcc crystal. The reason why the fluid-fcc transition is triggered
by γmax = 0.35 is fully explained by geometrical considerations of
the fcc structure. Consider an fcc unit cell of lattice constant a and
a hexagonal plane, where particles occupy the lattice positions “A.”
The hexagonal layer above it could occupy either the neighboring
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void “B” or “C,” whose reciprocal distance is 2Δx = a/
√

6. The dis-
tance between two adjacent hexagonal planes is Δz = a/

√
3, and

the ratio Δx/Δz ≃ 0.35 is equal to the value of γmax that determines
the formation of an fcc crystal. In fact, the quantity 2Δx represents
the distance covered by a particle with respect to the hexagonal layer
below it in half an oscillation cycle; therefore, γmax = 0.35 enables the
switching mechanism from A–B–C stacking to A–C–B stacking, as
we have previously illustrated in Fig. 6(b).

3. Sliding layers and strings
For maximum strain amplitudes γmax ≳ 0.6, the effective colli-

sions between the particles prevent the formation of a twinned fcc
structure, which is confirmed by a bond-order parameter analysis
that shows that w6 > 0 during the entire oscillation cycle. The sys-
tem rather forms a string phase or a sliding layer phase, depending
on the frequency of oscillations. The sliding layer phase is composed
of hexagonal planes parallel to the velocity–vorticity plane with a
close-packed direction parallel to the velocity direction, which is dif-
ferent from what we have seen for the twinned fcc structure, which
is characterized by hexagonal planes in the velocity–vorticity plane
but with the close-packed direction perpendicular to the flow direc-
tion. This orientation is particularly convenient for the system since
it enables z-stacked hexagonal planes to freely slide on top of each
other along the velocity direction. We show typical configurations
of the sliding layer phase obtained for γmax = 0.80 and f = 30τ−1

B
(Pe = 8) in Fig. 8. The top panel shows a projection of the system
in the vorticity–gradient plane. We observe that each third hexag-
onal plane is stacked on top of the first one. From this angle, we
clearly see that each layer easily slides within the grooves of the
layers above and below it, while the system is sheared perpendicu-
larly to this plane. We visualize crystalline particles with w6 > 0 in
red, while those characterized by w6 < 0 and w4 > 0 or w4 < 0
in blue or green, respectively. We reduce the radius of liquid-like
particles, represented in cyan here. The bond-orientational order
parameter analysis gives a crystallinity fraction of 90%, and mostly
w6 > 0. We select one of the z-stacked planes, specifically the zero-
velocity plane, and show it in the velocity-vorticity representation
in the bottom panel. Here, all particles are illustrated with the same
color and radius in order to enhance the visualization of the pattern
they form in the plane. We compute the diffraction pattern, which
displays a six-fold symmetry, thus proving that the particles form a
hexagonal arrangement. Moreover, we quantify the hexagonal order
in the plane by computing the 2D local bond-order parameter ψ6
given by

∣ψ6( j)∣ =
RRRRRRRRRRR

1
nc( j)

nc( j)
∑
k=1

ei6θ(rjk)
RRRRRRRRRRR
, (10)

where j is a particle in the plane at rj and the sum runs over the nc(j)
nearest neighbors of particle j. θ(rjk) is the angle between the vector
rjk = rk − rj and an arbitrarily chosen reference vector. The number
of nearest neighbors nc( j) is defined as the number of particles whose
distance with j is smaller than a threshold rψ6 . We choose rψ6 = 2.8σ
corresponding to the first minimum in the radial distribution func-
tion. We then compute the global bond-order parameter Ψ6 defined
as the average ψ6 value,

FIG. 8. A typical configuration of the sliding layer phase obtained at γmax = 0.80 and
f = 30τ−1

B (Pe = 8). The top panel shows a projection of the system in the vorticity–
gradient plane. The system is composed of crystalline particles with w6 > 0, as
denoted in red. The stacking of xy planes is such that every third layer sits on top of
the first one. The bottom panel shows the zero velocity plane, exhibiting hexagonal
order as demonstrated by the high value of Ψ6 and the six-fold symmetry of the
corresponding diffraction pattern.

Ψ6 =
RRRRRRRRRRR

1
Np

Np

∑
j=1
ψ6( j)

RRRRRRRRRRR
, (11)

where Np is the number of particles in the plane. Note that Ψ6 is
equal to 1 in a perfect hexagonal plane, while it vanishes in a fluid
phase. We obtain Ψ6 = 0.73 for the plane displayed in Fig. 8, thereby
confirming a high hexagonal order.

Previous studies reported the formation of a string phase for
high values of γmax and low frequency of oscillation f.23 The string
phase is similar to the sliding layer phase when observed from the
vorticity-gradient representation. In fact, high values of γmax make
the stacking described in Fig. 8 still favorable. The main difference
that distinguishes the string phase from the sliding layer phase is the
lack of hexagonal order in the velocity–vorticity plane. The string
phase rather forms strings of particles parallel to the velocity direc-
tion. This difference is probably caused by a lower ratio of convective
diffusion with respect to thermal diffusion that reduces the amount
of hexagonal order in the plane. We also find the string phase for
γmax = 0.8 and f = 1τ−1

B (Pe = 0.27) and report it in Fig. 9. The
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FIG. 9. Typical configuration of the string phase obtained at γmax = 0.8 and
f = 1τ−1

B (Pe = 0.27). The top panel shows a projection of the system in
the vorticity–gradient plane. The system is composed of crystalline particles with
w6 > 0 and fluid particles, denoted by red and cyan, respectively. The stacking
of xy planes is such that every third layer sits on top of the first one. The bottom
panel shows the zero velocity plane, showing string formation parallel to x, as also
indicated by the corresponding diffraction pattern. The in-plane hexagonal order is
quite low, as evidenced by a low Ψ6.

top panel shows a projection of the system in the vorticity–gradient
plane. We find the same stacking sequence already observed for the
sliding layer phase. Although, the crystallinity fraction of the sys-
tem reaches only 45%, thus revealing less six-fold bond-orientational
order with respect to the sliding layers. The zero-velocity plane
is shown in the bottom panel of Fig. 9. Visual inspection reveals
a low six-fold symmetry, which is confirmed by a low value of
Ψ6 = 0.38. Furthermore, the diffraction pattern displays bright spots
in the vorticity direction, which indicates the presence of regularly
separated strings parallel to x and weaker diffraction spots in the
other directions indicating less order.

4. Out-of-equilibrium phase diagram
We summarize our results described above in the out-of-

equilibrium phase diagram of Fig. 10, where we independently vary
the maximum strain amplitude γmax and frequency of oscillations f.
As a general trend, we observe that γmax is the main parameter that

FIG. 10. Out-of-equilibrium phase diagram of a long-range repulsive colloidal sus-
pension under oscillatory shear. Blue diamonds indicate the fluid phase, which is
found for γmax ≲ 0.2 and γmax ≳ 1.5. A twinned fcc via bcc martensitic transforma-
tion is observed for 0.25 ≲ γmax ≲ 0.5 and represented here with red diamonds.
The full state points display an fcc crystallinity fraction larger than 60%, while those
half–full are characterized by an fcc crystallinity fraction smaller than 35%. Sliding
layers are found for 0.75 ≲ γmax ≲ 1 and represented here with green diamonds
(half–full when sliding layers occupy only half the system size), while strings are
found for only one yellow state point with γmax = 0.80 and f = 1τ−1

B (Pe = 0.27).
The gray diamonds are boundary state points with a crystalline structure that does
not fully correspond to either the twinned fcc or the sliding layer phase.

triggers the formation of different phases, while f is rather irrelevant,
except for the string phase that forms only for f = 1τ−1

B . The system
remains in the fluid phase for γmax ≲ 0.2 and γmax ≳ 1.5, as illustrated
by the blue diamonds.

We observe the martensitic transformation between twinned
fcc and bcc crystals in a wide region of the phase diagram, which cov-
ers 0.25 ≲ γmax ≲ 0.53, as indicated by the red diamonds. However,
these state points are not all equivalent to each other. We observe a
well-defined fcc–bcc transformation mainly at γmax ≃ 0.35, which we
indicate with full red diamonds. For these state points, the fraction
of the fcc crystal is above 60% at the extremes of the oscillation cycle.
In the other cases, represented by half–full red diamonds, the system
attempts to switch from bcc to fcc as passing from γ = 0 to γ = ±A,
but the fraction of the fcc crystal does not exceed 35%. This is likely
due to the mismatch between γmax and the geometrical dimensions
of the fcc structure, as explained above.

Furthermore, we observe the sliding layer phase for 0.75 ≲ γmax
≲ 1.1 and f ≳ 3τ−1

B (0.75 ≲ Pe ≲ 1.1) and the string phase for γmax
= 0.8 and f = 1τ−1

B (Pe = 0.27), which we report with green and
yellow diamonds, respectively. We represent with half–full green
diamonds those state points where the system forms a sliding layer
phase in about half of the simulation box, while the remaining crys-
talline part of the system displays an orientation that we cannot
identify with either of the previously identified structures.

Finally, note that gray diamonds represent boundary state
points, where the system forms a crystalline structure whose orien-
tation with respect to the simulation box does not fully correspond
to either a twinned fcc/bcc nor a sliding layer phase. Finally, we wish
to note that the sliding layer phase,4,45 the oscillating twinned fcc
phase,4,45 and the string phase23,46 are also observed in simulations
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using the Lees–Edwards periodic boundary conditions, i.e., with-
out any walls, demonstrating that these structures are induced by
oscillatory shear rather than the confinement.

IV. CONCLUSIONS
Using non-equilibrium Brownian dynamics simulations, we

have investigated the out-of-equilibrium phase behavior of a long-
range repulsive colloidal suspension under oscillatory shear. In con-
trast to previous simulation studies that only observed a shear-
induced string phase in such a long-range repulsive system,23 we
demonstrate in this study that the formation of highly ordered struc-
tures is possible under oscillatory shear. Surprisingly, we discover
that the twinned fcc phase, previously observed by shearing a hard-
sphere fluid,12,16 also forms in a long-range repulsive system, when
sheared with a maximum strain amplitude 0.25 ≲ γmax ≲ 0.5.

We characterize the structures formed in this range of γmax by
means of a bond-orientational order parameter and diffraction pat-
tern analysis. The first method reveals the formation of an fcc-like
crystal at the extremes of the oscillations and a bcc-like crystal at zero
strain amplitude. We further inspect these structures via a diffrac-
tion pattern analysis, by which we identify the crystal unit cells and
their orientation with respect to the direction of shear. The struc-
ture formed at the extremes of the oscillations is an fco crystal as it
displays three slightly different lattice constants. Nevertheless, these
three lattice constants differ from each other by less than 8%. There-
fore, we consider this fco to be very close to an fcc crystal. The fcc is
oriented with the densest plane (111) parallel to the walls, where one
of the close-packed directions is orthogonal to the direction of shear
x. The structure formed at the zero strain amplitude is a bct crystal
with a lattice constant ratio of a3/a = 0.92, which is very close to that
of a bcc crystal. In addition, in this case, the densest plane (011) is
parallel to the walls.

Finally, we retrace the transformation mechanism from bcc to
fcc as the walls pass from the resting position of the zero strain
amplitude to one of the extremes of an oscillation. We identify the
continuous transformation between the two structures by following
a bct unit cell from the velocity-gradient perspective at zero strain,
during a quarter of a period of an oscillation. The bct unit cell, ini-
tially similar to a bcc unit cell, progressively deforms with increasing
strain amplitude and elongates until it eventually fulfills the space of
an fcc crystal at maximum strain amplitude.

For larger values of γmax, we also found other ordered struc-
tures. The sliding layer phase forms for 0.75 ≲ γmax ≲ 1 and f ≥ 3τ−1

B
(Pe ≥ 0.75) and displays hexagonal planes parallel to xy with a close-
packed direction parallel to the direction of shear x. The structure
also shows the characteristic z-stacking from the vorticity-gradient
projection, where each third layer sits on top of the first one. The
string phase is observed for γmax = 0.8 and f = 1τ−1

B (Pe = 0.27).
Similar to the sliding layers, it displays the same z-stacking sequence
in the vorticity–gradient plane. The string phase shows the forma-
tion of strings parallel to the direction of shear x, but differs from
the sliding layer phase due to the lack of hexagonal order in the xy
plane.

This work provided evidence that oscillatory shear induces the
formation of 3D crystal structures also in a fluid of long-range
repulsive colloids. The remarkable formation of an fcc crystal in

such a system, at low volume fraction, indicates the strength of
this methodology, where specific flow-induced effective interac-
tions enhance the mechanical stability of such a close-packed crystal
below the freezing density of the system and favor the formation of
an fcc over the thermodynamically more stable bcc structure. We,
thus, find that the resulting oscillatory shear-induced phase behav-
ior of an equilibrium fluid of long-range repulsive colloids just below
the fluid-bcc phase transition resembles that of a fluid of hard-sphere
colloids near the fcc freezing transition, and hence, the nearby sta-
ble solid phase does not seem to affect the shear-induced order-
ing. Even though we cannot rule out the possibility that hydrody-
namic interactions may affect the formation of these shear-induced
crystal phases, we stress that the non-equilibrium phase behavior
for colloidal hard spheres as predicted by Brownian dynamics sim-
ulations in Ref. 16 was in good agreement with the experimental
observations.
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