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ABSTRACT
Cellulose nanocrystals (CNCs) are naturally sourced elongated nanocolloids that form cholesteric phases in water and apolar solvents. It
is well accepted that CNCs are made of bundles of crystalline microfibrils clustered side-by-side, and there is growing evidence that each
individual microfibril is twisted. Yet, the origin of the chiral interactions between CNCs remains unclear. In this work, CNCs are described
with a simple model of chiral hard splinters, enabling the prediction of the pitch using density functional theory and Monte Carlo simulations.
The predicted pitch 𝒫 compares well with experimental observations in cotton-based CNC dispersions in apolar solvents using surfactants
but also with qualitative trends caused by fractionation or tip sonication in aqueous suspensions. These results suggest that the bundle shape
induces an entropy-driven chiral interaction between CNCs, which is the missing link in explaining how chirality is transferred from the
molecular scale of cellulose chains to the cholesteric order.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0076123

I. INTRODUCTION

Due to its abundance, versatility, and environmental advan-
tages over fossil-based resources, cellulose represents an important
green resource that has stimulated intensive research activities on
both fundamental and applied levels.1 Among its surprising, yet
poorly understood, properties is its occurrence in chiral assem-
blies within plant tissues,2–4 providing adjustable mechanical resis-
tance or structural color effects.5 The ability of splinter-like cel-
lulose nanocolloids, also known as cellulose nanocrystals (CNCs),
to spontaneously form chiral nematic liquid crystal phases6 sug-
gests that this chiral behavior originates from cellulose itself rather
than from biologically driven processes.7–9 While the origin of the
molecular chirality of cellulose is clear (cellulose is made of D-
glucose, a chiral molecule), elucidating the transfer mechanisms of
its chirality to its supramolecular level, from the microfibrils to the

chiral suspensions,10,11 has triggered much interest in the cellulose
community and beyond.

Predicting the collective chiral behavior of the liquid crystalline
state from the individual description of the molecular or colloidal
constituents is a more general problem that presents its own techni-
cal challenges.12–15 In the case of CNCs, this is further complicated
by the fact that a simple but representative model of the individual
CNCs is still missing. In most cases, CNCs are represented as achi-
ral lath-like rods, as their twisted nature is usually only visible at the
scale of microns of much longer CNCs.16 Majoinen et al. employed
electron tomography to visualize CNCs in 3D, demonstrating that
CNCs form bundles with twisted shapes,17,18 but their observations
suffered from poor statistics. Therefore, the key parameters driving
the chiral self-assembly of CNCs are still heavily debated.

In this regard, even a semi-quantitative theory that captures the
main physical mechanism and predicts the twisting of the nematic
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phase of CNCs, as described by its cholesteric pitch 𝒫 , in agreement
with experimental observations, could shed light on the nature of the
microscopic chirality of CNCs.

The mechanisms behind the spontaneous alignment of CNCs
into (chiral) nematic liquid crystal phases can be explained by a
trade-off between the rotational and translational entropy of the
individual rods upon increasing the volume fraction, as demon-
strated in the seminal work of Lars Onsager for systems of
infinitely long rods,19 which was later refined for rods with finite
aspect ratios,20,21 polydisperse rods,22 electrostatic effects in aque-
ous media,23–27 as well as for chiral deformations.28 To account
qualitatively for the formation of chiral nematic (or cholesteric)
phases, additional chiral interactions were mostly considered, such
as the corkscrew model in the limit of small twists.29–31 This model
suggests that CNCs are twisted parallelepipeds characterized by a
microscopic pitch p that pack more efficiently when slightly tilted
with respect to one another. In this way, rods may fit into the grooves
of neighboring rods, thereby yielding a collective twist. This descrip-
tion accounts for the apparent reduction of the chiral interactions
in water at low ionic strength, where large Debye screening lengths
contribute to mask the chiral shape of the CNCs.32 However, chiral
nematic phases were also formed when the charges were neutralized
or were unable to ionize and when the CNCs were stabilized with
steric interactions using polymer grafting or surfactants.33–35

Recently, the first quantitative description of chiral self-
assembly of CNCs in aqueous media was proposed by Kuhnhold
et al. based on Monte Carlo (MC) simulations of helical Yukawa
rods.36,37 In their work, the CNCs were modeled as hard sphero-
cylinders around which a set of discrete point charges was wrapped
in a helical arrangement. However, a direct comparison of the simu-
lated cholesteric pitch 𝒫 as a function of thermodynamic state with
experiments on CNC suspensions in aqueous media11,27 is difficult
as their ad hoc description of the chiral interactions of the CNCs
cannot be connected to the existing experimental observations on
the microscopic details of actual CNCs.

In this work, we quantitatively test the hypothesis that the self-
assembly behavior of CNCs can be described by a system consisting
of chiral hard splinters using both density functional theory (DFT)
and Monte Carlo (MC) simulations.15 We carefully design a model
CNC shape that allows for a direct comparison with experimental
observations and that accounts for the twisted microstructure of cel-
lulose microfibrils described by a microscopic pitch p, the apparent
CNC bundle structure, the effect of polydispersity, and the effect
of surfactants on the effective shape and on the volume and mass
fractions. Importantly, we postulate that the twisted structure of the
individual microfibrils is only relevant to explain the twisted shape
of the bundles and that the latter is the main driving mechanism
to cause a twisted alignment of the bundles, resulting in a cholesteric
phase. Hence, we model the individual microfibrils within each CNC
as achiral hard spherocylinders, while the chirality of the result-
ing CNCs arises from the twist between adjacent microfibrils as
described by the microscopic pitch p inherited from the individual
microfibrils.

We show that this simple CNC model of chiral hard splin-
ters stabilizes a cholesteric phase in agreement with Straley’s theory
and Onsager theory as well as simulations of chiral rods.14,15,38,39

More importantly, we find that the predicted pitch qualitatively
agrees with the experimental observations of cotton-based CNC

dispersions in apolar solvents using surfactants and explains well
certain trends of the variation of the cholesteric pitch caused by
fractionation or tip sonication in aqueous suspensions.

II. METHODS
A. Density functional theory for chiral nematic phases

The stability of the cholesteric phase N∗ and the equilibrium
macroscopic pitch 𝒫 was investigated by employing a classical
density functional theory (DFT) for chiral nematic phases.14,15,39

Here, we briefly describe the main points of this second-virial DFT
approach and refer the interested reader to Refs. 14, 15, and 39.
The main ingredient of the theory is the excluded volume between
two particles separated by a (center-to-center) distance r with the
orientation described by a 3 × 3 rotation matrix ℛ and a cor-
responding unit vector û denoting the orientation of the longest
particle axis. The excluded volume depends on the (imposed)
macroscopic chirality of N∗. In particular, the following Legendre
polynomial expansion coefficients are calculated:

Ell′(q) = −∫ dr∫ dℛ dℛ ′ f (r,ℛ ,ℛ ′
)Pl(n̂q(z) ⋅ û)Pl′(n̂q(0) ⋅ û′),

(1)

where q = 2π/𝒫 is the inverse macroscopic pitch, n̂q(z)
= x̂ sin(qz) + ŷ cos(qz) is the nematic director profile, and Pl
is a normalized Legendre polynomial of degree l, where we consider
up to l = 20. Furthermore, f (r,ℛ ,ℛ ′

) is the Mayer function
between two particles, which is −1 if they overlap or 0 if they do not.
The coefficients Ell′(q) are calculated via Monte Carlo integration
techniques and are used in the expression for the Helmholtz free
energy ℱ q[ψ] of a cholesteric phase that reads

ℱ q[ψ]
kBTV

= n(log n𝒱 − 1) + 4π2n∫ d cos(θ)ψ(θ) log ψ(θ)

+
n2G(η)

2 ∑
l,l′
ψlψl′Ell′(q), (2)

where n = N/V is the number density, N is the number of particles,
V is the volume, T is the temperature, kB is Boltzmann’s constant,
𝒱 is an (irrelevant) constant thermal volume, G(η) = (1 − 0.75η)/
(1 − η)2 is the Parsons–Lee correction factor, and η = nv0 is the
packing fraction, with v0 being the particle volume. Here, ψ(ℛ )
= ψ(θ) is the orientation distribution function where only the
dependence on the polar angle θ with respect to the local nematic
director was kept, and ψl is the expansion coefficient. At fixed n,
the free energy is minimized by iteratively solving the following
equation:

ψ(θ) =
1
Z

exp
⎧⎪⎪
⎨
⎪⎪⎩

−nG(η)∑
l,l′

Ell′(q)
4π2

1
2
[Pl(cos θ)ψl′ + Pl′(cos θ)]ψl

⎫⎪⎪
⎬
⎪⎪⎭

,

(3)

with Z being a normalization constant. This procedure is repeated
for several values of the inverse pitch length q. Minimizing the
free energy with respect to q gives the equilibrium pitch of the N∗

phase.
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The presented DFT is also generalized to binary mixtures to
address the effect of size and shape polydispersity of CNCs on the
phase behavior. The equilibrium pitch length of the N∗ phase is
again obtained by minimizing the free-energy functional, which for
a binary mixture of two species i = 1, 2 has an additional mixing
entropy term, an orientational free-energy term for each species, and
both intra- and inter-species excluded volume terms, i.e.,

ℱ q[ψ]
kBTV

= n(log n𝒱 − 1) + n
2

∑
i=1

xi log xi

+ 4π2n
2

∑
i=1

xi ∫ d cos(θ)ψi(θ) logψi(θ)

+
n2G(η)

2

2

∑
i=1

2

∑
j=1

xixj∑
l,l′
ψilψjl′E

ij
ll′(q), (4)

with xi = N i/N being the number fraction of species i, N i being
the number of particles of species i, N being the total number of
particles, Eij

ll′(q) being the excluded-volume coefficients between
species i and j (intra-species for i = j and inter-species otherwise) at
cholesteric wave vector q, and ψil being the expansion coefficient of
the orientation distribution ψi(θ) of species i.

The volume ratio of each species is defined as ϕi = xivi/

(x1v1 + x2v2), where vi is the single particle volume of species i. It
follows that xi = v−1

i ϕi/(v−1
1 ϕ1 + v−1

2 ϕ2).

B. Monte Carlo simulations

Monte Carlo (MC) simulations were employed in an
orthorhombic simulation box with edges of length Lx, Ly, and Lz . In
the case of periodic boundary conditions and since the cholesteric
order is π-periodic, the simulation box imposes an intrinsic peri-
odicity of wavelength qLz = π/Lz as the system repeats itself in
every periodic image. When the equilibrium state corresponds to
a cholesteric phase with the chiral director along the z-axis and an
inverse pitch length q that is not commensurate with an integer
multiple of qLz (i.e., 𝒫 /2 = Lz/k, with k an integer), the system may
become frustrated and equilibration may be hindered.

Various ad hoc methods have been developed to simulate the
equilibrium properties of chiral nematic phases.36,79–83 One simple
but effective solution is to replace the periodic boundary conditions
with boundary conditions that do not introduce an intrinsic period-
icity of space.39,84 In particular, under the assumption that the chiral
director of the phase coincides with the z-axis, the periodic bound-
ary conditions along the z-axis can be replaced by hard planar walls
parallel to the xy-plane, thereby allowing for any periodicity of the
cholesteric phase along the z direction. In this case, the system can
freely relax to its equilibrium pitch length. The main drawback of
this method is that the hard walls may affect the system’s behavior
in the proximity of the walls, and large system sizes may be needed
to overcome wall effects.

MC simulations were performed on a system of N = 4096
CNCs modeled as chiral hard splinters consisting of Nc sphero-
cylinders. Simulations were performed in the NPT ensemble, i.e.,
at fixed pressure P, temperature T, and the number of CNCs. Peri-
odic boundary conditions were employed in the x- and y-directions
and hard walls along the z direction. The overlap test between CNCs

was performed by checking overlaps between the respective Nc hard
spherocylinders.85 To speed up the overlap test between the sphero-
cylinders composing the CNCs, they were completely covered with a
minimal mesh of overlapping spheres. Then, an overlap test between
the meshing spheres was used as a pre-test: only overlaps between
pairs of spherocylinders that have at least one overlapping meshing
sphere were tested. This implementation of cell lists for the overlap
between meshing spheres strongly reduces the computational cost
of the overlap test between spherocylinders and thus also between
CNCs.

The NPT-MC simulation scheme consists of two types of MC
moves: roto-translation MC moves and volume-change moves. The
first type of move consists of a random roto-translation of a ran-
domly chosen CNC that is accepted if it does not lead to particle
overlaps in the system, and otherwise, it is rejected. In a volume
move, a random variation in the length of one of the three sides
of the orthorhombic simulation box is proposed, resulting in either
an expansion or compression of the system. If the move leads to
overlaps, it is rejected; otherwise, it is accepted with a probability
Pacc = (V′/V)N exp(−βP(V′ − V)), where V and V′ are the volume
of the system before and after the move, respectively. During the
simulation, we measure a variety of observables (density, uniaxial
nematic order parameter, smectic order parameter, etc.).

Equilibration of the system is reached when all the sampled
observables cease to drift and start to fluctuate around their mean
value. The macroscopic pitch 𝒫 of the cholesteric N∗ phase was then
measured. To this end, the simulation box was partitioned in slabs
along the z-axis, and the nematic director n̂(zi) was measured in
each slab, where zi is the coordinate of the ith slab along the z-axis;
a least-square fit of the theoretical expressions nx(z) = cos(2πz/
𝒫 + ψ) and ny(z) = sin(2πz/𝒫 + ψ) for the x and y components of
n̂(z) yields a measure of the macroscopic pitch 𝒫 .

III. RESULTS AND DISCUSSION
A. The chiral hard-splinter model

Despite having a significantly irregular and polydisperse shape,
widely dependent on the extraction method and the hydrolysis
and/or sonication conditions,6,41,42 a number of experimental obser-
vations suggest that cotton-based CNCs consist of slightly twisted
bundles of laterally connected rod-like cellulose crystallites of well-
defined cross section. This is confirmed (1) by observations using
atomic force microscopy (AFM) and electron microscopy (EM)43,44

or small angle scattering,10,44 demonstrating that the total lengths
and widths of the CNCs are described by broad log-normal dis-
tributions (lengths L ≈ 100–200 nm and width w ≈ 15–35 nm) but
with a much better defined thickness (a Gaussian distribution cen-
tered around 6 ± 2 nm); and (2) by numerous observations of iso-
lated microfibrils, revealing that the microfibrils are twisted,16,43–46

and by atomistic simulations using various approaches, which all
show independently that defect-free cellulose crystals spontaneously
develop a gentle right-handed twist inversely proportional to the
cross-sectional area.40,47–52

We, therefore, devise a simple hard-particle model, named
the chiral hard-splinter (CHS) model, to account for the twisted
splinter-like shape of cotton-based CNCs. A chiral hard splinter,
sketched in Fig. 1, consists of Nc hard spherocylinders each model-
ing one of the crystallites composing the CNC. Each spherocylinder
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FIG. 1. Sketch of a generic chiral hard-splinter model. (a) The CNC is composed
of Nc hard spherocylinders of diameter d and, here, an elliptical profile of lengths
between two extreme values Lmin and Lmax, with total width w, and a shell of sur-
factant of thickness λS yielding an effective diameter deff = d + 2λS. Throughout
this work, we, however, assumed L = Lmin = Lmax. (b) A twisted bundle of hard
spherocylinders with a microscopic pitch length p obtained by applying a twist or
rotation around a twist axis t, also called the screw axis. The motivation to choose
this axis for the twist comes from molecular dynamics simulations,40 showing that
cellulose crystallites twist along this axis in a right-handed fashion.

i has a diameter d and a length Li varying between Lmin ≤ Li ≤ Lmax
following an elliptical profile. The center of the elliptical profile does
not necessarily coincide with the central rod of the hard splinter. We
note that Li is the end-to-end length of spherocylinder i and thus
includes the dimension of the hemispherical end caps. In addition,
the spherocylinders twist with a microscopic pitch p around the twist
axis t, also called the screw axis (see Fig. 1). To be more specific,
we choose the twist axis parallel to the particle axes along the z-axis
and denote the center of the twist axis by (0, 0, 0). Points (x, y, z)
in the bundle are rotated by an angle α = 2πz/p. The motivation to
choose this axis for the twist comes from molecular dynamics simu-
lations,40 showing that cellulose crystallites twist along this axis in a
right-handed fashion. In order to take into account polydispersity in
the width of the microfibrils, the total width w of a chiral hard splin-
ter can be chosen to be smaller or larger than Ncd, allowing for some
degree of overlap between the crystallites in the case the microfib-
rils are smaller in diameter or for having some gaps between the
crystallites in the case the microfibrils are larger. In Fig. 2, we show
that this particle model is sufficiently generic to capture the shape
of various cotton-based CNCs as displayed by transmission electron
microscopy (TEM) images. To illustrate how the shape of the hard

splinter changes upon varying the various particle parameters, we
refer the reader to the WebGL applet of the supplementary material.

B. The experimental system of cotton-based CNCs
To validate our chiral hard-splinter model with experimental

data, we consider an experimental system of CNCs in an apolar sol-
vent (e.g., toluene and cyclohexane), for which the self-assembly
is largely driven by entropy. These suspensions may better eluci-
date the transfer mechanism of chirality from the molecular scale
of the crystalline microfibrils to the self-assembly of CNCs into a
cholesteric phase at the macroscopic scale. CNCs can be readily
obtained from native cellulose sources via a harsh acid hydrolysis
treatment.53 Subsequently, the resulting CNCs can be sterically sta-
bilized by surfactants in an apolar solvent, thereby fully masking the
Van der Waals interactions, either by using surface functionalization
or by using surfactants.34,54–56 The latter way is much easier to imple-
ment and the resulting CNCs also self-assemble into cholesteric
phases.34 While in toluene the Van der Waals attractions are largely
suppressed as the optical index of cellulose is nearly matched
(ncell ≈ 1.55 ± 0.05, ntol ≈ 1.49), some residual attractions may per-
sist for CNCs in cyclohexane due to a small optical index
mismatch (ncyhex ≈ 1.43). Furthermore, the low dielectric con-
stants of these apolar solvents prevent the ionization of charges,
which significantly reduces the electrostatic interactions. Conse-
quently, the CNCs can be stabilized by adding surfactants that
adsorb to the hydrophilic surface of the CNCs, and hence, CNCs
suspended in apolar solvents with surfactants can be assumed
to behave as nearly hard particles. The resulting excluded-
volume interactions allow for much shorter distances between
the CNCs, and hence, the CNC suspensions display cholesteric
phases with much smaller pitches at much higher volume
fractions, η ≈ 0.15–0.35.

To allow for a quantitative comparison with experiments, we
set the parameters of our model according to the geometry of the
“Cot63” CNCs of Refs. 44 and 55. This “Cot63” sample was obtained
via hydrolysis of cotton linters with 65% sulfuric acid at 63 ○C for
30 min and was stabilized in cyclohexane using surfactants, ethoxy-
lated phosphoric ester of nonylphenol (commercial name: BNA).
This sample was chosen because of the high accuracy of the available
data of this system on, for instance, the length, width, and thickness
distributions of the CNCs and for the accurate measurements of the
cholesteric pitch in bulk states of the chiral nematic phase. Measure-
ments of the cholesteric pitch in the monophasic cholesteric regime
instead of the biphasic regime is essential in order to avoid fractiona-
tion effects of the CNCs in the isotropic and cholesteric phase and to
prevent a mismatch between the local volume fraction of the CNCs
in the cholesteric phase and the average volume fraction across the
two phases.

Although the CNCs of sample “Cot63” are highly polydisperse,
the authors of Refs. 44 and 55 reported that the CNCs have a length
L = 128 nm and width w = 26 nm with an additional 3 nm due to the
surfactant layer contribution, i.e., 1.5 nm on each side. The dimen-
sion of a single crystallite is about 6.3 nm, which implies roughly four
crystallites per CNC. Despite the large size and shape polydispersity
of the “Cot63” sample, we model the bare CNCs as centrosym-
metric chiral hard splinters, and each splinter consists of Nc = 4
spherocylinders with Lmin = Lmax = L = 128 nm, w = 26 nm, and
d = 6.3 nm.
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FIG. 2. Comparison of experimental observations of CNCs and their modeling using the model of chiral hard bundles. The variety of shapes seen in transmission electron
microscopy (TEM) images of cotton-based CNCs (distinct from “Cot63” from Ref. 44) is modeled by the chiral hard-splinter model with a suitable choice of particle model
parameters. Scale bars correspond to a 100 nm length.

The pitch length of the CNCs is harder to extrapolate from a
two-dimensional electron microscope image. A precise experimen-
tal characterization of the microscopic twist of CNC crystallites is
still lacking. The microscopic pitch was therefore estimated from all-
atom molecular dynamics simulations of one single crystallite per-
formed by Zhao et al.,40 who reported a spontaneous right-handed
twist of cellulose microfibrils with a microscopic pitch length linearly
proportional to the inverse of its cross-sectional area. Assuming that
the spontaneous twist of the CNCs is caused by the twist of its crys-
tallites, we obtain a pitch length p ∼ 500 nm for the whole splinter.
We refer the interested reader to the supplementary material for
more details how we estimated the microscopic pitch. To take into
account the thickness of the surfactant layer, we use an effective
diameter deff = d + 2λS for the spherocylinders modeling the individ-
ual microfibrils of the CNCs in the chiral hard-splinter model, with
λS = 1.5 nm being the thickness of the surfactant layer. The resulting
chiral hard-splinter model for “Cot63” CNCs is shown in Fig. 3.

C. Monodisperse case
Employing our density functional theory (DFT) framework

(see Sec. IV), we determine the isotropic I–cholesteric N∗

phase transition for the “Cot63” CNCs, and subsequently, we
predict the macroscopic pitch 𝒫 of the N∗ phase as a function of
the effective packing fraction η = nv0(λS), where n = N/V denotes
the number density with N being the number of CNCs, V being
the volume, and v0(λS) being the volume of a single CNC with
a surfactant layer of thickness λS. We determine the volume of
a single CNC v0(λS) via Monte Carlo simulations. To compare
our theoretical predictions for the phase behavior as a function
of the effective packing fraction η with experimental data, we
convert the effective packing fraction in the w/w mass fraction. To
this end, we first calculate the volume ratio of surfactants for a
single CNC as ϕS = (v0(λS) − v0(λS = 0))/v0(λS). In the case of a
surfactant layer thickness λS = 1.5 nm, the surfactants constitute
ϕS = 0.393 of the particle volume. Employing the volume ratio of
surfactant ϕS, we define an effective mass density of CNCs with
adsorbed surfactants ρeff = ρSϕS + ρCNC(1 − ϕS), where ρS denotes
the mass density of the surfactants and ρCNC denotes the mass

density of the bare CNCs. We believe that this is a reasonable
approximation, also employed in Ref. 54, due to the high density
of the surfactant layer. Finally, the conversion of an effective
packing fraction η into an effective w/w mass fraction reads
ceff = ρeffη/(ρeffη + ρsolv(1 − η)), with ρsolv being the solvent mass
density.

In Fig. 3, we plot the macroscopic pitch length 𝒫 of the pre-
dicted N∗ phase of cotton-based CNCs as a function of the effective
w/w mass fraction ceff along with the experimental data. Our DFT
calculations show that the cholesteric phase is stable with respect to
the isotropic phase for a wide range of concentrations. The first thing

FIG. 3. Macroscopic pitch length 𝒫 obtained from DFT calculations and from
experimental observations in apolar CNC suspensions. The CNCs were modeled
using the chiral hard-splinter model sketched on the left, with a surfactant layer of
thickness λS = 1.5 nm, and reported in the corresponding mass fractions (violet
circles) to compare directly with experimental observations (blue diamonds) made
on cotton-based CNC suspensions stabilized in apolar solvents using surfactants
(CNC@BNA in cyclohexane, data for “Cot63” from Ref. 55). Note that only experi-
mental data from monophasic cholesteric phases are reported, and measurements
in biphasic regions of the isotropic and cholesteric phase were excluded. The cyan
band corresponds to a confidence region for variations of 2λS = 3±1 nm in the
DFT calculations. See Fig. S6 of the supplementary material for the macroscopic
pitch as a function of volume fraction.
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we can note is that, using DFT, a cholesteric phase is found above
∼42%, while fully cholesteric CNC suspensions are experimentally
observed already above ∼32%. As discussed later, we ascribed this
mismatch mostly to the monodispersity of the chiral bundles. The
predicted cholesteric phase of “Cot63” CNCs is left-handed, imply-
ing that the macroscopic chirality has opposite handedness with
respect to the microscopic chirality of the CNCs. Such a twist inver-
sion is consistent with previous observations on systems of weakly
chiral particles.15,38,39 The macroscopic pitch 𝒫 decreases monoton-
ically with increasing concentrations, again in line with previous
theoretical predictions.15,38,39 However, this dependence does not
follow a power law as predicted by Straley (𝒫 ∼ η−2

)38 for chiral
rigid rods or by Odijk (𝒫 ∼ η−1

)57 for chiral semiflexible poly-
mers. The discrepancy with Odijk’s power law is to be expected
as the CNCs are very rigid. Interestingly, extrapolating the DFT
predictions to lower concentrations shows excellent quantitative
agreement with the available experimental data. Previous studies
have shown, however, that the DFT approach can only qualitatively
predict trends of the cholesteric pitch as a function of particle details
and thermodynamic state,15 and this is also suggested by our com-
parison of DFT and MC simulations, as shown later in Sec. II F.
Hence, we believe that the excellent agreement with the experimen-
tal data is fortuitous. In conclusion, our theoretical predictions for
the cholesteric pitch 𝒫 as a function of concentration, in qualitative
agreement with the experiments with corresponding pitch values
in the range of the experimental measurements, suggest that the
cholesteric phase of CNCs is predominately driven by the shape
of the cotton-based CNCs and that the cholesteric phase of CNCs
in apolar solvents can be assumed to be entropy-driven as a first
approximation.58

1. Effect of the microscopic pitch p
In our chiral hard-splinter model, the microscopic pitch p is

the only parameter that could not be derived from experimental
measurements on cotton-based CNCs but has been estimated from
atomistic simulations.40 We, therefore, investigate to what extent
the microscopic pitch p affects the macroscopic pitch 𝒫 of the
cholesteric phase by repeating our DFT calculations for small vari-
ations of p while keeping the other particle model parameters fixed.
The results are shown in Figs. 4 and S8. Interestingly, we find no
significant change in the macroscopic pitch by changing the micro-
scopic pitch p by up to 10%. Only at very high concentrations,
ceff ≳ 0.6, the macroscopic pitch is slightly affected by small varia-
tions in p. Thus, the agreement of our theoretical predictions on the
macroscopic pitch with the experimental data persists, showing that
our DFT results are robust with respect to small variations in the
values of the microscopic pitch p.

2. Effect of the length and width of the CNCs
Subsequently, we investigate the effect of the dimensions of the

bundles by simply varying the dimensions of the bundles in three
different ways: (a) by varying the length of the CNCs independently
of the width, “(L±);” (b) by varying the width independently of the
length, “(w±);” and (c) by varying both the length and width, “(±).”
We note that the thickness d is kept fixed in all three cases. For
each specific shape, the exact shape of each particle, i.e., dimension,
volume, and mass, is provided in the supplementary material.

FIG. 4. Macroscopic pitch length𝒫 obtained from DFT calculations for varying val-
ues of the microscopic pitch p of the bundles and from experimental observations
in apolar CNC suspensions. The CNCs were modeled using the chiral hard-splinter
model with a surfactant layer of thickness λS = 1.5 nm. Experimental data are
taken from cotton-based CNC suspensions stabilized in apolar solvents using sur-
factants (CNC@BNA in cyclohexane, data for “Cot63” from Ref. 55). Sketches of
the chiral hard-splinter model for microscopic pitch lengths p = 450, 500 nm (taken
as a reference), 550, and 700 nm (from bottom to top) are shown on the left. As
a precise experimental characterization of the macroscopic twist on CNCs crystal-
lites is still lacking at present, we estimated these values from atomistic simulations
of CNCs, as from Refs. 40, where we assume that the twist in the bundle is equiva-
lent to the twist on a single CNC. See Fig. S7 of the supplementary material for the
macroscopic pitch as a function of volume fraction and Fig. S8 for the macroscopic
pitch as a function of microscopic pitch.

a. The effect of the length L on 𝒫 . Using our DFT approach,
we calculate the cholesteric pitch 𝒫 for a monodisperse system of
CNCs of length L(±) = L(1 + δ), with δ being a scaling parameter.
We present the cholesteric pitch 𝒫 as a function of the effective
w/w mass fraction in Fig. 5(a) for varying δ ∈ [−0.4, 0.4]. We observe
that the macroscopic pitch length 𝒫 increases monotonically upon
increasing the length L of the CNCs. This is in qualitative agreement
with the theories of Straley and Odijk38,57 and with simulations of
chiral rods.13,15 Shorter rods also require a higher mass fraction to
stabilize the cholesteric phase, as expected from Onsager’s theory for
achiral spherocylinders.19

Revol et al. reported, in their seminal patent and associ-
ated publication (but unfortunately without any supporting data),
that fractionation of CNCs into suspensions of shorter and longer
CNCs impacts the cholesteric pitch according to Straley and Odijk,
namely, that longer CNCs lead to longer pitches.41,59 However, they
specifically referred to the pitch measured in dried films once the
suspension was dish-cast. Since then, this dependence has been
taken for granted in the literature.60,61 However, Honorato-Rios and
Lagerwall recently reported, using fractionated aqueous CNC sus-
pensions, that actually longer CNCs lead to smaller pitch values.62

This result disagrees with the scenario of Fig. 5(a) and suggests that
the change in pitch length is not only determined by the length of
the CNCs.62

b. The effect of the width w on 𝒫 . Additionally, we determined
the cholesteric pitch 𝒫 for a monodisperse system of CNCs of width
w(±) = w(1 + δ). The results are presented in Fig. 5(b) for varying
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FIG. 5. Macroscopic pitch length 𝒫 obtained from DFT for a cholesteric phase
of monodisperse chiral hard splinters of different shapes. Effect of varying (a)
the length L(±) = L(1 + δ) at fixed width w and thickness d, (b) the width
w(±) = w(1 + δ) at fixed length L and thickness d, and (c) both the length
L(±) = L(1 + δ) and the width w(±) = w(1 + δ) at fixed thickness d, for vary-
ing values of δ as labeled. Here, we set the reference length L = 128 nm and
the width w = 26 nm before adding the surfactant contribution. See Fig. S9 of the
supplementary material for the macroscopic pitch as a function of volume fraction.

δ ∈ [−0.4, 0.4]. We find that the pitch length decreases monotoni-
cally upon increasing the width w of the CNCs, again in qualitative
agreement with the theories of Straley and Odijk.38,57 Importantly,
the observed decrease in the pitch is much more pronounced even
for moderate width variations. Odijk’s description indeed predicts
a scaling 𝒫 ∼ Ld(w − d)−1, qualitatively suggesting that a variation
of the width w by a few nanometers, especially as it approaches the
CNC thickness d, can have much stronger impact than a variation of
L by a few tens of nanometers. This suggests that the relative varia-
tion of the width w may have a larger impact on the cholesteric pitch
than for the length L of the CNCs.

To the best of our knowledge, we are not aware of any exper-
imental study in the literature in which the effect of width w of
the CNCs is investigated on the cholesteric pitch, while keeping the
CNC length L fixed. As we will see, most size distribution analyses
found that L and w are highly correlated.

c. Effect of both length L and width w on 𝒫 . Elazzouzi-Hafraoui
et al. showed that the size distribution of CNCs exhibits strong cor-
relation between L and w.44 Moreover, recent fractionation exper-
iments by Honorato-Rios et al. reported that the aspect ratios L/w
of the CNCs in the two coexisting phases of large and small CNCs
in biphasic suspensions are very similar, thereby also supporting a
strong correlation between L and w.63 As the cholesteric pitch 𝒫
increases with increasing length L but decreases upon increasing the
width w, it is interesting to investigate the effect of CNC size on
the pitch, where both L and w vary and the aspect ratio L/w is kept
constant.

We study the macroscopic pitch 𝒫 for a monodisperse system
of CNCs of length L(±) = L(1 + δ) and width w(±) = w(1 + δ) while
keeping the aspect ratio L/w fixed. We plot the cholesteric pitch
𝒫 as a function of the effective w/w mass fraction in Fig. 5(c) for
varying δ ∈ [−0.4, 0.4]. We observe that the macroscopic pitch 𝒫
mostly decreases as the size, i.e., both L and w, increases from the
smallest δ = −0.4 to the largest dimension δ = 0.2. This important
observation shows that larger CNCs twist more than smaller CNCs.
However, this observation seems to contradict the general and naive
assumption that longer CNCs lead to longer pitches. CNCs that are
larger in both their length and width rather have a stronger helical
twisting power (HTP), and their presence in the suspension can act
as “chiral dopants” similar to the chiral molecules added to achi-
ral molecular nematic liquid crystals to induce cholesteric order.64

This echoes with the recent work of Honorato-Rios and Lagerwall,
where they even defined a Helical Twisting Power (HTP) associated
with the CNCs and in first approximation proportional to the CNC
size.62 In their work, they consider the approximate relationship
1/𝒫 = A(ceff − c0), where A is identified as the HTP and c0 is a
constant that they proposed to interpret as the threshold mass
fraction required to convey chiral interactions. For comparison pur-
poses, we reported 1/𝒫 vs ceff in Fig. S3 of the supplementary
material, from which we extracted the parameters A and c0 for dif-
ferent corresponding sizes L(±), which are reported in Fig. S4 of the
supplementary material. We also plotted with a dashed line the
approximate values of A and c0 found by Honorato-Rios and
Lagerwall.62

The behavior of sufficiently long rods, i.e., δ ≥ 0.2, is even
more peculiar, as the macroscopic pitch 𝒫 ceases to decrease fur-
ther with size at low mass fractions but increases significantly at
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high mass fractions. These two observations may be explained as
follows. By decreasing δ and thus decreasing both L and w, the
chiral hard splinter approaches the limit of a single achiral hard
spherocylinder for which the macroscopic pitch 𝒫 diverges, which
hence explains the trend that 𝒫 increases with decreasing size.
This divergence as w → d is also captured by Odijk’s scaling law
as mentioned earlier. Likewise, as δ becomes larger, with L and w
increasing proportionally, we expect from Odijk’s scaling law an
asymptotic stabilization of 𝒫 ∼ Rd(1 + d/w), where R = L/w and d
are both constant as δ increases. This behavior for large δ is also
consistent with Straley’s theory, which predicts a cholesteric pitch
𝒫 = −2πK2/KT for weakly chiral particles, with K2 being the twist
elastic constant and KT being the chiral strength of the cholesteric
phase. In the case that the chiral strength KT saturates at large
enough δ and K2 is expected to increase with δ, the macroscopic
pitch 𝒫 will increase upon increasing the particle dimension. This
is indeed observed at high mass fractions, where the nematic order
parameter S is expected to increase with ceff, in qualitative agreement
with Straley,38 thereby rationalizing the non-monotonic variation
of 𝒫 with particle dimension at high ceff. We note that the
non-monotonic trend of the cholesteric pitch with concentration
was also reported in Ref. 65, where the unwinding of the pitch
at high concentrations was attributed by a strong increase in the
local nematic order and a corresponding increase in the twist elastic
constant K2.

D. Bidisperse case of large and small CNCs
We have shown that in the case of a monodisperse suspen-

sion, the size of the CNCs influences the cholesteric pitch 𝒫 and
that larger chiral splinters, when scaled up both in length and width,
lead to a stronger chiral behavior and hence a smaller pitch 𝒫 .
Experimental suspensions of CNCs are usually characterized by a
highly polydisperse log-normal size distribution of CNCs, which
may affect the cholesteric pitch 𝒫 . However, our DFT approach can-
not straightforwardly be extended to take into account a log-normal
size distribution. We, therefore, model the polydispersity by con-
sidering a mixture of a number of distinct components similar to
Ref. 66. As the computational cost increases rapidly with the
number of components, we study the cholesteric pitch for bidisperse
suspensions of large and small CNCs in order to shed some light
on the effect of size polydispersity of the CNCs on the macroscopic
pitch 𝒫 .

1. Size distribution of “Cot63” as a starting point
CNC suspensions are usually characterized by transmission

electron microscopy (TEM) or AFM, allowing for measurements of
the size distributions, the averaged dimensions (L̄, w̄) and the corre-
sponding standard deviations, σL and σw, and covariance, cov(L, w).
For “Cot63,” the average dimensions were reported (L̄ = 126 nm
and w̄ = 26 nm) as well as their respective standard deviations
σL ≈ 71 nm and σw ≈ 8.3 nm. Unfortunately, Elazzouzi-Hafraoui
et al. did not provide a bivariate size distribution analysis in their
study on the “Cot63” sample, but they provided a fit of the two-
dimensional size distributions for two other samples, “Cot45” and
“Cot72,” prepared at slightly lower and higher temperatures, 45 and
72 ○C, respectively. In both cases, they observed strong correlation
between L and w defined as corr(L, w) = cov(L, w)/(σLσw), which

were given by corr(L, w) ≈ 0.74 and corr(L, w) ≈ 0.66, as obtained
by fitting the respective bivariate distributions, and both follow a
roughly proportional relationship (L ∼ w). As a comparison, the cor-
relation between L/w and L for the two samples were found to be
corr(L/w, L) ≈ 0.01 and 0.41, respectively.

In order to investigate how the cholesteric pitch 𝒫 is affected
by polydispersity, we consider a bidisperse suspension of large and
small CNCs denoted by (+) and (−), respectively, and we define the
respective shapes of the CNCs with respect to the reference dimen-
sions of “Cot63.” This bidisperse mixture is characterized by the
parameter δ as introduced above. We denote the number fraction of
large CNCs (+) in the mixture by x(+), while the fraction of smaller
CNCs (−) is defined as x(−) = 1 − x(+). From the data available on
“Cot45” and “Cot72,” we expect that about 55%–65% of the CNCs
fall within the sizes defined by δ = ±0.4. Alternatively, the bidis-
perse suspension of CNCs can be defined for a given volume ratio
ϕ(+) instead of the number fraction x(+). This is particularly relevant
when large and small particles are mixed together at equal concen-
tration, since the relative mixture of the two samples directly reflects
the volume ratio ϕ(+) in the final mixture rather than x(+).

2. Effect of size difference via δ
We consider a bidisperse suspension of large (+) and small

(−) CNCs at a fixed number fraction x(+) = 0.5. We calculate the
cholesteric pitch 𝒫 as a function of the effective mass fraction ceff
for varying values of δ and show the results in Fig. 6(a). We observe
that the mass fraction at which the cholesteric phase forms decreases
with increasing δ, i.e., for increasing size difference between the large
and small CNCs, thereby bringing the transition to the cholesteric
phase closer to the experimental observations. It is also important to
note here that we did not consider the possibility of fractionation,
which has been considered in Ref. 67. However, we remark that
the experimental measurements were performed in the monopha-
sic cholesteric regime instead of the biphasic regime in order to
avoid fractionation effects. At a sufficiently high mass fraction, the
macroscopic pitch 𝒫 also becomes larger upon increasing δ, but
this mass fraction regime is probably experimentally irrelevant as the
CNC suspensions are most likely kinetically arrested. However, if we
keep the volume ratio ϕ(+) = 0.5 fixed, we observe from Fig. 6(b) an
overall shift to larger pitches, which may be explained by the higher
number of small particles of weaker helical twisting power in com-
parison to the number of large particles. We note that the increase
in the macroscopic pitch with increasing polydispersity is consis-
tent with previous work, where it was shown that the macroscopic
twist of a cholesteric phase can be reduced by increasing the length
polydispersity of a nanorod suspension.67

3. Effect of composition via ϕ(+)
We now consider bidisperse suspensions of large and small

CNCs defined at a fixed δ and varying volume ratios ϕ(+) of large
CNCs ranging from 0 to 1. We calculate the cholesteric pitch 𝒫 as
a function of the effective mass fraction ceff and show the results in
Fig. 7 for δ = 0.1 and δ = 0.4. Other values of δ are reported in the
supplementary material (Fig. S2), and the corresponding x(+) val-
ues are listed in Table S2. We clearly observe from Fig. 7 a gradual
transition from a monodisperse population of small CNCs
(ϕ(+) = x(+) = 0) to a monodisperse population of large CNCs
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FIG. 6. Macroscopic pitch length 𝒫 obtained from DFT for a cholesteric phase of
bidisperse chiral hard splinters of various sizes and fixed L/w aspect ratio. (a) The
large and the small particles have an equal number fraction (x(+) = x(−) = 1/2) or
(b) equal volume ratio (ϕ(+) = ϕ(−) = 1/2). The dimensions [L(±) = L(1 ± δ) and
w(±) = w(1 ± δ)] are scaled as a function of δ. The monodisperse case (δ = 0,
denoted as Ref.) is displayed for reference. See Fig. S10 of the supplementary
material for the macroscopic pitch as a function of volume fraction.

(ϕ(+) = x(+) = 1), where we retrieve the conclusions from the
monodisperse case discussed before, i.e., the cholesteric pitch 𝒫
decreases with increasing size of the CNCs.

For intermediate volume ratios where the system is bidisperse,
we observe a monotonic decrease in the cholesteric pitch 𝒫 for
increasing ϕ(+) for an effective mass fraction (ceff ≤ 55 wt. %), show-
ing that the macroscopic pitch results from a trade-off between
large CNCs, favoring small pitches, and small CNCs, favoring large
pitches. A non-monotonic behavior of the cholesteric pitch with ϕ(+)
is found at high mass fractions and high δ, possibly due to a stronger
twisting power between small and large CNCs, e.g., a small CNC
may fit inside a chiral “groove” of a larger one. However, these high
effective mass fractions may be inaccessible experimentally due
to kinetic constraints, which we speculate to occur at about
≥45 wt. %.

FIG. 7. Macroscopic pitch length 𝒫 obtained from DFT for a cholesteric phase
of bidisperse chiral hard splinters of large and small particles of fixed L/w aspect
ratio and various volume ratios ϕ(+) of large particles. The effect of the dimen-
sions of the large and the small particles is defined by [L(±) = L(1 ± δ) and
w(±) = w(1 ± δ)] with (a) δ = 0.1 and (b) δ = 0.4 (for intermediate values of δ,
see the supplementary material). The monodisperse case (δ = 0, denoted as Ref.)
is displayed for reference. See Fig. S11 of the supplementary material for the
macroscopic pitch as a function of volume fraction.

In Fig. 7, we plot the macroscopic pitch 𝒫 for equally spaced
values of ϕ(+) instead of x(+) in order to compare with experimental
findings, which will be discussed in Sec. II E. This choice becomes
more significant at high δ, where the particle volumes of the large
and small CNCs start to deviate more, and consequently, also the dif-
ference between x(+) and ϕ(+), e.g., in Fig. 7(b) for δ = 0.4, ϕ(+) ≈ 0.8,
corresponds to x(+) ≈ 0.5.

Experimentally, the size polydispersity is defined by a size dis-
tribution in terms of number fractions. In order to estimate the
effect of bidispersity, one should compare the cholesteric pitch at
x(+) ≈ 0.5, i.e., ϕ(+) ≈ 0.8 with the reference (Ref.) curve. We find
that for the bidisperse case, the cholesteric phase is stable at lower
effective mass fractions than in the monodisperse reference system.
Additionally, we find that the macroscopic pitch for the bidisperse
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system at ϕ(+) ≈ 0.8 is lower than for the monodisperse system at
low mass fractions, but higher for mass fractions above 45 wt. %.
Another interesting observation is that above ϕ(+) ≈ 0.8, the pitch
values do not change much until ϕ(+) ≈ 1. This suggests that the
twisting power of the larger CNCs saturates when x(+) > 0.5, which
could be inherent to their finite microscopic pitch p. The fact that
the short CNCs do not display a similar saturation supports this
interpretation.

E. Comparison with experimental observations
1. Implications for size fractionation of CNCs

As mentioned earlier, one can gradually enrich or deplete cer-
tain CNC subpopulations by exploiting the effect of fractionation in
biphasic samples. This has been successfully implemented by Revol,
Dong, and co-workers and more recently reproduced by Honorato-
Rios et al. to produce suspensions with enriched proportions of
larger or smaller CNCs, whereby the larger rods were accumu-
lated in the anisotropic phase and the shorter ones in the isotropic
state.41,59,62,63,68,69

There are not many experimental observations of the pitch vari-
ation with size fractionation in suspension and all we found were
done in aqueous suspensions. Until recently, only indirect clues of
this effect were available in the literature, namely, (a) spatial varia-
tions of the pitch in sealed capillaries in the biphasic regime, with
smaller pitches at the bottom and larger pitches near the interface
between the two phases (see Ref. 70, Fig. S16); and (b) pitch dif-
ferences observed across cast film thicknesses, reported by Klockars
et al.69 or Zhu et al.71 The most spectacular evidence of this effect
was presented recently by Honorato-Rios and Lagerwall, where the
pitch was studied in suspensions of fractionated CNCs, and it was
found to be inversely proportional to the average CNC length L.62

The authors also reported a correlation between L and w, validating
this comparison. However, quantitative comparison with the data
reported by these authors is difficult, as the range of the mass frac-
tion is very different in water and in apolar solvents. The estimated
HTP they reported lays within the same range of values as those we
reported in Fig. S4, but the constant c0 appears to be much smaller
than what we found.

2. Implications for tip sonication treatments of CNCs
A second strong experimental validation of this chiral hard-

splinter model is the observation reported by Beck et al. that the
application of a tip sonication treatment leads to an increase in the
cholesteric pitch 𝒫 film observed both in suspensions and in films
produced by dish-casting CNC suspensions.60 We note that these
authors used another source of CNCs, made from bleached softwood
kraft pulp by FPInnovation, but since then, they have confirmed
their observations on many other sources of CNCs, including cotton.

While most of their work discusses the effect of sonication on
the cholesteric pitch 𝒫 film of solid films, they also show an increase
in the macroscopic pitch 𝒫 of the cholesteric phase in a suspension
at 5 wt. % along with a decrease in volume fraction of the cholesteric
phase.

To understand this observation, it is important to consider
that tip sonication, which is routinely used to improve the disper-
sion of CNCs in various solvents, makes the suspensions visibly
less turbid, an effect that can be associated with the break-up of

the largest CNCs into smaller ones.68 This observation has been
quantitatively observed by Csiszar et al.72 They reported from their
TEM analysis that tip sonication decreases the dimensions of cotton-
sourced CNCs, from L̄ = 171 ± 57 nm and w̄ = 17 ± 4 nm after only
1 min to L̄ = 118 ± 45 nm and w̄ = 13 ± 3 nm after 10 min.72 This
suggests an approximately linear dependence between L̄ and w̄,
in agreement with our assumption. Using a different source of
wood pulp derived CNCs (UMaine Development Centre, Forest
Product Laboratory, USA), Gicquel et al. reported an even more
important lateral break-up of CNCs, reporting a length decrease
from L̄ = 217 ± 42 nm to L̄ = 150 ± 30 nm after tip sonication (from
AFM and TEM analyses) and a width decrease from w̄ ≈ 60 nm
to w̄ ≈ 20 nm after tip sonication (from SAXS analysis), while the
CNC thickness d ≈ 4–5 nm (from AFM analysis) remained relatively
unaffected.73 A decrease in both L and w appears to be a generic
consequence of tip sonication in CNC suspensions and validates
our size scaling predictions on the cholesteric pitch of sonicated
samples.

However, in Ref. 60, Beck et al. excluded in their work the
breakdown of CNCs into shorter rods as a possible explanation
for the pitch variation, as they assumed that shorter rods would
decrease the pitch, thereby referring to Revol et al.41 The authors
also mentioned, citing Ref. 68, that tip sonication breaks the CNCs
side-by-side, and therefore, it should decrease the average width w,
assuming that both smaller L and w would lead to smaller 𝒫 , in con-
trast to what is predicted by our model [see Fig. 5(c)]. They also
reported an increase in the mass fraction at which the cholesteric
phase appears. They did monitor the CNC size only via dynamic
light scattering (DLS) but did not notice an obvious change of hydro-
dynamic diameters between samples (data not provided). Finally, as
size exclusion chromatography coupled with multi-angle laser light
scattering (SEC-MALLS) showed that the weight-average degree
of polymerization (DP = 140–150) of the cellulose chains within
their CNCs was unaffected by the sonication energy applied in their
experiments, they proposed that the pitch increase was due to a
release of trapped ions, since they also noticed an increase in con-
ductivity. However, this scenario, which has also been criticized on
the ground of rheological studies (cf. Ref. 74), appears somewhat
inconsistent, since the release of these ions, and hence a higher ionic
strength, is primarily known to decrease 𝒫 in suspensions and in
resulting dish-cast films.41

The proposed chiral hard-splinter model here offers a much
more convincing and simpler explanation: Tip sonication breaks
the larger CNCs into smaller CNCs and effectively decreases ϕ(+).
As the large CNCs contribute the most to the twisting, their
destruction unwinds the cholesteric phase and increases the pitch.
It also accounts for the increase in the mass fraction at which the
cholesteric phase appears, as shown in Fig. 5. The moderate increase
in conductivity that was reported for their sample can be explained
by the release of trapped ions as suggested by the authors or by an
increase in the total surface area of the CNCs due to the splitting of
the bundles, which not only decreases the surface charge per CNC
but also reduces the number of counter-ions in the Stern layers.
As a consequence, extra ions are released from the surface of the
CNCs, which increases the ionic strength. The lower surface charge
per CNC as well as the higher ionic strength will lead to weaker
repulsions between the CNCs, which is the opposite of what was pro-
posed by the authors. The splitting of bundles into smaller bundles,
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without breaking the microfibrils, also accounts for the unaffected
DP of the cellulose chains they reported. While our simple scal-
ing model for both the length and width of the CNCs suggests that
longer bundles require longer crystalline subunits, we can also refer
to Figs. S1 and S2 of the supplementary material to convince our-
selves that the average length of the constituents of a bundle is
necessarily smaller than the length of the bundle itself.

F. Validation of the theoretical predictions
with MC simulations

Our theoretical framework is based on a second-virial approx-
imation and ignores higher-order correlations, which may become
important at higher packing fractions. In addition, the theory
assumes local uniaxial order, whereas biaxial order is expected to be
strongly coupled to chiral order.29,75 Our theoretical approach has
been tested against simulations of hard twisted triangular prisms,
showing that the handedness of twist, order of magnitude of the
cholesteric pitch, and the trends of the macroscopic chiral behav-
ior as a function of particle shape and thermodynamic state are
well predicted by our DFT calculations.15 Here, we test our the-
oretical predictions against MC simulations on a monodisperse
system of hard splinters. We perform both DFT calculations and
MC simulations on a system of centro-symmetric (i.e., with twist
axis t matching the particle axis) chiral hard splinters of slightly
different dimensions, composed of Nc = 4 spherocylinders, with
Lmin = Lmax = 100 nm, w = 20 nm, d = 8.0 nm, and no surfactant
layer (λS = 0 and deff = d). In this case, DFT calculations predict a
wide region of stability of the left-handed cholesteric phase, which is
confirmed in the MC simulations (see Fig. 8). In particular, we plot
the macroscopic pitch length 𝒫 as a function of packing fraction
η as measured in MC simulations along with the DFT predictions

FIG. 8. Observation of a cholesteric order in Monte Carlo simulations using the
chiral hard-splinter model. The shape of the particles was chosen to correspond to
cotton-based “Cot63” CNCs suspended in a apolar solvent with a surfactant layer
of thickness λS = 1.5 nm at packing fraction η = 0.47. The x, y, and z components
of the nematic director field n̂(z) = (nx(z), ny(z), nz(z)) as a function of z. The
color-matching lines correspond to a fit of the theoretical nematic director field
n̂(z) = (cos(2πz/𝒫 + ψ), sin(2πz/𝒫 + ψ), 0), which yield a measure of the
macroscopic pitch 𝒫 (see Fig. 9). The blue points correspond to the local number
density n(z)d3

eff as a function of z, showing that the effect of the hard walls on the
bulk of the simulation box is negligible.

in Fig. 9. We find that although the theory predicts smaller pitch
lengths 𝒫 than the ones found in simulations, the pitch length
of the cholesteric phase obtained from MC simulations compares
reasonably well with the experimental pitch lengths and shows the
same decreasing trend with η. We also show a typical configuration
of the cholesteric phase of the simulated chiral hard-splinter model
at packing fraction η = 0.47.

We make the following observations. First, our DFT pre-
dictions for the macroscopic pitch length compare well with the
available experimental data on the pitch lengths for monodisperse
suspensions of “Cot63” CNCs in apolar solvents. On the one hand,
we find that bidispersity decreases the pitch length and decreases
the mass fraction of the stability region of the cholesteric phase. On
the other hand, we find that MC simulations on slightly different
hard splinter dimensions show that the pitch length should actually
be larger than the DFT predictions. Assuming that these effects on
𝒫 are robust with respect to slight variations of the shape parame-
ters of the hard splinter model, they would seem to compensate each
other. Additionally, the mass fraction at which the cholesteric phase
is predicted to be stable from DFT calculations is much higher than
observed in experiments but bidispersity shifts the stability regime
of the cholesteric phase to lower mass fractions. Moreover, while the
van der Waals interactions are nearly vanishing for CNCs in toluene
due to an almost perfectly matching optical index, the CNC sus-
pension considered here is dispersed in cyclohexane, and hence, the
dispersion (van der Waals) forces are not fully masked as a result
of a small mismatch in the optical index. As a consequence, the
interaction potentials between the CNCs are not simply excluded-
volume interactions, but residual short-range attractions are exerted
between the CNCs, which will also shift the stability region of
the cholesteric phase to lower mass fractions and thus closer to
the experimental values. In addition, the residual attractions also

FIG. 9. Macroscopic pitch length 𝒫 obtained from Monte Carlo simulations and
from DFT calculations for the cholesteric phase of monodisperse chiral hard splin-
ters. For this comparison, we used a monodisperse system of chiral hard splinters
with Nc = 4 spherocylinders, Lmin = Lmax = 100 nm, w = 20 nm, d = 8.0 nm,
and λS = 0 and reported the pitch for Monte Carlo (MC) simulations (magenta cir-
cles) and DFT calculations (blue circles) as a function of the (volumetric) packing
fraction η. The black line denotes the equation of state βPv0 vs η. The compari-
son is reasonable within the expected quantitative errors of the DFT calculations.
MC simulations confirm that our simple hard-particle model of CNCs stabilizes
a cholesteric phase with a macroscopic pitch length in reasonable agreement
with experimental values. A typical simulation configuration of the left-handed
cholesteric phase at η = 0.47 is shown on the left, with particles colored according
to their orientation.
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explain the experimental observation of a kinetically arrested gel
at sufficiently high mass fractions, roughly above 45 wt. %. Includ-
ing the attractive interactions in our MC simulations will increase
the twisting power between the CNCs, and the simulated values
for the cholesteric pitch 𝒫 will decrease and become closer to the
experimental values. In addition, it is indeed known that a higher
ionic strength allows for closer interactions between the CNCs,
thereby enhancing the twisting power and reducing the cholesteric
pitch.76

IV. CONCLUSIONS
We developed a simple hard-particle model, the chiral hard-

splinter model, to describe the behavior of cotton-based CNCs
assemblies in apolar solvents with surfactants. To test this model,
we chose the particle model parameters such that the shape matches
the typical shape of cotton-based “Cot63” CNCs from Refs. 44
and 55. A chiral hard splinter consists of a chiral bundle of Nc hard
spherocylinders, each modeling one of the crystalline microfibrils
composing the CNC. The layer of surfactants adsorbed to the CNCs
is modeled by using an effective diameter of the crystallites com-
posing the CNCs. We accounted for the density of the CNCs and
surfactant to compare our simulation to actual pitch measurements
expressed in mass fractions.

We employed a recently developed DFT approach to study
the cholesteric phase of our model system. We test the validity of
our theoretical calculations against MC simulations. Importantly,
we observed that our simple hard-particle model of right-handed
CNCs stabilizes a left-handed cholesteric phase (i.e., an inversion
of chirality) with macroscopic pitch values 𝒫 that compare well
with the experimental findings. This model predicts that 𝒫 decreases
with the size of the CNCs, which is contrary to current beliefs and
supports most recent experimental observations on the effect of frac-
tionation on the macroscopic pitch62 but also the redshift induced
by tip sonication.60 Moreover, our theoretical predictions for the
cholesteric pitch lengths using this hard-splinter model are in good
agreement with the experimental observations for CNC suspensions
in apolar solvents, primarily relevant for this work.

In general, our findings suggest that the clustering of cellu-
lose crystallites into chiral twisted bundles, which constitute the
CNCs, is the missing link explaining the highly debated chiral-
ity transfer mechanism in the nanocellulose community, from the
molecular level (the D-glucose monomers) and the twisted crys-
tallites to the formation of a cholesteric liquid crystal phase in
suspension. The chiral shapes of the CNCs are sufficient to induce
a purely entropy-stabilized cholesteric phase with a pitch length
in good agreement with the experimentally measured ones. Monte
Carlo simulations show that the pitch length should be larger than
the predictions from the DFT calculations, whereas polydispersity
increases the pitch length. Other effects such as residual (chiral) van
der Waals (including dipolar56) interactions may decrease the pitch
as well.77

While the chiral hard-splinter model allows us to capture most
of the experimental observations on the chiral behavior of CNCs
in concentrated suspensions, a refinement based on an analogous
chiral soft-splinter model may account for the residual (van der
Waals) interactions of CNCs in apolar solvents but also for strong
electrostatic repulsions in the case of aqueous CNC suspensions.15

While first attempts have recently been made to demonstrate the
presence of bundles and their impact on the self-assembly in
CNC water suspensions,78 we hope that our work will further
inspire experimental investigations on the cholesteric pitch of well-
characterized CNCs in both apolar as well as aqueous suspensions to
fully validate the chiral hard-splinter model.

SUPPLEMENTARY MATERIAL

See the supplementary material for the WebGL applet for the
chiral hard-splinter model, the dimension characteristics of the
model of CNC bundles employed, the volume to mass fraction con-
version factors (monodisperse and bidisperse cases), additional DFT
curves for the bidisperse case, and all DFT curves expressed vs the
packing fraction η.
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