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M A T E R I A L S  S C I E N C E

Inverse design of soft materials via a deep  
learning–based evolutionary strategy
Gabriele M. Coli*†, Emanuele Boattini*†, Laura Filion, Marjolein Dijkstra

Colloidal self-assembly—the spontaneous organization of colloids into ordered structures—has been considered 
key to produce next-generation materials. However, the present-day staggering variety of colloidal building 
blocks and the limitless number of thermodynamic conditions make a systematic exploration intractable. The 
true challenge in this field is to turn this logic around and to develop a robust, versatile algorithm to inverse 
design colloids that self-assemble into a target structure. Here, we introduce a generic inverse design method to 
efficiently reverse-engineer crystals, quasicrystals, and liquid crystals by targeting their diffraction patterns. Our 
algorithm relies on the synergetic use of an evolutionary strategy for parameter optimization, and a convolutional 
neural network as an order parameter, and provides a way forward for the inverse design of experimentally feasible 
colloidal interactions, specifically optimized to stabilize the desired structure.

INTRODUCTION
Self-assembly of colloidal particles is ubiquitous in nature and is 
considered to be of paramount importance for the design of novel 
functional materials. For example, viruses, lipid bilayers, tissues, 
atomic and molecular crystals, liquid crystals, and nanoparticle 
superlattices are all self-assembled from smaller components in a 
highly intricate way. The structure of such an assembly is deter-
mined by the interactions of the building blocks and by the thermo-
dynamic conditions, e.g., pressure, temperature, or composition. 
Understanding the relation between building blocks and self- 
assembled arrangements is essential for materials design, as the physi-
cal properties of materials are intimately related to the structure.

On the other hand, huge progress has been made over the past 
decades in the synthesis and fabrication of colloidal particles, result-
ing in a spectacular variety of novel colloidal building blocks to the 
point where particles with a vast array of shapes and interaction 
potentials can be made on demand (1–5). Traditionally, tremen-
dous efforts have been devoted to the “forward design” problem: 
Which structures with what properties are formed for a given 
colloidal building block under what circumstances? A major draw-
back of this approach is that the number of possible building blocks 
and thermodynamic conditions is intractably large, making a sys-
tematic exploration of these design spaces extremely demanding.

The true challenge in materials science is to develop a robust, 
versatile algorithm for solving the “inverse design” problem and to 
design building blocks that self-assemble into a target structure. 
The lack of such an inverse design method (IDM) forms a substan-
tial obstacle for the full exploitation of colloidal self-assembly in the 
development of tomorrow’s materials (6–10).

In this work, we present a general IDM based on deep learning 
techniques to reverse-engineer a multitude of thermodynamic phases, 
ranging from crystals to liquid crystals and even quasicrystals (QCs). 
A machine learning–based order parameter is combined with an 
evolutionary strategy that searches the multidimensional parameter 
space to optimize the colloidal interactions and thermodynamic 

conditions (density, temperature, etc.) for the self-assembly of a 
target phase.

Designing an IDM to reverse-engineer phases, from crystals to 
liquid crystals and QCs, generally requires two ingredients. First, 
one should define an order parameter that is sensitive to the global 
structure of a multitude of phases and can be exploited as a fitness 
function indicating how “close” one is to the desired outcome. Second, 
one has to devise a mathematical scheme to update the design 
parameters based on the chosen fitness function.

The latter requirement can be easily satisfied by choosing among 
several techniques, either borrowed from classical optimization 
algorithms (11–13) or inspired by statistical physics (12,14,15). Our 
IDM uses the covariance matrix adaptation evolutionary strategy 
(CMA-ES) for parameter optimization (12, 16).

Conversely, the choice of an effective fitness function represents 
the real bottleneck for any IDM to succeed. In the last decade, a 
plethora of order parameters has been used to define fitness func-
tions for all kinds of phases. For instance, free-energy or chemical- 
potential differences with respect to the competing structures have 
been used to reverse-engineer three-dimensional (3D) crystal lattices 
starting from (non)spherical colloids (17,18). Often, full knowledge 
of the target crystal has been translated into a fitness function by 
computing the mean square displacements of the particles with 
respect to their target lattice points (6) or through the radial distri-
bution function (19–21). The sometimes unrealistic resulting po-
tentials have been explicitly filtered by Adorf et al. (22) to obtain 
smooth and short-range interactions.

Although all these fitness function definitions brilliantly achieve 
their goals, they often lack generality, and they are not able to simul-
taneously and equally penalize competing phases. In other words, 
they do not have the ability to create an approximately flat fitness 
landscape, where the design engine can move smoothly, with only 
one preferred region corresponding to the target phase. Moreover, 
in the case of QCs, despite the certified need of two inherent length 
scales in the system (23–26), the actual positions of the constituent 
particles remain unknown, therefore representing a substantial chal-
lenge to the above strategies.

Inspired by the highly successful history of identifying phases by 
their scattering patterns in combination with advances in machine 
learning, we attack the problem from a new avenue and directly use 
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an encoding of the structure factor as the order parameter. To this 
end, we train a convolutional neural network (CNN) to classify 
different phases from their diffraction pattern, and use the result to 
construct a fitness function, such that configurations with a higher 
likelihood of being classified as the target phase will be scored with 
a higher fitness. A sketch of the final algorithm is shown in Fig. 1. A 
detailed discussion on the choice of a CNN-based fitness function can 
be found in the Supplementary Materials. This algorithm turns out to 
be extremely robust and versatile, facilitating the inverse design of 
not only crystal and liquid crystalline phases but also QCs, which due 
to their nonperiodicity are notoriously difficult to inverse design.

RESULTS
Our IDM
Our IDM combines the CMA-ES for parameters optimization and 
a CNN for the fitness evaluation, which are both described in detail 
in Methods. The goal is to optimize the free parameters of a given 
model to favor the formation of a target phase.

The method proceeds in generations, or iterations, consisting of 
essentially three steps: (i) sampling, (ii) fitness evaluation, and (iii) 
update. In the following, we give a general overview of these three 
steps, which are sketched in Fig. 1.

In the first step (Fig. 1A), we draw a fixed number of candidate 
sets of parameters from a multivariate Gaussian distribution. The 
dimension of this multivariate Gaussian distribution is determined 
by the number of design parameters that we wish to tune. For each 
candidate set of parameters, we then perform a simulation of the 
system and save a number of representative configurations. In the 
second step (Fig. 1B), we score and rank the samples based on their 
fitness f. In general, the fitness is a measure of similarity between a 
sample and a specific target, and it is maximized when the target is 
reached. Here, we introduce a new fitness function based on CNNs 
that are trained to classify different phases based on their diffraction 
patterns. We use this CNN to process the configurations saved 
during each simulation and assign a larger fitness to samples with a 
higher probability of being classified as the target phase. Last, on the 
basis of this score, the mean and the covariance matrix of the 
multivariate Gaussian distribution are updated using the CMA 
equations, which are designed to facilitate an efficient exploration 
of parameter space. As sketched in Fig. 1C, the update not only 
allows the mean of the distribution to move toward regions with a 
higher fitness but also speeds up sampling by stretching the distri-
bution when several updates are in the same direction and then 
shrinking it once the fitness is maximized. This whole procedure is 
repeated multiple times until the fitness is maximized and/or a 
predetermined convergence criterion is met.

Setting up the IDM in two dimensions
The first model we consider is a 2D system in which the particles 
interact with a hard-core square-shoulder (HCSS) potential

  u(r ) =  
{

 
∞ ,

  
r < 

  ϵ,   ≤ r ≤     
0,

  
r > 

     (1)

where r is the center-of-mass distance between two particles, ϵ is the 
interaction strength,  is the core diameter,  is the interaction 
range, and  = 1/kBT, with kB as Boltzmann’s constant and T as the 

temperature. This model has been shown to self-assemble into a 
variety of phases (24, 27–29), including several crystal structures 
and various QCs, which makes it an ideal playground for setting up 
and testing our IDM. The three QCs we consider here, which are the 
dodecagonal QC (QC12), the decagonal QC (QC10), and the octa-
decagonal QC (QC18), are found to be stable for different values of 
the interaction range  and only in a tiny range of densities  and 
temperatures T. In all cases we explore, the competing stable phases 
include the fluid, the hexagonal (HEX) crystal, and the square (SQ) 
crystal phase.

To set up our IDM, we trained a CNN to classify the aforemen-
tioned phases based on their 2D diffraction patterns, as described in 
Methods. Specifically, the CNN takes as input the diffraction pat-
tern of a given configuration and outputs a vector of real numbers 
with as many components as the number of phases to distinguish. 
Each number in the output is indicative of the likelihood that the 
given input corresponds to one of the phases. This output is then 
used to define the fitness function to target a specific phase.

The dataset for training the CNN is built by performing Monte 
Carlo simulations of the HCSS model in the NPT ensemble. For each 
phase, we perform simulations at different state points and collect a 
large number of independent configurations. The set of diffraction 
patterns generated from these configurations constitutes the dataset 

Fig. 1. Schematic representation of the three steps performed at each genera-
tion. (A) In the first step, we draw candidate sets of parameters (p1 and p2 in the 
figure) from a multivariate Gaussian distribution. For each set or sample, we then 
perform a simulation. (B) In the second step, samples are ranked and scored on the 
basis of their fitness f, which is evaluated using a convolutional neural network 
trained to classify phases according to their diffraction patterns. Samples with a higher 
likelihood of being classified as the target phase will be scored with a higher fitness. 
(C) In the third and final step, the Gaussian distribution is updated to move toward 
regions of the parameter space where the fittest samples have been encountered.
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on which the CNN is trained and validated. Overall, we find the 
CNN to be highly effective and able to classify all phases with 100% 
accuracy.

Reverse engineering of QC12 in the HCSS model
We start our investigation by considering the HCSS model with a 
fixed value of the shoulder width  = 1.4, at which the QC12 phase 
has been shown to be stable (27, 28). The phase diagram as a 
function of temperature and pressure [constructed using data points 
from (27)] is reported in Fig. 2A.

The goal here is to reverse-engineer the QC12 phase by letting 
the evolutionary strategy find the narrow region in the phase 
diagram where the QC12 phase is stable by tuning the system 
parameters pressure P and temperature T. In other words, we keep 
the interaction parameters fixed while trying to optimize the thermo-
dynamics variables to favor the formation of QC12. Our knowledge 
of the phase diagram allows us to easily assess and monitor the 
performance of the reverse engineering process.

To explicitly target QC12, we use the output of the trained CNN 
to define the fitness function f for the evolutionary strategy. In par-
ticular, for any sample, i.e., for any simulation, we define the fitness 
as  f =   P ̄    QC12   , where PQC12 is the probability that the diffraction pat-
tern of a given configuration is classified as a QC12 by the CNN, 
and the bar indicates an average taken over representative configu-
rations visited during the simulation.

The results of the reverse engineering process are summarized in 
Fig. 2. Starting the reverse engineering process with a Gaussian 
centered in the region of stability of the fluid phase, the algorithm 
reaches the region where the target QC12 is stable in approximately 
25 generations. Figure 2A shows the evolution of the multivariate 
Gaussian distribution in the temperature kBT/ϵ-pressure P2 plane 
across successive generations. A representative snapshot obtained 
in the last (100th) generation is shown in Fig. 2B, while the corre-
sponding diffraction pattern, characterized by 12-fold rotational 
symmetry, is shown in Fig. 2C.

The success of the algorithm heavily relies on the ability of the 
CNN to spot even small structural variations in the system. At the 

early stages of the reverse engineering process, when the system is 
in the fluid phase, the algorithm already finds it convenient to in-
crease the pressure and, hence, the density to increase the overall 
structural order. This can clearly be seen in Fig. 2D, where we 
plot the evolution of the mean fitness averaged over all samples. 
Although the variations of the fitness in the early generations are 
very tiny, they are sufficient to guide the evolutionary strategy in the 
right direction.

An efficient exploration of phase space is then made possible by 
the CMA equations, which evolve the Gaussian distribution at each 
generation. This not only allows the mean of the distribution to 
move toward regions with a higher fitness but also allows the cova-
riance to stretch when several updates are in the same direction and 
then shrink once the fitness is maximized. This is shown in Fig. 2D, 
where we plot the evolution of both the mean fitness and the deter-
minant of the covariance matrix. The determinant becomes larger 
when the fitness improves, and it decays exponentially once the 
fitness is maximized.

Note that, here, we initialized the mean of the Gaussian distribu-
tion at a specific state point within the region of stability of the fluid 
phase, but we find the algorithm to be largely robust to changes in 
the initial conditions. In the Supplementary Materials, we show 
additional trajectories of the reverse engineering of QC12 obtained 
by starting with a Gaussian distribution centered at different state 
points, i.e., in the fluid phase, the SQ phase, the HEX phase at rela-
tively high temperature and low pressure, and the HEX phase at 
relatively low temperature and high pressure. In all cases, the mean 
of the parameter distribution converges to the region of stability of 
the target QC12, showing that the performance is not affected by 
the particular choice made for the initial conditions.

Furthermore, we would like to stress a crucial aspect that demon-
strates the versatility of the algorithm. The same method, and the 
exact same CNN, can be used to target any phase that was included 
in the training dataset, simply by changing the definition of the 
fitness. For instance, to reverse-engineer the HEX crystal phase, it is 
sufficient to impose  f =   P ̄    HEX   . A trajectory of the reverse engineer-
ing of the HEX crystal is shown in the Supplementary Materials.

Fig. 2. Reverse engineering of QC12 in the HCSS model. (A) Evolution of the Gaussian distribution in the kBT/ϵ − P2 plane. Points and ellipses represent the mean and 
the covariance matrix (within one SD) of the distribution. The phase diagram in the background is constructed using data points from (27). (B) Representative snapshot 
of QC12 obtained during the last generation. The hard cores are shown in a dark color, while lines show their Voronoi tessellation. (C) Diffraction pattern of the snapshot 
in (B). (D) Evolution of the mean fitness and the determinant of the covariance matrix.
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Reverse engineering of QC12, QC10, and QC18 in the HCSS model
As already discussed, in addition to QC12, the HCSS model exhibits 
two other quasicrystalline structures, which are stabilized for differ-
ent values of the shoulder width . As a natural next test, we now 
explore whether we can reverse-engineer all the three stable QCs 
(QC12, QC10, and QC12) considered in this work. To this end, we 
fix the temperature to kBT/ϵ = 0.17, a temperature for which all 
three QCs are stable, and let the evolutionary strategy optimize the 
shoulder width  and the pressure P for each specific QC. In all 
three cases, we start the reverse engineering process from the same 
state point in the fluid phase ( = 1.5 and P2 = 30) and choose 
the fitness function appropriate for the target phase. The results of 
the reverse engineering process are summarized in Fig. 3. In particu-
lar, Fig. 3 (A to C) shows the evolution of the multivariate Gaussian 
distribution when targeting (i) QC12, (ii) QC10, and (iii) QC18. 
Depending on the QC to be found, the distribution evolves in dif-
ferent directions and eventually converges to different state points. 
In all cases, the final values of pressure and shoulder width obtained 
are in excellent agreement with those at which the three QCs have 
been shown to be stable (24, 27, 28, 29). Representative snapshots of 
the QCs were obtained, and their diffraction patterns are shown in 
Fig. 3 (D to F). Each diffraction pattern immediately confirms the 
presence of the correct quasicrystalline structure.

Application to a new model interaction
Thus far, we have only addressed the model that was used for train-
ing the CNN. A natural next question is whether the method is general 

enough to work on other model systems without having to retrain 
the CNN for the specific model under consideration. To answer this 
question, we now consider a 2D softened-core-shoulder (SCS) 
model with an interaction potential given by

  u(r ) / ϵ =   (      ─ r   )     
14

  +    1 − tanh [k(r −  ) ]  ─────────── 2    (2)

where ϵ is the energy scale,  represents the typical core diameter, 
and k and  are two parameters that, respectively, control the steep-
ness and the characteristic interaction range. Similar to the HCSS, 
QC12 has been shown to be stable in a limited range of densities 
and temperatures with a shoulder width of  = 1.35 and k = 
10 (30, 31).

To test the ability of our method to be effective on new types of 
interactions, we use the same CNN that was trained on the HCSS 
model to reverse-engineer QC12 in the SCS model. Similar to the 
HCSS case, we keep the interaction parameters fixed, i.e.,  = 1.35 
and k = 10, and let the evolutionary strategy find the region of 
densities and temperatures in which QC12 is stable. The phase 
diagram in Fig. 4A is used as a reference to assess and monitor the 
performance of the method. Note that, since this phase diagram is 
in terms of density and temperature, simulations are now performed 
in the canonical ensemble. Moreover, in contrast to the HCSS case, 
there are now stable coexistence regions between multiple phases 
(indicated with a gray background in Fig. 4A). As the CNN was not 
trained on configurations with a phase coexistence, this represents 
a further robustness test for our method.

Fig. 3. Reverse engineering of QC12, QC10, and QC18 in the HCSS model. (A to C) Evolution of the Gaussian distribution in the P2 − / plane during the reverse 
engineering of the (A) QC12, (B) QC10, and (C) QC18 phases. Points and ellipses represent the mean and the covariance matrix (within one SD) of the distribution. (D to F) Repre-
sentative snapshots of (D) QC12, (E) QC10, and (F) QC18 obtained in the last generation, along with their diffraction patterns and Voronoi tessellations.
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The results of the reverse engineering process are summarized in 
Fig. 4. Specifically, Fig. 4A shows the evolution of the multivariate 
Gaussian distribution in the temperature-density plane. Starting 
with a distribution centered in the fluid region, the algorithm 
immediately starts to increase the density and lower the temperature 
to increase the overall order. Impressively, after only five genera-
tions, the mean of the distribution is already inside the region of 
stability of QC12, demonstrating the robustness of the CNN to 
changes in the interaction potential. In the remaining generations, 
the covariance of the distribution shrinks, and the mean moves 
toward lower temperatures in the phase diagram. A representative 
snapshot of QC12 obtained during the last generation and its dif-
fraction pattern are shown in Fig. 4 (B and C), respectively.

Looking more closely at the evolution of the model parameters, 
it is interesting to observe the different behavior of the temperature 
and density components. After the first five iterations, the density 
simply oscillates in the tiny range of stability of QC12, while a large 
exploration keeps happening in temperature. This can be seen also 
by looking at the evolution of the SDs of temperature (T) and den-
sity () in Fig. 4D. While  decays almost monotonously from the 
very beginning, T oscillates for about 20 generations before start-
ing its decay.

We would also like to stress that the reason why the algorithm 
seems to prefer lower temperatures, despite being already in the 
stability region of the target phase, is solely related to the nature of 
the CMA-ES equations (see Methods) and is not a feature of the 
selected fitness function. A detailed discussion of this behavior can 
be found in the Supplementary Materials.

Phase discovery
The fundamental ability of the algorithm to generalize to different 
interaction potentials opens up the possibility of finding quasicrystals 
in new model systems. For instance, given the similarities between 
the SCS and the HCSS models, we might ask whether also the SCS 
model stabilizes different QCs for different values of the shoulder 
width . We note that, compared to the HCSS model, much less is 
known about the phase behavior of the 2D SCS system.

Here, we explore the possibility of the SCS model to form a 
QC10. To this end, we fix k = 10 as in the previous case, and let the 
evolutionary strategy optimize three parameters: shoulder width , 
temperature T, and pressure P. Note that, by varying these three 
parameters simultaneously, the algorithm might encounter phases 
that were not included in the dataset for training the CNN. We do 
not expect this to be a problem, as long as no phase is misclassified 
as the target phase. This could possibly cause the algorithm to get 
stuck and eventually converge to the wrong phase. While this prob-
lem did not occur in our test, a simple solution would be to include 
the newly found phase in the training dataset and retrain the CNN.

The results of the reverse engineering process are summarized in 
Fig. 5. Starting from a fluid phase, the evolutionary strategy decreases 
the temperature and increases both the pressure and shoulder width 
to maximize the fitness (see Fig. 5, C  to F), finding the not-yet- 
predicted QC10 phase for this system. As a further confirmation 
that the algorithm has found a QC10, Fig. 5B shows a representative 
snapshot obtained during the last generation, along with the corre-
sponding diffraction pattern. Hence, our algorithm has successfully 
located a new phase in the SCS model.

Fig. 4. Reverse engineering of QC12 in the SCS model. (A) Evolution of the Gaussian distribution in the 2 − kBT/ϵ plane. Points and ellipses represent the mean and 
the covariance matrix (within one SD) of the distribution. The phase diagram in the background is constructed using data points from (30). Coexistence regions are indicated 
in light gray. (B) Representative snapshot of QC12 obtained during the last generation and its Voronoi tessellation. (C) Diffraction pattern of the snapshot in (B). (D) Evolution 
of the square root of the covariance matrix’s diagonal elements, which correspond to the SDs along the temperature (T) and density () directions. (E) Evolution of the 
mean fitness and the mean temperature in (A).
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Extension to 3D systems
Up to this point, we have shown the efficacy of our method for 2D 
systems where the scattering pattern is simply a 2D image. Last, we 
extend and test our approach on 3D systems. To do so, we consider 
a 3D system of rod-like particles, modeled as hard-core spherocyl-
inders with a soft deformable corona. We consider spherocylinders 
with a length-to-diameter ratio L/ = 5, interacting via the pair 
potential in Eq. 2, where the center-of-mass distance r is replaced by 
the minimum distance between two rods dm. Note that dm depends 
on both the center-of-mass distance and the relative orientation of 
the two rods.

The phase behavior of this system with k = 10 and  = 1.35 has 
been recently studied in (32). In addition to the standard isotropic 
(I) and smectic (SM) phases, this model has been shown to stabilize 
phases consisting of quasi-2D layers with unconventional symme-
tries, including SQ (3DSQ) and HEX (3DHEX) crystals, and a 3D 
12-fold QC (3DQC12). The phase diagram in terms of density and 
temperature is reported in Fig. 6A.

As done in the 2D case, to set up our IDM, we train a CNN to 
classify all the stable phases of this system. Note, however, that the 
inputs of the CNN are now 3D diffraction patterns (see Methods for 
more details). Again, we find the CNN to be highly effective and 
able to classify all phases with 100% accuracy. The output of the 
trained CNN is then used to define the fitness for the evolutionary 
strategy where we target the 3DQC12 phase.

The results of the reverse engineering process are summarized in 
Fig. 6. In particular, Fig. 6A shows the evolution of the multivariate 
Gaussian distribution in the density-temperature plane. Starting 

with a distribution centered in the SM phase, the mean of the distri-
bution evolves via the coexistence region of the SM and 3DHEX 
phase, to the 3DSQ-3DQC12 phase coexistence region, until it 
converges in the stability region of the 3DQC12 phase. We note 
that, although the shortest path in parameter space requires the dis-
tribution to cross the 3DSQ region, the algorithm actually avoids it, 
preferring to enter the coexistence region at high temperature and 
then move downward in temperature, where samples with higher 
fitness are encountered. Unexpectedly, this pathway for the forma-
tion of QC12 phases was also identified in (29).

A representative snapshot of the 3DQC12 obtained during the 
last generation along with its 3D diffraction pattern is shown in 
Fig. 6 (A and B, respectively). As a further confirmation of the in-layer 
QC12 arrangement, Fig. 6 (C and D) shows a top view of the same 
snapshot and the corresponding in-layer 2D diffraction pattern.

The extension of our method to the 3D case is of particular interest 
from a practical point of view. While a 2D diffraction pattern im-
mediately provides structural information that is easy to read even 
by eye, the 3D counterpart is much harder to interpret. For this reason, 
to deal with 3D systems, it is often necessary to project the particle 
coordinates onto the planes with the relevant symmetries. This as-
pect becomes irrelevant when using a CNN that naturally processes 
the full 3D information because of its inherent architecture.

DISCUSSION
Diffraction patterns are used across a multitude of areas in materials 
science to understand what structure one is dealing with. In general, 

Fig. 5. Discovery of QC10 in the SCS model. (A) Evolution of the Gaussian distribution in kBT/ϵ − P2 − / space. Points and ellipsoids represent the mean and the 
covariance matrix (within one SD) of the distribution. (B) Representative snapshot of QC10 obtained during the last generation, along with its diffraction pattern and 
Voronoi tessellation. (C) Evolution of the mean fitness. (D to F) Evolution of the three parameters in (A) optimized in the reverse engineering process: (D) temperature 
kBT/ϵ, (E) pressure P2, and (F) shoulder width /.
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this information constitutes a unique signature of each structure, 
whether it is a crystal, a fluid, a liquid crystal, or a QC, and shows 
notable robustness to changes in density and interaction poten-
tials. This can efficiently incorporate all the relevant information 
of a target phase and therefore provides a natural order parameter  
for IDMs.

With the present work, we have shown how the use of CNNs as 
diffraction patterns classifiers can provide a useful order parameter 
for the reverse engineering of a multitude of phases. For the above 
reason, an IDM built on such an order parameter is not restricted to 
a specific class of materials but is instead naturally tailored to 
reverse-engineer multiple colloidal phases, ranging from crystals 
and QCs to liquid crystals.

Our results pave the way to structure optimization and discovery, 
especially with binary and ternary systems, where the design space 
becomes even larger due to new system parameters such as size 
ratio and composition. In these cases, where the present knowledge 
of phase diagrams and emerging phases is limited, IDMs can prove 
extremely precious and efficient.

METHODS
CNNs as a fitness function
CNNs are a particular type of deep neural networks specifically 
designed to handle tensorial inputs, such as images. For a detailed 
description of CNNs, see, e.g., (33). In this work, we train a CNN to 
classify different phases from their diffraction patterns, which are 
either 2D or 3D images. The output of the CNN is then used to 
define a fitness function f for the evolutionary strategy.

More specifically, the CNN takes as input the diffraction pattern 
of a given configuration and outputs a vector of real numbers with 
as many components as the number of phases to distinguish. Each 
number in the output is indicative of the probability that the given 
input corresponds to one of the phases. We use this CNN to process 
the configurations saved during each simulation and define the 
fitness of a given sample as

  f =   P ̄    target    (3)

where Ptarget is the probability that the diffraction pattern of a given 
configuration is classified as the target phase by the CNN, and the 
bar indicates an average taken over 10 representative configurations 
saved during the simulation of that sample.

Training the CNNs
To train the CNNs to recognize different phases, we need to perform 
a number of different steps. Specifically, we first generate a number 
of real-space equilibrium configurations for each phase and then 
generate the associated diffraction patterns. To reduce computa-
tional time and memory usage, these diffraction patterns are pre-
processed before being used to train the CNNs. Each of these steps 
is described in detail in the remainder of this section.

Generating the training configurations
The configurations for training the CNNs are generated by perform-
ing Monte Carlo simulations of the 2D HCSS model (24, 27, 28, 29) 
and the SCS model of spherocylinders in three dimensions (3D) (32). 
In 2D, simulations are performed in the isobaric-isothermal ensemble 
(NPT) of a system of N = 256 particles in a square box of side length 
L with periodic boundary conditions. One volume move is per-
formed every N particle displacement moves. The maximum dis-
placement and the maximum volume change are tuned during the 
equilibration steps to obtain acceptance ratios of 45 and 20%, 
respectively.

For each of the six phases considered (fluid, HEX, SQ, QC12, 
QC10, and QC18), we run simulations at different state points. All 
simulations are equilibrated for a total of 5 × 105 Monte Carlo sweeps. 
The equilibration phase is followed by a total of 1 × 106 sweeps, 
during which we save a configuration every 103 sweeps (yielding 103 
independent configurations). This is repeated for 10 different state 
points for each of the considered phases.

In 3D, simulations are performed in the canonical ensemble (NVT) 
of a system of N = 432 particles in a rectangular box elongated in the 

Fig. 6. Reverse engineering of QC12 in a 3D model of soft spherocylinders. (A) Evolution of the Gaussian distribution in the 3 − kBT/ϵ plane. Points and ellipses 
represent the mean and the covariance matrix (within one SD) of the distribution. The phase diagram in the background is constructed using data points from (32). Co-
existence regions are indicated in light gray. (B) Representative snapshot of the 3DQC12 obtained during the last generation and (C) its 3D diffraction pattern. (D) Top view 
of the snapshot in (B). The centers of mass and the corresponding Voronoi tessellation are highlighted in a light color. (E) In-layer diffraction pattern of the top view in (D).
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z direction (i.e., Lx = Ly = L and Lz > L) and with periodic boundary 
conditions. The maximum displacement is again tuned during the 
equilibration steps to obtain an acceptance ratio of 45%.

For each of the five phases considered (I, SM, 3DHEX, 3DSQ, 
and 3DQC12), we run simulations at different state points, with the 
same number of production sweeps. However, the duration of the 
equilibration phase is 5 × 104 Monte Carlo sweeps, and five state 
points are taken into account for each of the considered phases.

Generating the diffraction patterns
Diffraction patterns for each configuration are evaluated using

  S(k ) =   1 ─ N   (k ) (− k)  (4)

where  (k ) =  ∑ j=1  N     e   −ik· r  j     is the Fourier transform of the density, rj is 
the position of particle j, and k is a wave vector. In 2D, the k vectors 
are chosen by  k =  2 _ L  ( n  x  ,  n  y  ) , where nx and ny are two integers in the 
interval [ − 64,64]. As a result, the 2D diffraction patterns consid-
ered in this work are built on a 129 × 129 grid. In 3D, the k vectors 
are chosen by   k = 2 (     n  x   _ L  ,   n  y   _ L  ,   n  z   _  L  z  

   )    , with nx, ny, nx ∈ [−32,32], resulting 
in a 65 × 65 × 65 grid.

While diffraction patterns are, by definition, translationally 
invariant, they are not invariant to rotations. However, we must 
ensure that the CNNs are able to classify the desired phases regardless 
of their orientation. To this end, each training configuration is 
rotated by a random angle before evaluating its diffraction pattern. 
A representation of this transformation in the 2D case is shown in 
Fig. 7. In the 3D case, given the inherent symmetry of the model of 
spherocylinders considered, we randomly rotate each configuration 
around the z axis (which always corresponds to the elongated axis 
of the box). In a more general case, one could perform random 
rotations around a randomly selected axis. Note that, to rotate a 
configuration, we first create a larger copy of the system by copying 
the original simulation box in all directions. We then rotate this 
larger copy of the system and finally take a portion of it with the 
same volume as the original simulation box. Note that the retained 
portion might have a slightly different number of particles than the 
original configuration. The sets of diffraction patterns obtained 
after having rotated each configuration are finally used to build the 
datasets for training the CNNs.

Preprocessing
To increase the overall efficiency, the diffraction patterns undergo a 
final preprocessing step before being used as the input of the CNNs. 

In particular, each diffraction pattern passes through a MaxPooling 
filter (with size 4 × 4, zero-padding with size p = 2, and stride s = 4) 
that effectively reduces the input size by a factor of 4 in each dimen-
sion. The effect of this transformation is shown in Fig. 8 for both the 
(i) 2D and (ii) 3D cases.

Note that this is not a necessary step of the algorithm, and its 
only purpose is to increase the efficiency of the method in terms of 
computational time and memory usage. With such a preprocessing, 
the CNNs used here can be trained within 1 hour on the central 
processing unit (CPU) of a modern laptop.

Neural network architecture
The CNNs used in this work are composed of two convolutional 
layers for feature extraction and a fully connected part with one 
hidden layer for the final classification. The architecture of the 2D 
CNN is shown in Fig. 9. As shown in the figure, each convolutional 
layer performs three operations on the input: a convolution, a non-
linear transformation through a ReLU activation function (where 
ReLU(x) = max(0,x)), and a downsampling operation through a 2 
× 2 MaxPooling layer (with padding size p = 0 and stride s = 2). In 
the following, we give all the details about the network parameters.

The first convolutional layer has one input channel (i.e., the 
diffraction pattern to process) and nine output channels (i.e., the 
extracted features). As indicated in Fig. 9, the kernels used in this 
layer have size 4 × 4, padding p = 1, and stride s = 1. The second 
convolutional layer has nine input channels and four output chan-
nels, and the kernels of this layer have size 3 × 3, padding p = 1, and 
stride s = 1. The output of the second convolutional layer is stacked 
and flattened to be used as the input of the fully connected part of 
the network. The latter consists of a hidden layer of dimension 
20 with a ReLU activation function and an output layer with a 
SoftMax activation function. The size of the output layer is equal to 
the number of phases we wish to distinguish, which is six in the 
2D case.

The 3D CNN has almost the same structure as the 2D one, with 
the only exception being that the convolutional kernels are extended to 

Fig. 7. Data transformation. (A) Snapshot and diffraction pattern of an SQ crystal 
in its original orientation. (B) Same snapshot and diffraction pattern as (A) after a 
rotation by a /6 angle. Note that the rotation is performed in real space.

Fig. 8. Preprocessing. The size of the diffraction pattern of a QC12 in (A) 2D and 
(B) 3D is reduced through a MaxPooling filter.
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three dimensions (e.g., a 3 × 3 kernel in 2D becomes a 3 × 3 × 3 kernel 
in 3D), and the output layer has a dimension of 5 (we consider five 
phases in the 3D system).

Training
The parameters of the CNNs are optimized by minimizing the 
cross-entropy loss with the addition of a weight decay regulariza-
tion term (34, 35). Specifically, the loss is minimized with the Adam 
optimizer (36), a learning rate of 10−4, and a PyTorch implementa-
tion (37). Early stopping is also applied to prevent overfitting.

Workflow of the CMA-ES
The CMA-ES optimizes iteratively the design parameters across 
successive generations. At each generation, we draw n samples from 
a multivariate Gaussian distribution, whose dimension D corresponds 
to the number of parameters we wish to optimize. Subsequently, we 
evaluate the fitness function f of the generated samples, we order the 
samples in ascending order based on their fitness, and we pick the set 
X of the best k samples. Last, the mean    →    (a D-dimensional vector) 
and the covariance matrix Σ = 2C of the Gaussian distribution are 
updated using the following equations

   

  μ  i   ′  

  

=  μ  i   +   ∑ 
x∈X

    w(x ) ( λ  i  (x ) −  μ  i  )

    

  q  i   ′  

  

= (1 −  c  1   )  q  i   +  c  2     √ 
_

  Σ   −1     ij  (  μ  j   ′   −  μ  j  )

    

  p  i   ′  

  

= (1 −  c  3   )  p  i   +  c  4  (  μ  i   ′   −  μ  i  )

      C  ij   ′    = (1 −  c  5   −  c  6   )  C  ij   +  c  6    p  i   ′    p  j   ′      

 

  

 +  c  5     ∑ 
x∈X

    w(x )  (      λ  i  (x ) −  μ  i   ─ σ      
 λ  j  (x ) −  μ  j   ─ σ    −  C  ij   )   

     

 σ ′  

  

 = σexp [  c  7    
(

     
∥   

→
  q ′    ∥

 ─  〈 ∥ N(0, I ) ∥ 〉    − 1 
)

  ] 

    (5)

where X denotes the set of the k best samples consisting of multiple 
configurations obtained for k different parameter sets [denoted by 
i(x)], w(x) is the normalized distribution of weights based on the 
fitness of the samples, and ci’s are free parameters. We choose w(x) 
∝ log (k + 1) − log (m), where m is the rank index of sample x (m = 1 
for the configuration with the largest f value).    → q    and    → p    are additional 

D-dimensional vectors that control, respectively, the changes in 
amplitude and directionality of the covariance matrix. In addition, 
〈∥N(0,I)∥〉 is the average length of a vector drawn from a multivariate 
Gaussian distribution centered in the origin and where the covari-
ance matrix is the identity matrix. In the present work, we use 
n = 10 and k = 5 for all cases where we optimize two parameters, i.e., 
D = 2. When optimizing three parameters (D = 3), we use instead 
n = 20 and k = 8 to guarantee a faster exploration of the phase space. 
For the first generation, we initialize    → q    and    → p    as null vectors. More-
over, since we do not assume any a priori correlation between the 
different tuning parameters, the initial form of the covariance 
matrix Σ is diagonal. Last, all the free parameters ci of CMA-ES are 
set equal to 0.2, as proposed in (16).

Simulation details
At every generation, we perform Monte Carlo simulations for each 
of the sets of parameters drawn from the multivariate Gaussian 
distribution. In each simulation, after the system has equilibrated, 
we save 10 independent configurations, which are then used to evaluate 
the fitness of the samples.

For the HCSS model, simulations are performed in the isobaric- 
isothermal ensemble in a 2D box with periodic boundary condi-
tions and with a system size of N = 256 particles. In all cases, the 
system is initialized in a disordered, low-density, configuration. The 
system is equilibrated for 5 × 105 Monte Carlo sweeps, and after 
that, a total of 105 sweeps are performed, during which we save a 
configuration every 104 sweeps.

For the SCS model, simulations are performed in both the 
canonical and isobaric-isothermal ensembles in a 2D box with peri-
odic boundary conditions and with a system size of N = 256 parti-
cles. In all cases, the system is initialized in a random configuration. 
The system is equilibrated for 5 × 104 Monte Carlo sweeps, and after 
that, a total of 105 sweeps are performed, during which we save a 
configuration every 104 sweeps.

For the 3D system of spherocylinders, simulations are performed 
in the canonical ensemble considering a system size of N = 432 
particles in a 3D rectangular box elongated in the z direction. In this 
case, all simulations are initialized in an SM configuration. The 
system is equilibrated for 5 × 104 Monte Carlo sweeps, and after 
that, a total of 105 sweeps are performed, during which we save a 
configuration every 104 sweeps.

Fig. 9. Representation of the 2D convolutional neural network. The network is composed of two convolutional layers for feature extraction and a fully connected part 
with one hidden layer for the final classification. All details about kernels, layer size, and activation functions are also shown.

D
ow

nloaded from
 https://w

w
w

.science.org at U
trecht U

niversity L
ibrary on January 23, 2022



Coli et al., Sci. Adv. 8, eabj6731 (2022)     19 January 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 10

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj6731
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