Coupling between splay deformations and density modulations in splay-bend phases
of bent colloidal rods

SUPPLEMENTAL MATERIAL

Carmine Anzivino,"* René van Roij,? and Marjolein Dijkstral:f

1Soft Condensed Matter, Debye Institute for Nanomaterials Science,
Utrecht University, Princetonplein 1, 3584 CC' Utrecht, The Netherlands
Institute for Theoretical Physics, Utrecht University,
Princetonplein 5, 3584 CC' Utrecht, The Netherlands
(Dated: January 28, 2022)

I. THEORY

As discussed in the main text, we extended the theory introduced in Ref. [1] by considering a z-dependent nematic
order parameter S(z) in the definition of the tensorial order parameter Q as well as a z-dependent magnitude P(z) in
the definition of the polarization vectors Prg and Pgp. It follows that, after insertion of Q and P, the grand potential
AQ at fixed chemical potential p becomes a function of the wave number ¢ and the tilt angle 6 as well as a functional
of S(z) and P(z), i.e.

AQ(Q,P) = AQ(/,L;q, 0,18, P]) (S1)

To fully minimize A2 we adopt the following protocol. We first fix the chemical potential u and the wave number g,
and solve the system of Euler-Lagrange equations

SAQ ., SAQ - SAQ . SAQ
35(z) ~ 78(0.5(2)) oP(z)  78(0.P(2))’

(52)

for several values of the tilt angle . We repeat this procedure for several values of ¢, while keeping p fixed. In
this way we identify the grand-potential minimum of the Ntp phase characterized by ¢t (1), Ors(1), STB(14; 2) and
Prp(p; 2), and of the Ngp phase described by gsg (@), 0ss (1), Ssg(w; 2) and Psg(u; 2). As stated in the main text, we
keep the coefficients a = 1.436,b = 5.851,d = 3.693 and Su* = 6.855 fixed in order to describe the “Onsager”-type
I-N phase transition of uniaxial hard needles occurring at Bury = Bu* — b*/(4ad) = 5.241 [1, 2]. Furthermore we set
es =1,5 =0.99,e4 = 0.5,k = 0.3L2, and A\ = 0.18, while we vary /; and [, to change the ratio between the splay
and twist elastic constants K77 and Koo.

We first consider the case I; = 0.165L% and I, = 0.427L2, from which Ky;/Ka = 1+ 13/(2l1) = 2.294. In Fig.
S1 we plot AQrgp/V as a function of the tilt angle 6 for several values of the wave number ¢, at fixed values of the
chemical potential y. We identify the grand-potential minima for each u, and find that the corresponding ¢ and 6
coincide with ¢grg and 6rp obtained in Ref. [1], given by

3\ SiH(ZQTB)SP
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sin® Or(p; S, P) = wb \/H (kP2 + S5°0) (S4)
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respectively. In a similar way, we determine the grand-potential minima of the Ngp phases (not shown here). In
Fig. S2(a) we plot the resulting grand-potential densities of the Npp and Ngp phases, respectively, as a function
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of the chemical potential yu. We define the grand-potential densities of the Npg and Ngp phases as AQrp JV =
AQrp/V — AQpn/V and AQsp/V = AQsp/V — AQy /V, respectively, where AQy/V is the grand-potential density
of the (metastable) uniaxial N phase. We find that AQrp/V and AQgp/V exactly coincide with the grand potential
densities of the Ntp and Ngp phases obtained when S and P are assumed to be z-independent in the Q and P order
parameters, respectively [1]. We observe that AQrp < AQgp at each Su > Bunno, = 5.663 and that AQrg =0 at
the critical chemical potential Sun N,y - It follows from Fig. S2(a) that a second-order N-N7p phase transition takes
place at Sunng. Furthermore, Fig. S3 shows that the renormalized bend elastic constant Kgg, as defined in Ref.
[1], vanishes at Sunnp- As noticed in the main text and shown in Figs. S4(a) and S4(b), St(z) and Prg(z) are
constant along z for each p. As a consequence, the corresponding density profile crp as shown in Fig. S4(c) is also
a spatial constant. We plot the extremal solutions Stg and Prg (with points) as a function of p in Figs. S5(a) and
S5(b), respectively, and find that they exactly coincide with those (plotted with full lines) obtained in Ref. [1], by
assuming that S and P are z-independent in the Q and Prp order parameters, respectively. In particular Stg(u)
coincides with Sy (i) of Eq. (3) of the main text.

Subsequently, we consider the case [ = 0.1L2 and Iy = 0.0427L?, from which K1 /Ko = 1+ 15/(2l;) = 1.124. We
identify the grand-potential minima of the Ntp and Ngg phases for each p. In Fig. S6 we exemplarily plot AQgg/V
as a function of the tilt angle 6 for several values of the wave number ¢, at fixed values of the chemical potential u,
from which we determine the minimal grand potential. In Fig. S2(b) we plot AQrg/V and AQsp/V as a function
of Bu. Again we find that AQrp/V and AQgp/V exactly coincide with the grand potential densities of the Nrp and
Ngp phases obtained when S and P are assumed to be z-independent in the Q and P order parameters, respectively
[1]. We observe that, this time, AQrp > AQgp at each Bu > Bunne, = 5.354 and that AQgp = 0 at BunNeg- It
follows that a second-order N-Ngp phase transition takes place at Sunneg. As shown in Fig. S3, Bunneg is also the
point where the renormalized bend elastic constant Kgg, as defined in Ref. [1], vanishes.

As noticed in the main text, Ssp and Psp display periodic modulations along z for > unng,- In Fig. 1(c) we plot
with points the period-average of the profiles Ssg and Psp as a function of p. We find that these period-average values
exactly coincide with the extremal solutions St and Prp (plotted with full lines) obtained in Ref. [1], by assuming
that S and P are z-independent in the Q and Pgp order parameters, respectively. In particular, the spatial average
of Ssp(i;z) coincides with the Sy (i) of Eq. (3) (denoted by the dashed line) for sufficiently low Su. For high Bpu,
we find that the period-average Ssp(u;z) deviates slightly from Sy (u) of Eq. (3) due to the small-6 approximation
employed in the computation of AQgg/V [1]. Finally, in Fig. S6 we plot AQgp/V as a function of the tilt angle 0
for several values of the wave number ¢, at fixed values of the chemical potential . We observe that, for each u, the
minimum values of ¢ and 6 coincide with ¢gsg and fsp as obtained in Ref. [1], given by
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and
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respectively, where S and P are the period-average of the Ssp(z) and Psg(z) profiles, at each p.

II. COUPLING BETWEEN SPLAY DEFORMATIONS AND DENSITY MODULATIONS

As shown in Fig. S9, the Ssp(z) profiles accurately fit the functional form
SSB(Z) = Sén]fx COS (93 sin (qSBz)), (87)

where the fit parameter g is reported for several Ay in Table S1. In Fig. S10 we plot Ssg(V -figp) and H(V Ssp)-fisp
as a function of z, with full and dashed lines, respectively. The figure shows that a spatial constant H can be found,
at each p, such that

SSB(V . ﬁSB) = H(VSSB) - NgR. (SS)



1028Apu fs
0.0 0.0
0.1 0.0022010
0.2 |0.0036504
0.3 |0.0050369
0.4 |0.0062674
0.5 [0.0074497
1.0 |0.0127617
2.0 |0.021850

TABLE S1: Coefficients 05 of the functional form Eq. (S7) for varying chemical potentials Ay = p— punngg, obtained through
fitting the Ssp(z) profiles (see Figs. 1(a) and S9).

By using the thermodynamic identity (6), we can write

VSsg  2SsB(VSss)
Ssp 2852
_ VS
282,

v <B<>—> (59)

a

2 csp(z)—cr

Vesp(z)
2(csp(z) —cr)’

Inserting (S9) into (S8) we find Eq. (8).
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FIG. S1: AQrg/V as a function of the tilt angle 0 for several values of the wave number ¢, in the case of Su = 5.67 (a),
B =5.69 (b) and Bu = 5.71 (c). We consider the coefficients I; = 0.165L2,1y = 0.427L% ex = 1,50 = 0.99, e4 = 0.5, x = 0.3L>
and A = 0.18L%. We observe that, at each p, the minimum values of ¢ and @ correspond to the grs and frg of Egs. (S3) and
(S4), respectively. In (a), (b), and (c) we plot AQrg/V subtracted by the irrelevant constant values A; = 0.4729, Ay = 0.4987,
and Az = 0.5248, respectively.
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FIG. S2: Grand-potential density of the Ntp phase AQTB/V = AQre/V — AQpn/V and of the Nsg phase AQSB/V =
AQsp/V — AQn/V, as a function of the chemical potential By, for the Landau coefficients i1 = 0.165L2 and l» = 0.427L2
(a), and I; = 0.1L?% and I, = 0.0427L2 (0). In (a) K11/K22 = 2.294, while in (b) K11/K22 = 1.214. The other coefficients are
ea=1,5 =0.99,e4 = 0.5k =0.3L% and A = 0.18L2 in all cases. Either in (a) and in (b) the grand-potential density AQy/V
of the uniaxial N phase is plotted in the inset. In case (a) a N-Ntp transition occurs at Sunnp, = 5.663, in case (b) a N-Ntg

transition occurs at BunnNgg = 5.
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FIG. S3: Renormalized bend elastic constat K$§ (defined in Ref. [1]) as a function of the chemical potential Su, for the Landau
coefficients Iy = 0.165L* and lo = 0.427L* (violet), and 1 = 0.1L? and lo = 0.0427L? (green). The other coefficients are
e2 =1,50 =0.99,e4 = 0.5,k = 0.3L2 and A = 0.18L? in all cases. In the former case K5I vanishes at the chemical potential
Bure = 5.663, where a second-order N-Npp transition occurs. In the latter case KST vanishes at the chemical potential

Buss = 5.354, where a second-order N-Ngp transition occurs.
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FIG. S4: Nematic order parameter Stg (a), amplitude of the polarity Prg (b), and particle concentration ctg (c), in the Ntg
phase, as a function of z for several values of Ay = p — pn Nog, and for the coefficients I1 = 0.165L2, 15 = 0.427L% es = 1,59 =
0.99,e4 = 0.5,k = 0.3L% and \ = 0.18L2. We observe that Stg, Prg and crp remain constant along z for each p.
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FIG. S5: Scalar nematic order parameter Stg (a) and amplitude of the polarity Prg (b) in the Ntg phase as a function of the
chemical potential Bpu, for the coefficients e; = 1.0,e4 = 0.5, A = 0.18L,x = 0.3L%, Sy = 0.99,1; = 0.165L2 and Iy = 0.427L>.
Full lines and points represent solutions obtained when S and P are assumed z-independent and z-dependent in the Q and
Prp order parameters, respectively. A perfect match is found. In particular, Stp corresponds to Sx(u) of Eq. (3). In (b) we
also plot the equilibrium wave vector grs and tilt angle g as given by Egs. (S3) and (S4), respectively as a function of Bpu.
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FIG. S6: AQgsp/V as a function of the tilt angle 6 for several values of the wave number ¢, in the case of Su = 5.37 (a),
By = 5.39 (b) and Bu = 5.41 (c). We consider the coefficients I; = 0.1L%,1s = 0.0427L%,e2 = 1,50 = 0.99, ¢4 = 0.5,k = 0.3L?
and A = 0.18L2. We observe that, at each u, the minimum values of ¢ and 6 correspond to the gsg and fsp of Egs. (S5) and
(S6), respectively. In (a), (b), and (c) we plot AQgs/V subtracted by the irrelevant constant values ¥; = 0.1248, X2 = 0.1456,
and X3 = 0.1668, respectively.
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FIG. S7: Amplitude of the polarity Psp in the Ngp phase, as a function of z, for the same values of Ay = p — punngg and of
the Landau coefficients as in Fig. 1 of the main text. We observe that Psp is constant along z for z < punngg, while it displays
modulations along z for z > unNgg-
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FIG. S8: Nematic order parameter Sy as a function of z, for the same values of the Landau coefficients as in Fig. 1 of the
main text, but for several negative values of Ay = p — punngg < 0 (i.e. before the N-Ngp transition). We observe that Sy is
always constant along z.



Ss

LOOF ™ e | 10
0.98}W7 50—
r 40—
0.96; 1 30—
v,? 0.94 ,W* 2.0
092f ] 10—
0.90} ]
O.SSEM
0 g P 3z 27
4qsBZ 2
0.865) 1 108Au
i 0.6 —
0.860F 1 05—
I 0.4—
m L
< 0.855] 1| 03
i 0.2—
i 0.1—
0.850] y
0.845L . ; ; (b)
0 g Pis Ef 2n
4dsBZ
0.8435F 1 [10pn
0.8430F 1 ]1005—
0.04 —
0.8425 1 1003—
. ] 0.02
0.8420F 1 1001—
0.00—
0.8415} 1
0.8410% ‘ ‘ ‘ (a)
0 sz Pis ;—7” 2
gsBZ )

10

FIG. S9: With full lines we plot the scalar nematic order parameter Ssp as a function of z € [0,27/gsg] for a large number
of App = p — pNnNgg, and for the same Landau coefficients as in Fig. 1 of the main text. With points we plot a fit of the
numerical results. The fitting function corresponds to Eq. (S7), with coefficient 65 given in Table S1. Optimum agreement can

be observed.



11

0.03 &9

0.02

0.01
0.00

-0.01

-0.02

-0.03

FIG. S10: Ssp(V - nigp) (full lines) and H(VSsp) - fisp (dashed lines) as a function of z, for several values of the chemical
potential Ap = g — pnngg and for the same coefficients as in Fig. 1 of the main text. The fit parameter H varies with p, as
shown in the inset. At each p, the relation Ssg(V - fisg) = H(V.Ssg) - figg holds.



