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I. THEORY

As discussed in the main text, we extended the theory introduced in Ref. [1] by considering a z-dependent nematic
order parameter S(z) in the definition of the tensorial order parameter Q as well as a z-dependent magnitude P (z) in
the definition of the polarization vectors PTB and PSB. It follows that, after insertion of Q and P, the grand potential
∆Ω at fixed chemical potential µ becomes a function of the wave number q and the tilt angle θ as well as a functional
of S(z) and P (z), i.e.

∆Ω(Q,P) ≡ ∆Ω
(
µ; q, θ, [S, P ]

)
. (S1)

To fully minimize ∆Ω we adopt the following protocol. We first fix the chemical potential µ and the wave number q,
and solve the system of Euler-Lagrange equations

δ∆Ω

δS(z)
= ∂z

δ∆Ω

δ(∂zS(z))
;

δ∆Ω

δP (z)
= ∂z

δ∆Ω

δ(∂zP (z))
, (S2)

for several values of the tilt angle θ. We repeat this procedure for several values of q, while keeping µ fixed. In
this way we identify the grand-potential minimum of the NTB phase characterized by qTB(µ), θTB(µ), STB(µ; z) and
PTB(µ; z), and of the NSB phase described by qSB(µ), θSB(µ), SSB(µ; z) and PSB(µ; z). As stated in the main text, we
keep the coefficients a = 1.436, b = 5.851, d = 3.693 and βµ∗ = 6.855 fixed in order to describe the “Onsager”-type
I-N phase transition of uniaxial hard needles occurring at βµIN = βµ∗− b2/(4ad) = 5.241 [1, 2]. Furthermore we set
e2 = 1, S0 = 0.99, e4 = 0.5, κ = 0.3L2, and λ = 0.18, while we vary l1 and l2 to change the ratio between the splay
and twist elastic constants K11 and K22.

We first consider the case l1 = 0.165L2 and l2 = 0.427L2, from which K11/K22 = 1 + l2/(2l1) = 2.294. In Fig.
S1 we plot ∆ΩTB/V as a function of the tilt angle θ for several values of the wave number q, at fixed values of the
chemical potential µ. We identify the grand-potential minima for each µ, and find that the corresponding q and θ
coincide with qTB and θTB obtained in Ref. [1], given by

qTB(µ;S, P ) = − 3λ sin(2θTB)SP

8κP 2 + 4S2(2l1 + l2) sin2 θTB − 4S2l2 sin4 θTB

, (S3)

and

sin2 θTB(µ;S, P ) = −κP
2

S2l1
+

√
κP 2(κP 2 + S2l1)

S2l1
, (S4)

respectively. In a similar way, we determine the grand-potential minima of the NSB phases (not shown here). In
Fig. S2(a) we plot the resulting grand-potential densities of the NTB and NSB phases, respectively, as a function
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of the chemical potential µ. We define the grand-potential densities of the NTB and NSB phases as ∆Ω̄TB/V ≡
∆ΩTB/V −∆ΩN/V and ∆Ω̄SB/V ≡ ∆ΩSB/V −∆ΩN/V, respectively, where ∆ΩN/V is the grand-potential density
of the (metastable) uniaxial N phase. We find that ∆Ω̄TB/V and ∆Ω̄SB/V exactly coincide with the grand potential
densities of the NTB and NSB phases obtained when S and P are assumed to be z-independent in the Q and P order
parameters, respectively [1]. We observe that ∆ΩTB < ∆ΩSB at each βµ ≥ βµNNTB = 5.663 and that ∆Ω̄TB = 0 at
the critical chemical potential βµNNTB . It follows from Fig. S2(a) that a second-order N -NTB phase transition takes
place at βµNNTB

. Furthermore, Fig. S3 shows that the renormalized bend elastic constant Keff
33 , as defined in Ref.

[1], vanishes at βµNNTB
. As noticed in the main text and shown in Figs. S4(a) and S4(b), STB(z) and PTB(z) are

constant along z for each µ. As a consequence, the corresponding density profile cTB as shown in Fig. S4(c) is also
a spatial constant. We plot the extremal solutions STB and PTB (with points) as a function of µ in Figs. S5(a) and
S5(b), respectively, and find that they exactly coincide with those (plotted with full lines) obtained in Ref. [1], by
assuming that S and P are z-independent in the Q and PTB order parameters, respectively. In particular STB(µ)
coincides with SN (µ) of Eq. (3) of the main text.

Subsequently, we consider the case l1 = 0.1L2 and l2 = 0.0427L2, from which K11/K22 = 1 + l2/(2l1) = 1.124. We
identify the grand-potential minima of the NTB and NSB phases for each µ. In Fig. S6 we exemplarily plot ∆ΩSB/V
as a function of the tilt angle θ for several values of the wave number q, at fixed values of the chemical potential µ,
from which we determine the minimal grand potential. In Fig. S2(b) we plot ∆Ω̄TB/V and ∆Ω̄SB/V as a function
of βµ. Again we find that ∆Ω̄TB/V and ∆Ω̄SB/V exactly coincide with the grand potential densities of the NTB and
NSB phases obtained when S and P are assumed to be z-independent in the Q and P order parameters, respectively
[1]. We observe that, this time, ∆ΩTB > ∆ΩSB at each βµ ≥ βµNNSB

= 5.354 and that ∆Ω̄SB = 0 at βµNNSB
. It

follows that a second-order N -NSB phase transition takes place at βµNNSB
. As shown in Fig. S3, βµNNSB

is also the
point where the renormalized bend elastic constant Keff

33 , as defined in Ref. [1], vanishes.
As noticed in the main text, SSB and PSB display periodic modulations along z for µ > µNNSB

. In Fig. 1(c) we plot
with points the period-average of the profiles SSB and PSB as a function of µ. We find that these period-average values
exactly coincide with the extremal solutions STB and PTB (plotted with full lines) obtained in Ref. [1], by assuming
that S and P are z-independent in the Q and PSB order parameters, respectively. In particular, the spatial average
of SSB(µ; z) coincides with the SN (µ) of Eq. (3) (denoted by the dashed line) for sufficiently low βµ. For high βµ,
we find that the period-average SSB(µ; z) deviates slightly from SN (µ) of Eq. (3) due to the small-θ approximation
employed in the computation of ∆ΩSB/V [1]. Finally, in Fig. S6 we plot ∆ΩSB/V as a function of the tilt angle θ
for several values of the wave number q, at fixed values of the chemical potential µ. We observe that, for each µ, the
minimum values of q and θ coincide with qSB and θSB as obtained in Ref. [1], given by

qSB(µ;S, P ) =
3λθSB(θ2

SB − 8)PS

8(4 + 3θ2
SB)κP 2 + 16S2(2l1 + l2)θ2

SB

, (S5)

and

θ2
SB(µ;S, P ) =

16κP 2

3κP 2 +
√
κP 2(57κP 2 + 32S2(2l1 + l2))

, (S6)

respectively, where S and P are the period-average of the SSB(z) and PSB(z) profiles, at each µ.

II. COUPLING BETWEEN SPLAY DEFORMATIONS AND DENSITY MODULATIONS

As shown in Fig. S9, the SSB(z) profiles accurately fit the functional form

SSB(z) = Smax
SB cos

(
θS sin

(
qSBz

))
, (S7)

where the fit parameter θS is reported for several ∆µ in Table S1. In Fig. S10 we plot SSB(∇·n̂SB) and H(∇SSB) ·n̂SB

as a function of z, with full and dashed lines, respectively. The figure shows that a spatial constant H can be found,
at each µ, such that

SSB(∇ · n̂SB) = H(∇SSB) · n̂SB. (S8)
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102β∆µ θS

0.0 0.0

0.1 0.0022010

0.2 0.0036504

0.3 0.0050369

0.4 0.0062674

0.5 0.0074497

1.0 0.0127617

2.0 0.021850

TABLE S1: Coefficients θS of the functional form Eq. (S7) for varying chemical potentials ∆µ ≡ µ−µNNSB , obtained through
fitting the SSB(z) profiles (see Figs. 1(a) and S9).

By using the thermodynamic identity (6), we can write

∇SSB

SSB
=

2SSB(∇SSB)

2S2
SB

=
∇S2

SB

2S2
SB

=

∇
(

cSB(z)−cI
a

)
2 cSB(z)−cI

a

=
∇cSB(z)

2
(
cSB(z)− cI

) .

(S9)

Inserting (S9) into (S8) we find Eq. (8).
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FIG. S1: ∆ΩTB/V as a function of the tilt angle θ for several values of the wave number q, in the case of βµ = 5.67 (a),
βµ = 5.69 (b) and βµ = 5.71 (c). We consider the coefficients l1 = 0.165L2, l2 = 0.427L2, e2 = 1, S0 = 0.99, e4 = 0.5, κ = 0.3L2

and λ = 0.18L2. We observe that, at each µ, the minimum values of q and θ correspond to the qTB and θTB of Eqs. (S3) and
(S4), respectively. In (a), (b), and (c) we plot ∆ΩTB/V subtracted by the irrelevant constant values Λ1 = 0.4729,Λ2 = 0.4987,
and Λ3 = 0.5248, respectively.
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FIG. S2: Grand-potential density of the NTB phase ∆Ω̄TB/V ≡ ∆ΩTB/V − ∆ΩN/V and of the NSB phase ∆Ω̄SB/V ≡
∆ΩSB/V − ∆ΩN/V, as a function of the chemical potential βµ, for the Landau coefficients l1 = 0.165L2 and l2 = 0.427L2

(a), and l1 = 0.1L2 and l2 = 0.0427L2 (b). In (a) K11/K22 = 2.294, while in (b) K11/K22 = 1.214. The other coefficients are
e2 = 1, S0 = 0.99, e4 = 0.5, κ = 0.3L2 and λ = 0.18L2 in all cases. Either in (a) and in (b) the grand-potential density ∆ΩN/V
of the uniaxial N phase is plotted in the inset. In case (a) a N -NTB transition occurs at βµNNTB = 5.663, in case (b) a N -NTB

transition occurs at βµNNSB = 5.354.

FIG. S3: Renormalized bend elastic constat Keff
33 (defined in Ref. [1]) as a function of the chemical potential βµ, for the Landau

coefficients l1 = 0.165L2 and l2 = 0.427L2 (violet), and l1 = 0.1L2 and l2 = 0.0427L2 (green). The other coefficients are
e2 = 1, S0 = 0.99, e4 = 0.5, κ = 0.3L2 and λ = 0.18L2 in all cases. In the former case Keff

33 vanishes at the chemical potential
βµTB = 5.663, where a second-order N -NTB transition occurs. In the latter case Keff

33 vanishes at the chemical potential
βµSB = 5.354, where a second-order N -NSB transition occurs.
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FIG. S4: Nematic order parameter STB (a), amplitude of the polarity PTB (b), and particle concentration cTB (c), in the NTB

phase, as a function of z for several values of ∆µ ≡ µ−µNNTB , and for the coefficients l1 = 0.165L2, l2 = 0.427L2, e2 = 1, S0 =
0.99, e4 = 0.5, κ = 0.3L2 and λ = 0.18L2. We observe that STB, PTB and cTB remain constant along z for each µ.
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FIG. S5: Scalar nematic order parameter STB (a) and amplitude of the polarity PTB (b) in the NTB phase as a function of the
chemical potential βµ, for the coefficients e2 = 1.0, e4 = 0.5, λ = 0.18L, κ = 0.3L2, S0 = 0.99, l1 = 0.165L2 and l2 = 0.427L2.
Full lines and points represent solutions obtained when S and P are assumed z-independent and z-dependent in the Q and
PTB order parameters, respectively. A perfect match is found. In particular, STB corresponds to SN (µ) of Eq. (3). In (b) we
also plot the equilibrium wave vector qTB and tilt angle θTB as given by Eqs. (S3) and (S4), respectively as a function of βµ.
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FIG. S6: ∆ΩSB/V as a function of the tilt angle θ for several values of the wave number q, in the case of βµ = 5.37 (a),
βµ = 5.39 (b) and βµ = 5.41 (c). We consider the coefficients l1 = 0.1L2, l2 = 0.0427L2, e2 = 1, S0 = 0.99, e4 = 0.5, κ = 0.3L2

and λ = 0.18L2. We observe that, at each µ, the minimum values of q and θ correspond to the qSB and θSB of Eqs. (S5) and
(S6), respectively. In (a), (b), and (c) we plot ∆ΩSB/V subtracted by the irrelevant constant values Σ1 = 0.1248,Σ2 = 0.1456,
and Σ3 = 0.1668, respectively.
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FIG. S7: Amplitude of the polarity PSB in the NSB phase, as a function of z, for the same values of ∆µ ≡ µ − µNNSB and of
the Landau coefficients as in Fig. 1 of the main text. We observe that PSB is constant along z for z ≤ µNNSB , while it displays
modulations along z for z > µNNSB .

FIG. S8: Nematic order parameter SN as a function of z, for the same values of the Landau coefficients as in Fig. 1 of the
main text, but for several negative values of ∆µ ≡ µ− µNNSB < 0 (i.e. before the N -NSB transition). We observe that SN is
always constant along z.
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FIG. S9: With full lines we plot the scalar nematic order parameter SSB as a function of z ∈ [0, 2π/qSB] for a large number
of ∆µ ≡ µ − µNNSB , and for the same Landau coefficients as in Fig. 1 of the main text. With points we plot a fit of the
numerical results. The fitting function corresponds to Eq. (S7), with coefficient θS given in Table S1. Optimum agreement can
be observed.
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FIG. S10: SSB(∇ · n̂SB) (full lines) and H(∇SSB) · n̂SB (dashed lines) as a function of z, for several values of the chemical
potential ∆µ ≡ µ− µNNSB and for the same coefficients as in Fig. 1 of the main text. The fit parameter H varies with µ, as
shown in the inset. At each µ, the relation SSB(∇ · n̂SB) = H(∇SSB) · n̂SB holds.


