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Supplementary Table 1. Zeta-potentials of materials in aqueous solutions. 

Material ζ-Potential/mV 

CSsa −18.9 ± 0.3 

Fe3+-CSsa −13.5 ± 1.1 

S-1 nanocrystalb −14.4 ± 1.1 

[a] 1 g L−1 in distilled water; [b] 1 wt% of sample was dispersed in distilled water.  

Note: Although the Fe3+ doping treatment of CSs (ζ-potential = −18.9 mV) neutralized 

to some degree the negative surface charge of CSs, the resultant Fe3+-CSs (ζ-

potential = −13.5 mV) still exhibited negatively charged surfaces. The change in 

surface charge was minor, possibly because CSs adsorbed also a similar number of 

nitrate anions, as we also detected N species within Fe3+-CSs by the STEM-EDS 

analysis (Supplementary Fig. 1). Negatively charged CSs with abundant −OH and 

−C=O groups on surface (Supplementary Fig. 10) tend to adsorb oxygen-containing 

anions (e.g., NO3
−) because of the similar elemental composition1, which promotes 

further the adsorption of Fe3+ cations through electrostatic attractions.  
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Supplementary Fig. 1: EDS line scan of C, N and Fe elements in Fe3+-CSs. 

Note: Owing to the electrostatic attraction between the positively charged Fe3+ cations 

and negatively charged CSs (ζ-potential = −18.9 mV, Supplementary Table 1) and the 

existing nanopores of CSs,2 Fe3+ cations traveled into and resided throughout the CSs 

interior. The EDS curves of N and Fe elements exhibited the same spherical shape as 

that of C element, indicating that the adsorbed nitrates and Fe3+ species inside Fe3+-

CSs are almost evenly distributed. Note that this EDS measurement was specially 

performed on a Hitachi HD-2300A STEM. 
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Supplementary Fig. 2: Characterization of the prepared S-1 nanocrystals. (a) 

TEM image, (b) size distribution with the estimated mean size, and (c) XRD patterns 

of S-1 nanocrystals before and after calcination in air. The inlet in panel a shows the 

photograph of 1 wt% S-1 nanocrystal suspension in distilled water.  
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Supplementary Fig. 3: Characterization of single-shelled hollow Fe2O3 spheres 

(hs-Fe2O3) prepared by direction calcination of Fe3+-CSs in air. (a and b) SEM and 

(c) STEM-HAADF images of hs-Fe2O3. (d) estimation of the average Fe2O3 crystal 

size of the longest dimension in hs-Fe2O3. (e) Fe and O EDS line-scan spectra, and 

(f) XRD patterns of hs-Fe2O3.  

Note: Calcining Fe3+-CSs in air directly generated single-shelled hollow α-Fe2O3 

spheres with diameters of ca. 350 nm and thicknesses of 50−60 nm. Although the 

average α-Fe2O3 crystal size of the longest dimension was 77 nm, the SBET of hs-Fe2O3 

reached as high as 61.2 m2/g (Supplementary Table 3) due to the unique hollow-

sphere structure composed of cambered-tile-like α-Fe2O3 crystals. Note that the Fe2O3 

component in the hollow Fe2O3 sphere@S-1 colloidal particles and Fe2O3@S-1(ZSM-

5) DSHSs was the same as the hs-Fe2O3 here.  
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Supplementary Fig. 4: Size distribution and the estimated mean diameters of 

different materials based on their SEM images. (a) Fe3+-CSs, (b) Fe3+-CS@S-1 

colloids, (c) hollow Fe2O3 sphere@S-1 colloids, and (d) Fe2O3@S-1 DSHSs. Gaussian 

distribution was used for the estimation of the mean size.  
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Supplementary Fig. 5: STEM-HAADF image of Fe2O3@S-1 DSHSs. 
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Supplementary Fig. 6: STEM-EDS line-scan spectra of Si, O, and Fe elements in 

Fe2O3@S-1 DSHSs. This clearly indicates that the a Fe2O3@S-1 DSHS particle 

comprises a hollow Fe2O3 sphere as the inner shell and a hollow S-1 sphere as the 

outer shell.  
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Supplementary Fig. 7: Nitrogen adsorption-desorption isotherm of Fe2O3@S-1 

DSHSs. The micropore area was determined by the t-plot method. 
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Supplementary Fig. 8. Effect of ultrasonic and steaming treatment on the 

structural stability of Fe2O3@S-1 DSHSs. STEM-HAADF images of Fe2O3@S-1 

DSHSs (the material in Supplementary Fig. 12c) (a) without any treatment, and with 

(b) ultrasonic treatment (300 W, 28 kHz) for 2 h or (c) steaming treatment (H2O-

containing N2 flow: 40 mL min−1) at 300 °C for 10 h.  
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Supplementary Fig. 9: Synthesis of ZSM-5 using CSs and ZSM-5 (feeding Si/Al 

= 100) nanocrystals and following the same synthetic procedures as for 

Fe2O3@S-1 DSHSs. (a) TEM image of CS@ZSM-5 colloids, (b) STEM-HAADF image 

of ZSM-5 nanocrystal stacked sphere (obtained by calcination of CS@ZSM-5 colloids 

in air), (c) STEM-HAADF image and (d) XRD patterns of ZSM-5 (obtained by 

secondary growth of the ZSM-5 nanocrystal stacked sphere, followed by calcination 

in air).  

Note: This is a control experiment, demonstrating that the transformation from Mn+-

CSs to hollow MO spheres is vital for forming the final MO@ZEO DSHSs structure. If 

CSs were used instead of Fe3+-CSs, no hollow Fe2O3 spheres were formed to prop up 

the attached zeolite nanocrystals (plot b). Finally, only solid sphere-like zeolite formed 

(plot c). The solid sphere-like ZSM-5 (plot c and d) was further used to synthesize hs-

Fe2O3+H-ZSM-5 and Fe2O3/H-ZSM-5 for catalytic syngas conversion. 
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Supplementary Fig. 10: Evidence for the hydrogen bonding between S-1 

nanocrystals and Fe3+-CSs. FT-IR spectra of S-1 nanocrystals (with TPAOH) and 

Fe3+-CSs acquired at 150 °C under vacuum conditions.  

Note: The intense and sharp IR band at ~ 3740 cm−1, observed in S-1 nanocrystals, 

is attributed to free terminal Si‒OH groups3. As CSs were synthesized by hydrothermal 

polymerization of sucrose, Fe3+-CSs exhibited a typical hydrogen-bonded O−H 

stretching mode, characterized by an intense and broad IR band at ~ 3350 cm−1.4 
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Supplementary Fig. 11: In-situ XRD spectra acquired during calcination of Fe3+-

CS@S-1 colloidal particles in O2/Ar (1/4, v/v) gas flow. 
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Supplementary Fig. 12: Tuning the S-1 shell thickness/volume by adjusting the 

quantity ratio of the S-1 nanocrystal to Fe3+-CSs. STEM-HAADF image of the 

synthesized Fe3+-CS@S-1 colloids and Fe2O3@S-1 DSHSs, using (a) 2.5, (b) 15, and 

(c) 25 mL S-1 nanocrystal suspension (1 wt% in distilled water) for each gram of Fe3+-

CSs. Other synthetic conditions: 1.5 M Fe(NO3)3 for doping 1.2 µm CSs at room 

temperature; secondary growth of the S-1 shell at 95 °C for 1 day.  
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Supplementary Fig. 13: Effect of the secondary growth duration on the S-1 shell 

thickness. STEM-HAADF image of Fe2O3@S-1 DSHSs prepared with two days’ 

secondary growth of the S-1 shell.  

Note: The only difference between this sample (2 days’ secondary growth of S-1 shell) 

and the sample (1 day) in Fig. 4a3 lies in the secondary growth duration. Extending 

the secondary growth time from 1 day to 2 days leads to only a slight increase in the 

S-1 shell thickness from ca. 400 nm (Fig. 4a3) to ca. 427 nm (Supplementary Fig. 13).  
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Supplementary Fig. 14: Tuning the Fe2O3 shell thickness by adjusting the 

concentration of the Fe(NO3)3 doping solution. STEM-HAADF image of Fe2O3@S-

1 DSHSs synthesized using (a) 0.75, (b) 1.5 and (c) 2.5 M Fe(NO3)3 as the doping 

solution. Other synthetic conditions: doping 1.2 µm CSs at room temperature; 2.5 mL 

S-1 nanocrystal suspension (1 wt% in distilled water) for each gram of Fe3+-CSs; 

secondary growth of the S-1 shell at 95 °C for 1 day. 
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Supplementary Fig. 15: Tuning the Fe2O3 shell diameter by using differently 

sized CSs. SEM images of CSs with diameters of ca. (a) 0.4 μm and (c) 2.4 μm. They 

were synthesized by hydrothermal polymerization of 60 mL 1.5 M sucrose (aq.) at 

190 °C for 90 and 135 min, respectively. (b and d) STEM-HAADF image of Fe2O3@S-

1 DSHSs synthesized with these two differently sized CSs as the precursor. Other 

synthetic conditions: 1.5 M Fe(NO3)3 for doping CSs at room temperature; 15 mL S-1 

nanocrystal suspension (1 wt% in distilled water) for each gram of Fe3+-CSs; 

secondary growth of the S-1 shell at 95 °C for 1 day.  
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Supplementary Fig. 16: Relation of the mean diameter of the hollow Fe2O3 

sphere in the resultant Fe2O3@S-1 DSHSs to the mean diameter of CSs used.  
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Supplementary Fig. 17: STEM-HAADF image of the synthesized Co3O4@S-1 

DSHSs. Synthetic conditions: 1.0 M Co(NO3)2 for doping 1.2 μm CSs at room 

temperature; 15 mL S-1 nanocrystal suspension (1 wt% in distilled water) for each 

gram of Co2+-CSs; secondary growth of the S-1 shell at 95 °C for 1 day. 
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Supplementary Fig. 18: STEM-HAADF image of the synthesized CuO@S-1 

DSHSs. Synthetic conditions: 1.5 M Cu(NO3)2 for doping 1.2 μm CSs at room 

temperature; 2.5 mL S-1 nanocrystal suspension (1 wt% in distilled water) for each 

gram of Cu2+-CSs; secondary growth of the S-1 shell at 95 °C for 1 day.  
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Supplementary Fig. 19: STEM-HAADF image of the synthesized Mn2O3@S-1 

MSHSs. Synthetic conditions: 0.5 M Mn(NO3)2 for doping 1.2 μm CSs at 35 °C; 2.5 

mL S-1 nanocrystal suspension (1 wt% in distilled water) for each gram of Mn2+-CSs; 

secondary growth of the S-1 shell at 95 °C for 1 day.  

Note: It should be noted that the particular formation of triple-shelled and quadruple-

shelled Mn2O3 hollow spheres (Fig. 4d3 and Supplementary Fig. 19) is due to the 

enrichment of Mn species inside Mn2+-CSs, caused by performing the doping process 

at a higher temperature (35 °C). According to the Arrhenius equation5, a higher 

temperature value results in a higher diffusion rate coefficient and, hence, more Mn2+ 

ions can be adsorbed by CSs. This indicates that the number of concentric hollow MO 

spheres is likely controllable by governing various factors (e.g., metal precursor 

concentration, doping temperature, doping duration, and solvent property) impacting 

the adsorption efficiency of metal cations by CSs. 

 

Mn2O3@S-1 MSHSs



S25 

 

Supplementary Fig. 20: STEM-HAADF image of the synthesized NiO@S-1 

DSHSs. Synthetic conditions: 1.0 M Ni(NO3)2 doping 0.4 μm CSs at room temperature; 

25 mL S-1 nanocrystal suspension (1 wt% in distilled water) for each gram of Ni2+-CSs; 

secondary growth of the S-1 shell at 95 °C for 1 day.  
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Supplementary Fig. 21: STEM-HAADF image of the synthesized Co-Fe2O3@S-1 

DSHSs. Synthetic conditions: 1.5 M Fe(NO3)3 and 1.0 M Co(NO3)2 for doping 1.2 μm 

CSs at room temperature; 15 mL S-1 nanocrystal suspension (1 wt% in distilled water) 

for each gram of Fe3+/Co2+-CSs; secondary growth of the S-1 shell at 95 °C for 1 day.  
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Supplementary Fig. 22: Characterization of the synthesized NiCo2O4@S-1 

DSHSs. (a and b) STEM-HAADF images with EDS line-scan spectra and (c) XRD 

patterns of the synthesized NiCo2O4@S-1 DSHSs. Synthetic conditions: 1.0 M 

Ni(NO3)2 and 2.0 M Co(NO3)2 for doping 2.4 μm CSs at room temperature; 25 mL S-

1 nanocrystal suspension (1 wt% in distilled water) for each gram of Ni2+/Co2+-CSs; 

secondary growth of the S-1 shell at 95 °C for 1 day.  
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Supplementary Fig. 23: Characterization of the synthesized Fe2O3@ZSM-5 

(feeding Si/Al = 100) DSHSs. (a) STEM-HAADF image and EDS quantification 

results; (b) XRD patterns. Synthetic conditions: 1.5 M Fe(NO3)3 solution for doping 1.2 

μm CSs at room temperature; 15 mL ZSM-5 (feeding Si/Al = 100, Supplementary Fig. 

24) nanocrystal suspension (1 wt% in distilled water) for each gram of Fe3+-CSs; 

secondary growth of the ZSM-5 shell at 95 °C for 1 day (the Si/Al ratio of the nutrient 

sol is 100).  

Note: The mass fraction of Fe2O3 to ZSM-5 in this material was determined to be 1:9 

by the X-ray fluorescence analysis. 
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Supplementary Fig. 24: Characterization of ZSM-5 (feeding Si/Al = 100) 

nanocrystals. (a) STEM-HAADF image and (b) size distribution of the ZSM-5 (feeding 

Si/Al = 100) nanocrystals. (c) IR spectra (acquired at 150 °C under vacuum conditions) 

and XRD patterns of the H-ZSM-5 nanocrystals (after removing TPAOH by calcination 

and conversion into the H-form). The inlet in panel a shows the photograph of 1 wt% 

ZSM-5 nanocrystal suspension in distilled water. 
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Supplementary Fig. 25. Synthesis of Fe2O3@ZSM-5 (Si/Al = ca. 50) DSHSs. TEM 

images of (a) the prepared ZSM-5 (feeding Si/Al = 50) nanocrystals and (b) 

Fe2O3@ZSM-5 DSHSs (feeding Si/Al = 50). (c) XRD pattern of the latter material. 

Synthetic conditions: 1.5 M Fe(NO3)3 solution for doping 1.2 μm CSs at room 

temperature; 15 mL 1 wt% ZSM-5 (feeding Si/Al = 50) nanocrystal suspension (plot a) 

for each gram of Fe3+-CSs; secondary growth of the ZSM-5 shell in a nutrient sol (Si/Al 

= 50) at 95 °C for 1 day.  

Note: The actual Si/Al ratio in the prepared Fe2O3@ZSM-5 DSHSs was determined 

to be 57 by the X-ray fluorescence analysis. We note that MO@ZSM-5 DSHSs with a 

Si/Al ratio of around 25 or lower were not attainable at present, due to the failure in 

the synthesis of the corresponding zeolite nanocrystals by the present method. 
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Supplementary Fig. 26: Characterization of the synthesized Si-Beta zeolite 

nanocrystals and CuO@Beta DSHSs. (a) STEM-HAADF image, size distribution 

and XRD patterns of the Si-Beta zeolite nanocrystals. (c) SEM and STEM-HAADF 

image, and (d) XRD patterns of CuO@Si-Beta zeolite DSHSs. Synthetic conditions for 

CuO@Si-Beta zeolite DSHSs: 2.0 M Cu(NO3)2 for treating 1.2 μm CSs at room 

temperature; 15 mL Si-Beta zeolite nanocrystal (panel a and b) suspension (1 wt% in 

distilled water) for each gram of Cu2+-CSs; secondary growth of the Si-Beta zeolitic 

shell at 170 °C for 15 h in a rotating Teflon lined stainless steel autoclave.   
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Supplementary Fig. 27: Characterization of bulk Fe2O3. (a) TEM image and (b) 

XRD patterns of bulk Fe2O3. All peaks of the XRD patterns are matched with the phase 

of α-Fe2O3 (JCPDS No. 33-0664). Note that the XRD patterns of bulk Fe2O3 were 

acquired with a Cu Kα radiation source (λ = 1.54056Å), while the XRD patterns of most 

other samples were acquired with a Co Kα irradiation source (λ = 1.789 Å). 
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Supplementary Fig. 28: Characterization of Fe2O3/ZSM-5 prepared by a typical 

impregnation method. (a) STEM-HAADF image and (b) TEM image of Fe2O3/ZSM-

5. (c) Size distribution of Fe2O3 in Fe2O3/ZSM-5. (d) XRD pattern of Fe2O3/ZSM-5.  

Note: The mass fraction of Fe2O3 to ZSM-5 in this material was determined to be 1:9 

by the X-ray fluorescence analysis.  
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Supplementary Table 2. Catalytic performances of iron catalysts and 
bifunctional catalysts in syngas conversion. 

Catalyst 
XCO 
(%) 

SCO2 
(%) 

Hydrocarbon selectivity (%) C5‒11 faction (%) 

CH4 C2−4
= C2−4

0 C5−11 C12+ aro. iso. n. 

b-Fe2O3 8.0 16.0 20.0 28.1 18.8 33.1 0.0 0 12.1 87.9 

hs-Fe2O3 49.0 27.0 12.3 28.8 19.5 38.4 1.0 0 10.5 89.5 

Fe2O3@S-1 DSHSs 62.3 24.3 16.8 25.5 21.0 36.7 0.0 0 16.3 81.7 

hs-Fe2O3+H-ZSM-5 50.3 24.2 18.9 12.8 24.0 44.2 0.0 42.1 41.0 17.0 

Fe2O3/H-ZSM-5 57.0 24.0 15.0 16.0 14.0 55.0 0.0 23.5 51.3 25.2 

Fe2O3@H-ZSM-5 DSHSs 79.0 25.6 5.7 15.9 14.1 64.0 0.3 34.7 51.3 14.0 

Reaction conditions: Wcat = 0.03 (for catalysts without acid sites) or 0.3 g (for bifunctional 

catalysts), H2/CO = 2/1, Fsyngas = 30 mL min−1, T = 300 °C, P = 3 MPa, Time on stream = 15 h. 

C2−4
0, C2−4

=, C5−11 and C12+ denote C2−C4 paraffins, C2−C4 olefins, C5−C11 hydrocarbons and 

products with carbon numbers greater than or equal to 12, respectively. Aro., iso. and n. denote 

aromatics, iso-alkanes/iso-alkenes and n-alkanes/n-alkenes in C5−11 range hydrocarbons. 

Note: It should be mentioned that the H-ZSM-5 component in hs-Fe2O3+H-ZSM-5 and 

Fe2O3/H-ZSM-5 were made using CSs as the template and following the same 

synthetic procedures as for Fe2O3@H-ZSM-5 DSHSs (Supplementary Figs. 9c and d). 

This is to ensure the same properties of H-ZSM-5 (Si/Al = ca. 100) in hs-Fe2O3+H-

ZSM-5, Fe2O3/H-ZSM-5 and Fe2O3@H-ZSM-5 DSHSs, allowing for a fair comparison 

between them. Also, the Fe2O3/H-ZSM-5 mass proportion of hs-Fe2O3+H-ZSM-5 and 

Fe2O3/H-ZSM-5 was tailored to be the same as that of Fe2O3@H-ZSM-5 DSHSs (1:9), 

according to the X-ray fluorescence analysis.  
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Supplementary Table 3. SBET values of the catalysts. 

Sample SBET (m2/g) 

b-Fe2O3 18.1 

hs-Fe2O3 61.2 

Fe2O3@S-1 DSHSs 342.9 

hs-Fe2O3+H-ZSM-5 300.2 

Fe2O3/H-ZSM-5 278.8 

Fe2O3@H-ZSM-5 DSHSs 311.5 
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Supplementary Fig. 29: Comparison of the acid properties between Fe2O3@H-

ZSM-5 DSHSs and Fe2O3/H-ZSM-5. Pyridine adsorbed IR spectra of Fe2O3@H-ZSM-

5 DSHSs and Fe2O3/H-ZSM-5. The characteristic peaks of adsorbed pyridine on 

Brønsted acid sites (BAS) and Lewis acid sites (LAS) appear at 1545 cm−1 and 1450 

cm−1, respectively. 
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Supplementary Fig. 30: NH3-TPD profiles of Fe2O3@H-ZSM-5 DSHSs and 

Fe2O3/H-ZSM-5. 
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Supplementary Table 4. Effect of the H-ZSM-5 shell thickness on the catalytic 

performance of Fe2O3@H-ZSM-5 DHSHs in syngas conversion.  

H-ZSM-5 thickness 
mFe2O3/mH-

ZSM-5
a 

XCO 
(%) 

SCO2 
(%) 

Hydrocarbon selectivity (%) 

CH4 C2−4
= C2−4

0 C5−11 C12+ 

ca.100 nm 
(Supplementary Fig. 31a)b 

1:3 74.1 29.9 13.0 35.6 13.0 38.4 0 

ca. 290 nm 
(Supplementary Fig. 31b)b 

1:9 79.0 25.6 5.7 15.9 14.1 64.0 0.3 

ca.480 nm 
(Supplementary Fig. 31c)b 

1:20 65.6 28.4 22.9 12.3 29.4 35.4 0 

aDetermined by the X-ray fluorescence analysis.  

bThe Fe2O3 shell thickness was fixed at ca. 50 nm.  

Reaction conditions: Wcat = 0.3 g, H2/CO = 2/1, Fsyngas = 30 mL min−1, T = 300 °C, P 

= 3 MPa, Time on stream = 15 h. C2−4
0, C2−4

=, C5−11 and C12+ denote C2−C4 paraffins, 

C2−C4 olefins, C5−C11 hydrocarbons and products with carbon numbers greater than 

or equal to 12, respectively. 

Note: The Fe2O3/H-ZSM-5 proportion in Fe2O3@H-ZSM-5 DHSHs is controllable by 

tuning the thickness of one layer (e.g., HZSM-5) while fixing the thickness of the other 

layer (e.g., Fe2O3). Upon a constant Fe2O3 layer thickness of approximately 50 nm, 

adjustment of the quantity ratio of H-ZSM-5 nanocrystal to Fe3+-CSs during the 

synthesis increased the H-ZSM-5 shell thickness from approximately 100 to 290 and 

to 480 nm (Supplementary Fig. 31), resulting in the decrease of the mass ratio of 

Fe2O3 to H-ZSM-5 from 1:3 to 1:9 and to 1:20 (Supplementary Table 4). The proportion 

of Fe2O3 to H-ZSM-5 significantly impacted the performance of Fe2O3@H-ZSM-5 

DHSHs (Supplementary Table 4 and Fig. 32). All the three catalysts exhibited high CO 

conversions (> 65%). Fe2O3@H-ZSM-5 DHSHs with a mFe2O3/mH-ZSM-5 ratio of 1:9 

exhibited the optimal performance in gasoline production. When the H-ZSM-5 shell 

thickness decreased to ca. 100 nm, the C2‒C4 olefins selectivity increased notably, as 

a result of insufficient acid sites to catalyze the oligomerization reaction. Too thick a 

H-ZSM-5 shell (ca. 480 nm) was found to result in high selectivities of methane and 

C2‒C4 alkanes, which is most likely due to the mass transfer limitation. The optimal 

Fe2O3/H-ZSM-5 mass ratio (1:9) was close to other reported results6,7.  
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Supplementary Fig. 31. Control of the Fe2O3/H-ZSM-5 proportion in Fe2O3@H-

ZSM-5 DHSHs by tuning the HZSM-5 shell thickness while fixing the thickness 

of the Fe2O3 layer. STEM images of the prepared Fe2O3@H-ZSM-5 DHSHs with a 

ca. 50-nm thick Fe2O3 layer and an approximately (a) 100, (b) 290 and (c) 480 nm 

thick H-ZSM-5 shell. The concentration of the Fe(NO3)3 doping solution was fixed at 

1.5 M, while 2.5 mL, 15 mL and 30 mL H-ZSM-5 nanocrystal suspension (1 wt% in 

distilled water) were used in a, b and c, respectively, for each gram of Fe3+-CSs. 
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Supplementary Fig. 32. Distribution of the hydrocarbon products over Fe2O3@H-

ZSM-5 DHSHs with different H-ZSM-5 shell thicknesses. (a) ca. 100 nm 

(Supplementary Fig. 31a); (b) ca. 290 nm (Supplementary Fig. 31b); and (c) ca. 480 

nm (Supplementary Fig. 31c). 
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Supplementary Table 5. Comparison between the performances of the state-of-

the-art Fe-zeolite-based bifunctional catalysts in gasoline production via FTS. 

Catalyst 
T 

(oC) 
XCO 
(%) 

SCO2 
(%) 

Hydrocarbon selectivity (%) 
Ref. 

CH4 C2-4 C5-11 aro. 

Fe-Pd/H-ZSM-5 310 75.7 21.4 22.1 28.4 49.5 15.8 6 

FeMn@H-ZSM-5 320 51.9 36.6 15.0 22.9 62.1 47.1 8 

FeZnNa/H-ZSM-5 340 88.8 27.5 9.6 26.6 63.8 50.6 9 

Fe3O4@MnO2+HOL-HZSM-5 320 90.3 45.0 5.0 25.0 70.0 56.6 10 

Fe3O4@MnO2+HOL-HZSM-5 320 69.3 47.6 4.0 15.6 80.4 55.2 11 

Fe2O3@H-ZSM-5 DSHSs 300 79.0 25.6 5.7 30.0 64.0 22.2 This work 

 

Note: For the C5‒C11 range hydrocarbons, the best bifunctional iron-zeolite catalysts 

(Fe3O4@MnO2+hollow HZSM-5) could offer a high selectivity of around 70‒80%10,11. 

However, around 69‒81% of the C5‒C11 products were mixed aromatics. This does 

not meet the environmental requirement for high-quality gasoline that the aromatics 

content should be restricted to lower than 35%12,13. The formation of aromatics is 

thermodynamically favorable under harsh reaction conditions, which is one major 

reason that most bifunctional catalysts with high selectivity of C5‒C11 hydrocarbons 

often produce aromatics rather than iso-alkanes. The aromatics fraction in C5‒C11 

hydrocarbons produced by our Fe2O3@H-ZSM-5 DSHSs catalyst was 34.7%, and the 

fraction of iso-alkanes and iso-alkenes was as high as 51.3% (Supplementary Table 

2). Although the C5‒C11 selectivity of Fe2O3@H-ZSM-5 DSHSs is slightly lower than 

that of the best bifunctional catalysts reported in the literature, the composition of liquid 

hydrocarbons was much closer to the requirement of practical gasoline. This is the 

ascendancy of our catalyst over the state-of-the-art Fe-zeolite-based bifunctional 

catalysts in the aspect of gasoline production performance via FTS. Note that the 

performance of Fe2O3@H-ZSM-5 DSHSs is expected to be further enhanced by the 

diameter refinement and/or proper doping of promoters (e.g., Mn, Na or K) into the 

Fe2O3 layer in the future.  
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Supplementary Fig. 33. Detection of the formed iron carbides (FeCx) in the 

bifunctional catalysts. Mössbauer spectra of (a) Fe2O3@H-ZSM-5 DSHSs, (b) 

Fe2O3/H-ZSM-5 and (c) hs-Fe2O3+H-ZSM-5 following FTS for 45 h. 
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Supplementary Table 6. Phase quantification of iron species in reacted 

Fe2O3@H-ZSM-5 DSHSs, Fe2O3/H-ZSM-5 and hs-Fe2O3+H-ZSM-5 for 45 h on 

stream.  

Reacted catalysts Iron species Ratio (%) Ratio (%) 

Fe2O3@H-ZSM-5 
DHSHs 

Fe2O3 14.8±2.6 

Carbides: 65.9 

Oxides: 34.1 

Fe3O4(I) 5.0±1.8 

Fe3O4(II) 14.3±4.2 

χ-Fe5C2(I) 25.7±4.0 

χ-Fe5C2(II) 12.9±2.7 

χ-Fe5C2(III) 18.0±8.6 

Fe7C3 9.2±6.4 

Fe2O3/H-ZSM-5  

Fe2O3 17.4±2.5 

Carbides: 52.4 

Oxides: 47.6 

Fe3O4(I) 11.0±3.2 

Fe3O4(II) 19.2±4.7 

χ-Fe5C2(I) 19.0±6.7 

χ-Fe5C2(II) 13.0±8.7 

χ-Fe5C2(III) 10.6±3.4 

Fe7C3 9.8±7.5 

hs-Fe2O3+H-ZSM-5  

Fe2O3 11.5±3.8 

Carbides: 88.5 

Oxides: 11.5 

χ-Fe5C2(I) 21.3±8.9 

χ-Fe5C2(II) 38.8±8.1 

χ-Fe5C2(III) 19.1±4.5 

Θ-Fe3C 9.3±9.1 

 

Note: hs-Fe2O3+H-ZSM-5 was ahead of others in terms of the FeCx content because 

of an excellent iron dispersion and segregation of iron and H-ZSM-5. Fe2O3@H-ZSM-

5 DSHSs exhibited a lower FeCx content than hs-Fe2O3+H-ZSM-5 due likely to the 

Fe2O3@H-ZSM-5 core-shell structure. The formation of FeCx were the least in the 

case of Fe2O3/H-ZSM-5 likely due to the strong Fe-HZSM-5 chemical interactions that 

may cause the formation of iron silicates or aluminates at high temperatures that are 

hard to be reduced or carbonized14,15. 
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Supplementary Fig. 34. H2 temperature-programmed reduction (H2-TPR) profiles 

of the prepared bifunctional catalysts.   

Note: The H2-TPR profiles exhibit several hydrogen consumption peaks, attributing to 

the reduction of different iron species. The low-temperature peaks at 380–400 °C were 

attributed to the reduction of hematite (Fe2O3) to magnetite (Fe3O4), while the high-

temperature peaks corresponded to the transformation process of Fe3O4 → FeO → 

Fe. The reducibility of iron species in the bifunctional catalysts followed the order of 

hs-Fe2O3+H-ZSM-5 > Fe2O3@H-ZSM-5 DSHSs > Fe2O3/H-ZSM-5, in line with the 

carbonization result (Supplementary Table 6). 
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Supplementary Fig. 35. H2 adsorption isotherm of Fe2O3@H-ZSM-5 DSHSs and 

hs-Fe2O3+H-ZSM-5. 

Note: The surface areas of Fe2O3@H-ZSM-5 DSHSs and hs-Fe2O3+H-ZSM-5 were 

almost the same (Supplementary Table 2), and these two materials included the same 

hollow-sphere Fe2O3. The only difference lay in that the H-ZSM-5 in Fe2O3@H-ZSM-

5 DSHSs and hs-Fe2O3+H-ZSM-5 were hollow-sphere and solid-sphere, respectively. 

Thus, the significantly higher H2 adsorption capacity in the case of Fe2O3@H-ZSM-5 

DSHSs was most likely due to the “cage” effect of the hollow H-ZSM-5 sphere. The 

enrichment effect of a hollow chamber was also reported by Ma et. al16, which 

increased the local concentration of H2 around the active sites, resulting in an 

accelerated reaction rate and an improved catalytic performance. 
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Supplementary Fig. 36. C3H6-TPD profiles of Fe2O3@H-ZSM-5 DSHSs and hs-

Fe2O3+H-ZSM-5. The C3H6-TPD intensity was normalized to the same acid density 

(obtained from NH3-TPD). 

Note: Fe2O3@H-ZSM-5 DSHSs exhibited a larger uptake of C3H6 (a possible reaction 

intermediate in gasoline production via FTS) than hs-Fe2O3+H-ZSM-5, in keeping with 

the H2 adsorption isotherms (Supplementary Fig. 34). This indicates again that the 

hollow-sphere H-ZSM-5 as the outer shell in Fe2O3@H-ZSM-5 DSHSs could enrich 

the reactants and reaction intermediates.  
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Supplementary Fig. 37. Catalytic stabilities of (a) Fe2O3@H-ZSM-5 DSHSs, (b) 

Fe2O3/H-ZSM-5 and (c) hs-Fe2O3+H-ZSM-5. 

Note: It was found that after a short induction time of 10 h, the performance of 

Fe2O3@H-ZSM-5 DHSHs became stable and no catalyst deactivation was observed 

during 45 h on steam (plot a). An induction period was required possibly because of 

the core-shell architecture that slightly decelerated the carburization of the inner Fe2O3 

layer into active carbide phases. The CO conversion and C5‒C11 selectivity maintained 

at about 80% and 64%, respectively. The hs-Fe2O3+H-ZSM-5 and Fe2O3/H-ZSM-5 

catalysts also exhibited stable performances in syngas conversion (plot c; 

Supplementary Table 7).  
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Supplementary Table 7. Catalytic performance over the bifunctional catalysts of 

different times on stream.  

Catalyst 
Time on 
stream 

(h) 

XCO 
(%) 

SCO2 
(%) 

Hydrocarbon selectivity (%) C5-11 faction (%) 

CH4 C2−4
= C2−4

0 C5−11 C12+ aro. iso. n. 

hs-Fe2O3+H-ZSM-5 15 50.3 24.2 18.9 12.8 24.0 44.2 0.0 42.1 41.0 17.0 

hs-Fe2O3+H-ZSM-5 45 57.1 26.0 21.4 11.0 25.0 42.6 0.0 40.0 42.0 18.0 

Fe2O3/H-ZSM-5 15 57.0 24.0 15.0 16.0 14.0 55.0 0.0 23.5 51.2 25.3 

Fe2O3/H-ZSM-5 45 64.1 26.1 16.3 15.3 15.7 52.4 0.4 23.0 51.6 25.4 

Fe2O3@H-ZSM-5 DSHSs 15 79.0 25.6 5.7 15.9 14.1 64.0 0.3 34.7 51.3 14.0 

Fe2O3@H-ZSM-5 DSHSs 45 83.6 26.0 5.0 16.0 15.4 63.5 0.2 34.0 51.0 14.9 

Reaction conditions: Wcat = 0.3 g, H2/CO = 2/1, Fsyngas = 30 mL min−1, T = 300 °C, P = 3 MPa. 

C2−4
0, C2−4

=, C5−11 and C12+ denote C2−C4 paraffins, C2−C4 olefins, C5−C11 hydrocarbons and 

products with carbon numbers greater than or equal to 12, respectively. Aro., iso. and n. denote 

aromatics, iso-hydrocarbons and n-hydrocarbons in C5−11 range hydrocarbons. 
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Supplementary Fig. 38. Structural stability of Fe2O3@H-ZSM-5 DSHSs after FTS 

reaction and regeneration. STEM images of Fe2O3@H-ZSM-5 DSHSs (a and b) 

after FTS for 45 h and (c) further regeneration by annealing at 500 °C in air for 2 h.  
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Supplementary Fig. 39. Schematic representation of different configurations 

that FTS phases and the zeolite may have with respect to on another in 

bifunctional systems.  

Note: Our work provides a brand-new configuration between FTS phases and the 

zeolite compared with the existing ones17, in bifunctional systems. 
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