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Most frictional contacts are lubricated in some way, but is has proven difficult to measure and predict
lubrication layer thicknesses and assess how they influence friction at the same time. Here we study the
problem of rigid-isoviscous lubrication between a plate and a sphere, both experimentally and theoretically.
The liquid layer thickness is measured by a novel method using inductive sensing, while the friction is
measured simultaneously. The measured values of the layer thickness and friction on the disk are well
described by the hydrodynamic description of liquid flowing through a contact area. This allows us to
propose a modified version of the Hersey number that compares viscous to normal forces and allows us to
rescale data for different geometries and systems. The modification overcomes the shortcomings of the
commonly used Hersey number, adds the effects of the geometry of the configuration on the friction, and
successfully predicts the lubrication layer thickness.
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Lubricated friction is a phenomenon that occurs in a
large variety of different fields. Engineers often opt to use
oils that smoothen the movement of the rigid internal
parts like gears, bearings, or chains to reduce energy
consumption and lengthen the lifetime of the machinery.
Lubrication can cause the soft rubber wheels of cars to
slip in snowy or rainy circumstances. Similarly, the steel
wheels of trains losing grip due to leaves on the rails is a
costly problem [1]. In the food and cosmetics industry,
lubricated friction plays a large role in the sensory
perception in the human mouth or on human skin [2].
Even in ancient Egypt people knew how to reduce
friction, which can be concluded from them spreading
water in front of heavy sculptures, making it easier to pull
them through the desert sand [3].
It is estimated that 20%–30% of the world’s energy

consumption is related to friction and wear [4]. Therefore,
minimizing friction is an important goal in many engineer-
ing problems that involve sliding or rotating parts. In the
vast majority of cases, this is achieved by lubricating the
contacts. A full physical understanding of a lubricated
contact requires an experimentally verified theory describ-
ing the liquid layer thickness as well as the frictional force.
Much work has been performed on both aspects, yet
unification of the two theories into one single experiment
has proven to be difficult.
On the one hand, theoretical hydrodynamic investiga-

tions for the layer thickness are plentiful, with descriptions
that take into account other effects such as elastically
deformable surfaces [5,6] and pressure-viscosity relations
[6–8]. However, even for the simplest case of hard sur-
faces and isoviscous liquids, the unification of layer

thickness and friction in a single theory has not been
experimentally confirmed.
On the other hand, it is found that friction for lubricated

contacts is qualitatively described by a Stribeck curve,
which explains how friction scales with the relevant
physical parameters in the boundary, mixed, and hydro-
dynamic lubrication regimes [5,9,10]. The curve relates the
friction coefficient to a dimensionless parameter, called the
Hersey number, which should consist of a combination
of all relevant physical parameters in the configuration.
Empirically, it has been found that, in the hydrodynamic
regime, the friction coefficient μ (the ratio of friction force
and normal force) scales with the “conventional” Hersey
number, defined as Hr≡ ðηU0=FNÞ, where η, U0, and FN
are the viscosity, sliding velocity, and normal force,
respectively. The scaling has been suggested to be linear
[5,11], although more recent work uses a power-law
relation [12–15].
However, this Hersey number is not sufficient for a

full physical understanding for several reasons. First, this
combination of parameters has dimension m−1, so it is not
dimensionless. Others have worked around this problem by
introducing a constant length scale into the Hersey number,
for example, the surface roughness [14] or radius of
curvature [16]. Obviously, adding an extra constant factor
will keep the proportionality properties, but does not
explain how friction depends on the geometry of a sliding
experiment. Second, this Hersey number does not contain
the liquid layer thickness between the sliding contacts, so it
is impossible to determine when this thickness becomes so
small that the mixed lubrication regime is reached. Finally,
relating to our first point, there is no direct relation between
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Hersey number and friction, as previous research has only
investigated the proportionality, making an accurate pre-
diction prior to an experiment impossible. This has forced
researchers to perform cumbersome series of sliding
experiments to obtain a separate Stribeck curve for each
slightly different configuration [11,15]. On small scales,
techniques such as the surface force apparatus [17] or
atomic force microscopy [18] allow one to perform very
precise friction and lubrication experiments. These tech-
niques investigate the microscopic origins of friction,
rather than providing a practical description of friction
that typically occurs on larger length scales and can be
used for engineering purposes.
Here, we use a novel method of inductive sensing to

measure the layer thickness between two hard surfaces,
which, combined with simultaneous friction measurement,
allows us to test conventional lubrication theory for both
layer thickness and friction. The results naturally lead to the
proposal of a modified Hersey number, solving the afore-
mentioned problems with the conventional Hersey number.
The experimental setup consists of a glass plate on which

aluminum disks (radius Rs ¼ 1.95 cm) are pulled along a
circular track (radius 10 cm) in between two Plexiglas walls
that confine the lubricant to the track [see Fig. 2 in the
supplementary materials for details]. The disks have a
spherical bottom with radius of curvature R ¼ 100 cm (the
flattest disk) and R ¼ 25 cm (the most curved disk). The
rotation is performed by an arm connected to a rheometer
head (Anton Paar rheometer: MCR 702 multidrive),
allowing for control of the pulling speed, while measuring
the torque and hence the friction. Error in the friction
measurements is 5 mN, arising from the unconventional
usage of the rheometer through the attachment of a long
arm. The disk is attached with a flexible thin wire to the far
end of the arm, so that the arm itself does not cause any
additional normal force being applied onto the disk.
Surface roughness of the disk is measured by a profilometer
(Keyence Laser Microscope: 3D laser scanning confocal
microscope VK-X1000) and found to be ∼1 μm, much
smaller than the typical layer thicknesses measured in the
experiments and orders of magnitude smaller than the
radius of curvature. Adding mass centrally on top of the
disk allows for varying normal forces.
The layer thickness is defined as the minimum separation

of the two surfaces (Fig. 1). For the flattest disk, this liquid
layer thickness is measured by inductive sensing (Texas
Instruments, LDC1614EVM evaluation module for induct-
ance to digital convertor). Eight identical sensors are glued
underneath the circular 1.1 mm thick glass track, at regular
intervals of 45°. Calibration consists of two steps. First,
before positioning of the sensors, a gauge is performed by
fixing a sensor on a flat plate and moving the disk toward it
to relate the change of height to the change of inductance.
Second, pulling the disk along the track without a liquid
yields the inductance value for a layer thickness h0 ¼ 0.

This allows one to measure the layer thickness h0 when a
lubricated disk moves over the sensor. Repeating this
procedure with various sensors yields identical gauges
within 5 μm, which is sufficiently accurate for testing
our hydrodynamic lubrication theory.
The disk is lubricated by pouring one of two types of

polydimethylsiloxane oil onto the track at room temper-
ature. The viscosity of the tested oils is obtained by
rheology [19], yielding η ¼ 53.5 and 104 mPa s. The
experimental protocol consists of pouring the liquid, then
letting the disk rotate with 4 cm=s to evenly distribute the
liquid, and finally increasing the velocity ramping from 2
to 10 cm=s in 240 s. The amount of liquid is chosen such
that the front of the disk is fully lubricated during the
entirety of the measurement. For some measurements, a
control experiment is performed where the velocity ramp is
inverted. This yields the same result for the layer thickness
measurement within the 5 μm error, so that it can be
concluded that a steady state is reached.
Fig. 2 shows the liquid layer thickness and friction as a

function of velocity and normal force. The lines represent
theoretical predictions, of which the derivation follows
below. There is quantitative agreement between theory and
experiment for the layer thickness, without any adjustable
parameter. For the friction, our model only takes into
account the friction arising from underneath the disk, yet in
our experiments additional friction sources were present:
mainly the ploughing of the disk through the liquid and
friction with the side walls of the channel. To account for
this, we add a friction component to all of the calculated
friction forces (black dashed lines in Fig. 2). We find that a
very satisfactory description of our data is obtained when
we use a constant background noise term plus a term that
scales linearly with viscosity, velocity, and the frontal area
of the disk to compensate the ploughing, thus giving us two
tunable parameters to fit the entirety of our data. With this
relatively small correction, the normal force and velocity
dependence of the friction is also quantitatively accounted
for, giving us some confidence in the hydrodynamic
description detailed below.
Our model tends to underestimate the measured friction

for relatively high normal force and low velocity. This can

FIG. 1. Schematic of the configuration of the fully lubricated
contact between a flat surface and a slightly curved, tilted disk.
The disk moves with velocity U0 in the negative x direction,
indicated by the arrow, and is tilted such that the narrowest part of
the gap hðx; yÞ ¼ h0 is shifted in positive x direction by an
amount fRs.
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be ascribed to the layer thickness being so small that
surface effects start to play a role. We are uncertain about
the precise physical origin of the excess force measured. It
could be that the intimate contact yields an adhesive van der
Waals force. However, we cannot exclude the possibility
that tiny dust or dirt particles, with size equal to the layer
thickness, enter the contact and disturb the measurement,
which would explain the inconsistent nature of stick-slip
events. In any case, it is worth noting that the presence of
excess force at low layer thickness could be an indication
that the mixed regime is being entered.
To model the friction, we consider a disk with radius Rs

and a spherical bottom with radius R, sliding with velocity
U0 in the negative x direction on a flat surface (see Fig. 1),
with its inlet fully emerged in liquid. Having only this
segment of a sphere instead of a full sphere, is mathemati-
cally identical to what is known in literature as starved
lubrication [5]. The gap between both surfaces is given by a
parabolic approximation h ¼ h0 þ ½ðx2 þ y2Þ=2R�, with h0
the lowest point and R the radius of curvature.
For h0 ≪ Rs the lubrication approximation yields a

solution of the Stokes equations in the form of the
Reynolds equation [6,20], which is a differential equation

for the pressure distribution p ¼ pðx; yÞ in the region
of contact,

∂
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�
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12η

∂p
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�
þ ∂
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�
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�
¼ ∂
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�
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2
hU0

�
; ð1Þ

where η is the dynamic viscosity of a Newtonian liquid.
In the case of a line contact, when all y dependence drops

out, an exact solution for p can be found [7]. However, with
the y terms included and a noncentrally positioned origin,
this is no longer the case, and a numerical approach is
required. A similar problem with a sliding ball instead of a
disk, effectively taking the limit Rs → R, has been studied
extensively by Kapitza [21], and later Brewe et al. [22]. (In
this limit, the parabolic approximation is no longer valid
near the edge of the disk, but the edge has no significant
contribution to the generated lift, so we expect this limit to
predict correct results anyway.) A more general solution
with the additional parameter Rs, to take into account
the proximity of the edge of the disk, is derived in the
Supplemental Material [23]. This yields the following
relations for the normal force FN and the friction force
Fw on the disk:

FIG. 2. Measurements of layer thickness (a),(b) and friction force (c)–(f) as a function of velocity and normal force, with (a),(c),
(e) 104 mPa s and (b),(d),(f) 53.5 mPa s. (a)–(d) Filled symbols denote a disk with radius of curvature R ¼ 100 cm; (e),(f) open
symbols denote a disk with R ¼ 25 cm. All measurements use a disk with radius Rs ¼ 2.0 cm. Values on the right-hand side indicate
total normal force on the disk. Solid lines correspond to theoretical predictions, Eqs. (3) and (5). For the friction measurements, an
additional noise and ploughing friction (black dashed lines) from sources other than the lubricated contact is postulated to match theory
and experiments. Some measurements do not reach the lowest velocities (as can be seen by the abrupt stoppage of the data), because the
low layer thickness results in stick-slip behavior. Error on the layer thickness measurements is 5 μm. (The lowest data points are
therefore indistinguishable from a layer thickness of zero and the transition to the mixed regime is likely close).
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FN ¼ 8ηU0R2

Rs
ΛðR̃sÞ; ð2Þ

FW ¼ 2ηU0RKðR̃sÞ; ð3Þ

where ΛðR̃sÞ and KðR̃sÞ are two dimensionless functions
that depend on the dimensionless parameter R̃s ¼
Rs=

ffiffiffiffiffiffiffiffiffiffiffi
2Rh0

p
. In a steady-state configuration, the load is

equal to the normal force, and Eq. (2) can be inverted to
find R̃s; hence also the layer thickness. This value is
substituted into Eq. (3) to find the friction as a function of
normal force. Naturally, a dimensionless number is gen-
erated in this process, which we define as the modified
Hersey number,

Hrmod ≡ ηU0R2

FNRs
: ð4Þ

This results in the formulas for layer thickness and the
friction coefficient becoming

h0 ¼
R2
s

2R

�
1

Λ−1½1=ð8Hrmod Þ�
�

2

; ð5Þ

μ≡ Fw

FN
¼ 2

Rs

R
HrmodKfΛ−1½1=ð8HrmodÞ�g: ð6Þ

Note that this modified Hersey number differs from the
conventional Hersey number, as it depends on the geometry
of the configuration (in terms of the curvature and size
of the disk), while it maintains the same proportionality
with respect to viscosity, velocity, and normal force. The
friction coefficient depends in a nonlinear fashion on

Hersey number, due to its dependence on the dimensionless
functions Λ−1 and K.
Figure 3 shows Eqs. (5) and (6), along with the same data

points as Fig. 2 (with “noise” and “ploughing” friction
compensated). In total, four parameters are changed experi-
mentally (viscosity, velocity, normal force, and radius of
curvature), leading to a modified Hersey number varying
almost 2 orders of magnitude. Our model is not limited to
only this range of parameters, but our experimental setup
has not allowed us to test beyond this range, mainly due
to the proximity of the mixed regime (low Hershey) and
the too large forces involved (high Hershey number). We
expect the model to work for any combination of para-
meters that yields a layer thickness large enough that
surface effects can be excluded. The geometry of the
configuration manifests itself in the modified Hershey
number by the scaling R2=Rs, as a direct consequence
of the curved surface being approximated as a parabola. As
long as this approximation holds, the scaling holds, and if
the contact were to be shaped differently, the scaling would
break down as a result of the parameter R being ill defined.
There are two important limits to be considered. First,

for many applications, a sliding or rotating sphere is
considered, instead of a spherical segment. Here, the limit
Rs → R applies, without any tilt parameter. In this case, the
modified Hersey number would take the shape Hrmod ¼
ðηU0R=FNÞ, which is a form that has been used by others
before [16], as discussed in the Introduction. In practice, the
lubrication approximation breaks down near the edge of
the disk. However, as the dominant contributions to the lift
and friction originate in the region of close contact and not
near the edge, we expect that qualitatively our analysis
predicts correct trends for this limit. For a microscopic layer
thickness and macroscopic radius of curvature, this limit

FIG. 3. Measured friction coefficient μ scaled by (a) Rs=R and (b) layer thickness h0 as a function of the modified Hersey number
calculated by Eq. (4). Symbol shapes and colors correspond to different viscosities, normal forces, and radii of curvature in the sameway
as in Fig. 2. Theoretical predictions (lines) are calculated by Eqs. (5) and (6). Inset in (a) shows the extension of the theoretical curve of
the main figure to low Hersey numbers (red line), which is well approximated by a power law (black dashed line).
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corresponds to the configuration where R̃s ≫ 1, where
ΛðR̃sÞ scales linearly with R̃s [22]. We find that ΛðR̃sÞ ≈
0.75 R̃s describes the trend well, although Brewe et al. find
ΛðR̃sÞ ≈ 1.039 R̃s [24]. We do not know the cause of this
discrepancy. Using the former relation to calculate the
friction coefficient by Eq. (6) shows that, forHrmod < 0.01,
the friction coefficient scales with Hr0.874mod , which is almost
linear [Fig. 3(a)]. This explains why a linear relation in the
hydrodynamic regime is often assumed, but also why
sometimes a power-law relation is found.
Second, in the limit where the liquid layer thickness goes

to zero, a transition between mixed and hydrodynamic
lubrication takes place. For a general surface roughness
[5,25], the mixed regime is assumed to be when the layer
thickness approaches the same value as the root mean
square σ of the height distribution of surface roughness
(under the rigid-isoviscous assumption). Rewriting Eq. (5),
putting h0 ¼ σ and defining HrM→H

mod as the modified
Hersey number for when the transition between the mixed
and hydrodynamic regimes takes place, the following
relation is found:

HrM→H
mod ¼ 1

8Λ
�

Rsffiffiffiffiffiffi
2Rσ

p
� : ð7Þ

There is no universal modified Hersey number that
describes the transition, but the transition is geometry
dependent through Rs and R. For curvier surfaces, the
mixed regime is entered at lower modified Hersey number
than for flatter surfaces. Taking the limit Rs → R here, and
using the approximation for Λ, yields an approximation for
HrM→H

mod for a sliding sphere,

HrM→H
mod ¼ 0.236

ffiffiffiffiffiffiffiffiffi
σ=R

p
: ð8Þ

This means that, to reduce friction in a sliding contact
with known radius of curvature and surface roughness, the
contact can be engineered in such a way thatHr ≫ HrM→H

mod
always holds, so that the contact always remains in the
hydrodynamic lubrication regime, for example, by choos-
ing the viscosity of the lubricant accordingly.
Our model only describes the motion of rigid surfaces,

which could already be useful in lowly loaded contacts.
However, it can also serve as starting point for more
advanced calculations, while maintaining the practical form
of the friction coefficient being dependent on a simple
dimensionless parameter. The model can easily be adjusted
for the case of rolling friction by excluding the Couette
term in the integral over shear stress. This would change
the numerical value of the KðR̃sÞ function, but the shape
of Eq. (6) would be conserved. The modified Hersey
number can be extended to also include liquids with shear
thinning or thickening properties, though the calculation
of the dimensionless functions KðR̃sÞ and ΛðR̃sÞ will be

mathematically more cumbersome. There might even be
possibilities of extending the model to deformable surfaces
as well by including the Young’s modulus of the materials
into the modified Hersey number too. The formation of the
liquid film in this case has already been theorized and
experimentally validated [5,8], yet a similar result for the
friction is still missing. Similarly, if the effects occurring
at low layer thickness are properly understood, the
mixed regime could also be included into the model as
well, leading to a more fundamental understanding of the
Stribeck curve.
In conclusion, we define a new, modified Hersey number

that is dimensionless and allows one to predict friction and
lubrication layer thicknesses from the macroscopic quan-
tities in a lubricated sliding experiment. The modified
Hersey number and the friction coefficient are directly
related to each other, in contrast to the conventional Hersey
number that merely describes how friction scales with
certain parameters. In addition, the transitions between the
different frictional regimes are shown to also be governed
by the modified Hersey number. This adds to a more
detailed and quantitative understanding of lubricated fric-
tion for hard surfaces and the transition to the mixed
lubrication regime, a problem of considerable importance
in the engineering of friction.
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