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Using a grand-canonical Landau–de Gennes theory for colloidal suspensions of bent (banana-shaped) rods,
we investigate how spatial deformations in the nematic director field affect the local density of twist-bend and
splay-bend nematic phases. The grand-canonical character of the theory naturally relates the local density to the
local nematic order parameter S. In the splay-bend phase, we find S and hence the local density to modulate
periodically along one spatial direction. As a consequence the splay-bend phase has the key symmetries of a
smectic rather than a nematic phase. By contrast we find that S and hence the local density do not vary in space
in the twist-bend phase, which is therefore a proper nematic phase. The theoretically predicted one-dimensional
density modulations in splay-bend phases are in agreement with recent simulations.
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Dispersions of rodlike colloidal particles can sponta-
neously order into nematic liquid-crystal phases upon com-
pressing a dilute isotropic fluid phase [1,2]. The nematic
bulk phase is a homogeneous fluid that exhibits long-range
orientational order of the long axes of the rods, which on
average align along a so-called nematic director n̂ that is
uniform in space. An important characteristic of the nematic
phase is its up-down symmetry, which identifies n̂ with −n̂,
to be contrasted with polar order of for instance a magnet.
The simplest nematic phase does not only feature up-down
symmetry but also azimuthal symmetry about n̂. This uni-
axial symmetry is broken in the case of a biaxial nematic
phase, which features not only ordering of the long axes of
the rods along n̂ but also of their short axes along a direc-
tion m̂ ⊥ n̂, with ±m̂ equivalent [1]. This Letter, however,
concerns the interesting and intricate case in which the az-
imuthal symmetry about n̂ is broken by a polar ordering of
the short axes of the rods in a preferred direction P ⊥ n̂, with
nonequivalent P and −P. This type of ordering is well known
to be strongly coupled, via the so-called bend flexoelectric
effect [3], to spontaneous bend deformations of the nematic
director field, such that n̂(r) is no longer a spatial constant if
P �= 0 [4]. As a pure bend deformation cannot uniformly fill
three-dimensional (3D) space, Meyer [5] and later indepen-
dently Dozov [6] argued that these local bend deformations
should be accompanied by either a twist or a splay de-
formation. In the former case they theoretically postulated
the stabilization of a spatially modulated twist-bend nematic
(NTB) phase, that displays a heliconical structure of n̂(r) with
bend and twist deformations in the molecular orientation. In
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the latter case, they predicted a spatially modulated splay-
bend nematic (NSB) phase that is characterized by alternating
layers of splay and bend.

After its theoretical prediction, the NTB phase has actually
been observed experimentally in several molecular systems
[7–14], and has meanwhile become well established as a
new type of orientationally ordered fluid phase. By contrast,
the NSB phase has never been observed in the absence of a
strong external constraint, such as an electric field [15–17],
a planar surface anchoring [18], or a topological constraint
[19]. Rather, a huge variety of smectic phases was found ei-
ther in systems of thermotropic bent-core mesogens [4,20,21]
and in systems of bent silica rods [22,23]. Therefore, many
doubts subsist on the existence and true nature of the NSB

phase. Recently, however, simulations of systems of hard
bent spherocylinders revealed that NTB and NSB phases can
be thermodynamically stable in bulk, provided the smectic
(Sm) phase is destabilized either by polydispersity in particle
length or by curvature in the particle shape [24]. Inspired by
these simulation results, a stable NSB phase has experimentally
been sought for and actually observed, for the first time in a
lyotropic system of smoothly curved colloidal rods [25] and
later in polydisperse bent silica rods [26]. Recently, simu-
lations and a Maier-Saupe theory showed that the (alleged)
NSB phases of monodisperse curved rods display (weak) den-
sity modulations [27], which cannot be described by current
Oseen-Frank and Landau–de Gennes type theories. The exist-
ing theoretical descriptions [5,6,28] are direct extensions of
Oseen-Frank theory for the elastic deformations of n̂(r); they
only account for the direction of the ordering and ignore the
degree of ordering that is characterised by the scalar nematic
order parameter S. Landau–de Gennes (LdG) theories for ther-
motropic liquid crystals do account for S but lack any coupling
with density ρ [29–33].

In this Letter we investigate the nematic nature of the
NSB phase displayed in colloidal systems, by employing a
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recently introduced grand-canonical LdG theory [34] applied
to lyotropic curved rods [35], that does involve a coupling
between S and ρ. We show that S and therefore also ρ varies
periodically along one spatial direction in the NSB phase, such
that the NSB phase has actually the symmetries of a smectic
rather than a nematic phase. This is not the case, however, for
the NTB phase, for which we find that S does not vary in space,
and is therefore a proper nematic phase.

We follow Ref. [35] and extend the Oseen-Frank theory
of Selinger and co-workers [28] to a mesoscopic LdG theory
where the director n̂ is replaced by the standard second-
rank, symmetric, and traceless tensor Q(r) with Cartesian
components Qαβ (r) for α, β = x, y, z. The eigenvector of
Q, corresponding to the maximum modulus of a nonde-
generate eigenvalue, defines the nematic director n̂ of the
system [1]. A vector field P(r) with Cartesian coordinates
Pγ (r) for γ = x, y, z describes the polar order in a direction
perpendicular to n̂. In order to describe lyotropic systems
that become ordered with increasing density, we follow
Ref. [34] and set up a Landau expansion for which we use
the chemical-potential-dependent grand potential �(μ) rather
than the temperature-dependent Helmholtz (or Gibbs) free
energy F (T ). More specifically, for a system of hard bent rods
modeled as curved or kinked rods of contour length L and
diameter D, at chemical potential μ in a macroscopic volume
V , and at fixed temperature T , we write the excess-over-
isotropic LdG grand potential as ��(Q, P) = ∫

V dr(�ωb +
ωeP ), where �ωb denotes a bulk term

βB2�ωb = 2
3 aβ(μ∗ − μ)QαβQβα − 4

3 b QαβQβλQλα

+ 4
9 d QαβQβαQλρQρλ, (1)

and ωeP an elastic-polar term

βB2ωeP = 2

9
l1(∂αQβλ)(∂αQβλ) + 2

9
l2(∂αQαλ)(∂βQβλ)

+ e2Pα

(
δαβ + 2

S0
Qαβ

)
Pβ + e4PαPαPβPβ

− λPα (∂βQαβ ) + κ (∂αPβ )(∂αPβ ). (2)

We express �ωb and ωeP in units of β−1 = kBT with kB

the Boltzmann constant, and in units of the second virial
coefficient B2 = πL2D/4 of long needles in the isotropic
(I) fluid phase, which is a convenient unit of volume for
systems of rodlike particles. We use the Einstein summa-
tion convention for repeated indices, and indicate the Landau
phenomenological parameters by a, b, d , l1, l2, e2, S0, e4,
λ, and κ . We note that only the quadratic term QαβQβα has
a μ-dependent prefactor that changes sign at the nematic
spinodal μ∗ and drives the phase transitions. Stability of the
grand-potential expansion in the dilute limit requires a > 0
and e2 > 0, while stability with respect to an unlimited growth
of Q, P, and ∂αPβ requires that d > 0, e4 > 0, and κ > 0,
respectively. The sign of the b term determines the nature of
the I-N transition, rodlike for b > 0 and platelike for b < 0.
The coefficients 2/S0 and λ represent the Q-P coupling and
the bend flexoelectric P-∇Q coupling, respectively. In or-
der to describe a favored polarization perpendicular to the
nematic director, leading to a bend flexoelectric effect, we
set S0 > 0. Finally the coefficients l1 and l2 are related to

the Oseen-Frank elastic constants [36,37] through the rela-
tions βB2K11 = βB2K33 = (2l1 + l2)S2 and βB2K22 = 2l1S2.
As shown in Ref. [35], a complete mapping exists between
our LdG theory and the Oseen-Frank theory of Selinger and
co-workers [28].

Minimization of the grand potential ��(Q, P) with re-
spect to Q at P ≡ 0, ∇Q ≡ 0, and ∇P ≡ 0, gives a first-order
I-N transition at βμIN ≡ βμ∗ − b2/(4ad ) [34,35]. The ne-
matic order parameter equals SI (μ) = 0 for μ � μIN , and

SN (μ) = 3b

8d

(
1 +

√
1 − 32adβ(μ∗ − μ)

9b2

)
(3)

for μ > μIN . In order to describe the “Onsager”-type I-N
phase transition of uniaxial hard needles [2,38] we follow
Ref. [34] and set a = 1.436, b = 5.851, d = 3.693, and
βμ∗ = 6.855. As shown in Ref. [35], the uniaxial N phase
becomes unstable with respect to an NTB or NSB phase at a crit-
ical μ where the renormalized bend elastic constant Keff

33 = 0.
The NTB phase is described by a chiral nematic director and
polarization vector

n̂TB(z) = [sin θ cos(qz), sin θ sin(qz), cos θ ],

PTB(z) = P(z)[sin(qz),− cos(qz), 0], (4)

with q and θ the variational wave number and tilt angle,
respectively, and P(z) the variational magnitude of the po-
larization. The NSB phase is described by an achiral nematic
director and polarization vector

n̂SB(z) = [sin φ(z), 0, cos φ(z)],

PSB(z) = P(z) cos(qz)[− cos φ(z), 0, sin φ(z)], (5)

where φ(z) = θ sin(qz). The system either stabilizes an NTB

phase, if l1 and l2 are such that K11 > 2K22, or an NSB phase,
if l1 and l2 are such that K11 < 2K22 [35]. The N-NTB as well
as N-NSB phase transitions are continuous and proceed in both
cases without any jump in S(μ).

We employ the thermodynamic identity ∂ (�/V )/∂μ|V,T =
−ρ to perform the conversion between chemical potential
μ and number density ρ. To this end, we introduce the
grand-potential density ωI of the isotropic I state and define
ω ≡ ωI + �ωb, where �ωb is the excess bulk grand-potential
density (1). From ∂ (B2ω)/∂μ = −c, with c ≡ B2ρ the dimen-
sionless particle concentration, we find

c(μ) = cI (μ) + aS2(μ). (6)

The particle concentration of the I phase, cI (μ) =
−∂ (B2ωI )/∂μ, can be calculated within Onsager theory,
by using an isotropic distribution function, such that
βμ(cI ) = log(cI/4π ) + 2cI [38]. By inverting this relation
we obtain cI (μ) straightforwardly. Together with Eq. (6),
we can determine c, for every value of μ for which S(μ) is
known. We observe that Eq. (6) not only allows us to convert
a dependence on the chemical potential into a dependence on
the particle density, but also expresses a coupling between the
scalar order parameter S and the particle concentration c. In
this Letter we employ this coupling to obtain insight into the
structure of the NSB phase.

In contrast to earlier works [6,28–33,35] we consider here a
z-dependent nematic order parameter S(z) in the definition of
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the tensorial order parameter Qαβ (z) = S(z)[3nα (z)nβ (z)/2 −
δαβ/2], as well as a z-dependent magnitude P(z) of the
polarization vectors PTB and PSB in Eqs. (4) and (5). In
order to study the relative stability of the NTB and NSB

phases, we insert n̂TB and n̂SB, respectively, into Q. After
insertion of Q and P into ��(Q, P), we perform, at fixed
chemical potential μ, a full grand-potential minimization. To
this end we numerically solve the system of Euler-Lagrange
equations

δ��

δS(z)
= ∂z

δ��

δ(∂zS(z))
,

δ��

δP(z)
= ∂z

δ��

δ(∂zP(z))
, (7)

for many combinations of fixed wave number q and tilt angle
θ , from which we identify the grand-potential minimum of
the NTB phase characterized by qTB(μ), θTB(μ), STB(μ; z),
and PTB(μ; z), and that of the NSB phase at qSB(μ), θSB(μ),
SSB(μ; z), and PSB(μ; z).

We start by considering the coefficients l1 = 0.165L2, l2 =
0.427L2, e2 = 1, S0 = 0.99, e4 = 0.5, κ = 0.3L2, and λ =
0.18L. It follows that K11/K22 = 2.294 and that, as shown in
Fig. S2(a) in the Supplemental Material (SM) [39], a second-
order N-NTB phase transition takes place at βμ = 5.663 ≡
βμNNTB . We plot STB and PTB as a function of z ∈ [0, 2π/qTB]
for several values of the chemical potential μ ≡ μNNTB + �μ

in Figs. S4(b) and S4(b), respectively. We clearly find that STB

and PTB are constant along z for every μ. As a consequence,
the corresponding density profile cTB is also a spatial con-
stant. Interestingly, we show in the SM and in Fig. S5 [39]
that the extremal solutions qTB(μ), θTB(μ), STB(μ), PTB(μ),
and cTB(μ) exactly coincide with those obtained when S
and P are assumed z independent in Q and PTB, respec-
tively. In particular we observe from Fig. S5(a) that STB(μ)
coincides with SN (μ) of Eq. (3). We conclude that spatial
twist and bend modulations do not affect the scalar nematic
order.

Subsequently, we reset the elasticity parameters to l1 =
0.1L2 and l2 = 0.0427L2 such that K11/K22 = 1.214 and, as
shown in Fig. S2(b), a second-order N-NSB phase transition
takes place at βμ = 5.354 ≡ βμNNSB . In Fig. 1(a) we plot
for several chemical potentials μ ≡ μNNSB + �μ the (shifted)
scalar nematic order parameter SSB − SN as a function of
z ∈ [0, 2π/qSB]. The periodic modulation of SSB is manifest,
with an amplitude that vanishes at �μ = 0 and increases to
0.0075 at �μ = 0.5kBT (see also SM [39]). The inset shows
the minimum and maximum of SSB(z) as a function of μ, the
difference being small but clearly discernible. Note that the
wavelength of the modulation of the scalar order parameter
equals half of the pitch 2π/qSB of the nematic director. This
can be explained by the fact that one period of a nematic direc-
tor modulation corresponds to two alternating bend and splay
domains with opposite polar order. Figure 1(b) shows the
corresponding (shifted) density profiles cSB(z) − cN , obtained
from Eq. (6) with cN the density of the metastable N phase.
Figure 1(b) clearly reveals spatial density modulations with
the same wavelength as SSB(z) and an amplitude that grows
from zero at �μ = 0 to a few percent of cN at �μ = 0.5kBT ;
the inset shows the minimum and the maximum of the den-
sity profile as a function of μ, which confirms the density
variations on the order of a few percent. From the periodic
modulation of cSB along z, it follows that the NSB phase has all

FIG. 1. The excess scalar nematic order parameter SSB − SN

(a) and the excess particle concentration cSB − cN (b) in the splay-
bend phase NSB as a function of position z ∈ [0, 2π/qSB], for several
values of the chemical-potential excess �μ ≡ μ − μNNSB above the
N-NSB transition, at wave numbers q = qSB of the director modu-
lations [see Eq. (5)] given by the orange curve in (c). The period
average S̄SB and P̄SB of the nematic order parameter SSB(z) and the
polarization PSB(z) are presented by the dots in (c), which are indis-
tinguishable from the corresponding solid curves that follow from
the assumption of a spatial constant SSB and PSB. The violet curve in
(c) represents the opening angle θSB. The expansion coefficients are
l1 = 0.1L2, l2 = 0.0427L2, e2 = 1, S0 = 0.99, e4 = 0.5, κ = 0.3L2,
and λ = 0.18L. The insets of (a) and (b) show the μ dependence of
the minima and maxima of the modulating profiles SSB(z) and cSB(z).
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the symmetries of a smectic (or lamellar) phase. However, in
contrast to ordinary smectic phases with periods on the order
of the particle length L, the wavelength π/qSB of the density
modulation in the splay-bend phase is much larger than L.
This becomes manifest from the orange curve in Fig. 1(c),
which presents the μ dependence of the wave number qSB,
which is infinitesimally small at the N-NSB transition and
grows to typically |qSBL| � 0.2 in the splay-bend phase; this
corresponds to density modulations with wavelengths of the
order π/qSB � 15L well in the splay-bend phase and a diverg-
ing wavelength upon approach of the transition to the N phase.
Figure 1(c) also shows the tilt angle θSB and the period average
of the profiles of the nematic order parameter SSB(z) and the
polarization PSB(z); Fig. S7 of the SM [39] shows PSB(z)
in the NSB phase, which also exhibits spatial modulations.
The infinitesimally small qSB, θSB, and PSB(z) at the N-NSB

transition are in line with the continuous character of the
N-NSB transition. Additionally, Fig. 1(c) shows that the period
average of the profiles SSB(μ; z), PSB(μ; z), and cSB(μ; z) as
well as qSB and θSB (see SM [39]) actually coincide with the
solutions SSB(μ), PSB(μ), cSB(μ), and qSB(μ) and θSB(μ), that
are obtained when S and P are assumed z independent in Q
and PSB. In particular the period average of SSB(μ; z) is very
close to SN (μ) of Eq. (3), as can be seen in Fig. 1(c), where
their tiny difference is only discernible at the largest μ’s and
stems from the small-θ approximation of the grand-potential
density [35].

Since we only find variations in the local density of the
NSB phase and not in that of the NTB phase, we investi-
gate the possibility of a direct connection between density
modulations and splay deformations. Referring to the SM
[39] for more details, we first note that the SSB(z) pro-
files shown in Fig. 1(a) accurately fit the functional form
SSB(z) = Smax

SB cos[θS sin(qSBz)] with θS a fit parameter. Next,
for several values of μ, we plot SSB(∇ · n̂SB) (solid lines) and
H (∇SSB) · n̂SB (dashed lines) as a function of z in Fig. S10,
with H a suitably chosen spatial constant that varies with μ

as shown in the inset of Fig. S10. We find that for each μ the
condition SSB(∇ · n̂SB) = H (∇SSB) · n̂SB holds, from which
we can derive

∇ · n̂SB(z) = H

2

∇cSB(z)

[cSB(z) − cI ]
· n̂SB(z), (8)

through Eq. (6). We observe that an expression similar to the
one of Eq. (8) was found by de Gennes [40] and Taratuta and
Meyer [41] for polymer nematics. It expresses the coupling
between concentration gradients ∇cSB and splay deforma-
tions, given by ∇ · n̂SB, such that splay deformations cannot
exist without density gradients.

To conclude, in this Letter we have employed the LdG
theory introduced in Ref. [35] for lyotropic colloidal suspen-
sions of bent rods to investigate the repercussions of spatial
distortions in the nematic director field on the density of the
twist-bend and splay-bend nematic phases. In contrast with
the existing theories [6,28–33], our theory allows to ana-
lyze the spatial dependence of the nematic order parameter
S and provides a natural coupling between S and the particle
density ρ. We show that the NSB phase is characterized by
a one-dimensional density modulation such that the origi-
nally predicted [5,6,28] N-NSB transition is strictly speaking a
N-Sm transition. In the case of an NTB phase, instead, we find
that S and hence ρ are spatial constants such that this phase
is a true nematic phase. Our findings are in agreement with
simulations [24] and a Maier-Saupe theory [27]. Furthermore,
the existence of a coupling between ∇c and ∇ · n̂, as shown in
this Letter, lends strong support that the splay deformations in
the nematic director field n̂ are inherently coupled to density
modulations.

Finally the theory presented in this Letter could be em-
ployed to verify the existence and the nematic nature of a
recently experimentally observed splay nematic phase [32,42–
47] and a recently postulated twist-splay-bend phase [27]. In
addition, biaxiality and external constraints could be taken
into account. While we do not expect biaxial order to change
the smectic nature of NSB phase, it could influence the “shape”
of the density modulations. Understanding the repercussions
of external constraints on the local density of the bulk NSB

phase, instead, could be very important to connect the findings
presented in this Letter to those of Refs. [15–19].
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