
Supplementary Material  

The Reynolds equation can be written in dimensionless form: 
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where the dimensionless coordinates 𝑎	and 𝑏, the dimensionless height h	and the dimensionless 

pressure 𝑝̃	are defined as: 
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with 
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In these coordinates, there is one dimensionless parameter describing the size of the 

dimensionless domain: 
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It is imposed that, at the boundary of the domain, the pressure must be zero. Thus, the solution 

for the pressure depends on 𝑅+1. We define a tilt parameter 𝑓, where 𝑓	=	0%	means this origin 

is positioned in the center, and 𝑓	=	100%	means it is positioned at the edge of the domain. 

With these conditions, Eq. (A1) is solved numerically using Mathematica. 

With the pressure distribution 𝑝̃(𝑎,	𝑏)	calculated, the normal force is found by integrating the 

pressure distribution over the entire surface area, whereas the friction is found by integrating 

the shear stress 𝜏𝑥𝑧	in x-direction at 𝑧 = ℎ over the entire surface area. The shear stress is 

calculated by 𝜏*2 = 𝜂 !3%
!2

, where the velocity profile 𝑢𝑥	 is given in the lubrication 

approximation. Because a negative pressure is unphysical, cavitation will occur in the outlet 

region where 𝑝̃	<	0	[1]. Following [1], this region should not be included into the integral 

calculating the lift. 

The lift, which in equilibrium is equal to the normal force, and the friction are then given by:  
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𝐹8 = ∫ 𝜏*2	𝑑𝑥𝑑𝑦 =
	
6 2𝜂𝑈-𝑅 ∙ 𝐾(𝑅.1)	     (A6) 

where the following dimensionless integrals are defined: 

Λ(𝑅.𝑠) ≡ 𝑅.𝑠 ∫ 𝑝	G𝑑𝑎𝑑𝑏	
6(                (A7) 

𝐾(𝑅.𝑠) ≡ ∫ H9
'(
+ ℎ+ !"#

!$
I 	𝑑𝑎𝑑𝑏	

6(    (A8) 



Here, the dimensionless domain 𝐷.	has radius 𝑅+1 	and has its center shifted along the a-axis 

by	𝑓 ∙ 𝑅+1 	units. Note that, though the integrals are dimensionless, they do still depend on the h0, 

R, Rs and f through this domain. Kapitza [2] and Brewe et al. [3] have analyzed this problem 

in a similar fashion, but by considering a sliding sphere instead of a disk, effectively taking the 

limit 𝑅+1 	≫	1. Therefore, their equivalent of Eq. (A5) only contains a dimensionless constant 

determined by numerical simulations, instead of a dimensionless function. 

The natural tendency of the disk to tilt is a result of the pressure distribution being asymmetric, 

and it turns out to be determined by the dimensionless parameters only. Taking 𝑎	=	0	as point 

of reference, the pressure distribution creates a counterclockwise torque-element 𝑝̃	∙	𝑎	𝑑𝑎𝑑𝑏	at 

each point (𝑎,	 𝑏)	 on the domain. Assuming equilibrium condition, this 	

torque balanced by the normal force placed centrally on the disk at position 𝑓∙𝑅+1, hence the  

following relation, which relates 𝑅+1	and 𝑓, should hold:  

∫ 𝑝	G ∙ 𝑎	𝑑𝑎𝑑𝑏	
6( = 𝑓 ∙ 𝑅.1 ∙ ∫ 𝑝	G𝑑𝑎𝑑𝑏	
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The solution of this equation is plotted in Fig. A1a and used throughout the numerical 	

calculation of Λ(𝑅+1)	and 𝐾(𝑅+1), which are shown in Fig. A1b.  

 

 
Figure A1: (a) Solution for f as a function of 𝑅+1  found by numerically solving Eq. (A9). As a guide to the 
eye, data points are connected by a spline (solid line). (b) Dimensionless functions Λ(𝑅##) (blue line) 
and 𝐾(𝑅##) (red line) as found numerically from Eqs (A7) and (A8). Non-smoothness at high 𝑅+1 	is an 
artefact of numerical limits.  
 
 



 
Figure A2: Top view of the disk moving over the circular glass track (light grey area) confined between 
two walls (white areas). The green dots represent the inductive sensors glued underneath the glass at 
regular 45° intervals. The disk is attached by a flexible thin wire (brown curvy line) to a rotating 
rheometer arm (brown straight line). 
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