
J. Chem. Phys. 156, 204503 (2022); https://doi.org/10.1063/5.0088581 156, 204503

© 2022 Author(s).

Comparing machine learning techniques
for predicting glassy dynamics
Cite as: J. Chem. Phys. 156, 204503 (2022); https://doi.org/10.1063/5.0088581
Submitted: 18 February 2022 • Accepted: 08 May 2022 • Accepted Manuscript Online: 09 May 2022 •
Published Online: 24 May 2022

Rinske M. Alkemade, Emanuele Boattini, Laura Filion, et al.

ARTICLES YOU MAY BE INTERESTED IN

Graph neural networks accelerated molecular dynamics
The Journal of Chemical Physics 156, 144103 (2022); https://doi.org/10.1063/5.0083060

An alternative, dynamic density functional-like theory for time-dependent density
fluctuations in glass-forming fluids
The Journal of Chemical Physics 156, 191102 (2022); https://doi.org/10.1063/5.0091385

Structural origin of excitations in a colloidal glass-former
The Journal of Chemical Physics 156, 214502 (2022); https://doi.org/10.1063/5.0088500

https://images.scitation.org/redirect.spark?MID=176720&plid=1881977&setID=378408&channelID=0&CID=692124&banID=520764556&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=86d397fca7366e8290b08b980fe656c74718ae64&location=
https://doi.org/10.1063/5.0088581
https://doi.org/10.1063/5.0088581
https://aip.scitation.org/author/Alkemade%2C+Rinske+M
https://aip.scitation.org/author/Boattini%2C+Emanuele
https://orcid.org/0000-0001-9432-9680
https://aip.scitation.org/author/Filion%2C+Laura
https://doi.org/10.1063/5.0088581
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0088581
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0088581&domain=aip.scitation.org&date_stamp=2022-05-24
https://aip.scitation.org/doi/10.1063/5.0083060
https://doi.org/10.1063/5.0083060
https://aip.scitation.org/doi/10.1063/5.0091385
https://aip.scitation.org/doi/10.1063/5.0091385
https://doi.org/10.1063/5.0091385
https://aip.scitation.org/doi/10.1063/5.0088500
https://doi.org/10.1063/5.0088500

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Comparing machine learning techniques
for predicting glassy dynamics

Cite as: J. Chem. Phys. 156, 204503 (2022); doi: 10.1063/5.0088581
Submitted: 18 February 2022 • Accepted: 8 May 2022 •
Published Online: 24 May 2022

Rinske M. Alkemade,1 Emanuele Boattini,1 Laura Filion,1 and Frank Smallenburg2,a)

AFFILIATIONS
1 Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
2Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France

a)Author to whom correspondence should be addressed: frank.smallenburg@cnrs.fr

ABSTRACT
In the quest to understand how structure and dynamics are connected in glasses, a number of machine learning based methods have been
developed that predict dynamics in supercooled liquids. These methods include both increasingly complex machine learning techniques and
increasingly sophisticated descriptors used to describe the environment around particles. In many cases, both the chosen machine learning
technique and choice of structural descriptors are varied simultaneously, making it hard to quantitatively compare the performance of differ-
ent machine learning approaches. Here, we use three different machine learning algorithms—linear regression, neural networks, and graph
neural networks—to predict the dynamic propensity of a glassy binary hard-sphere mixture using as structural input a recursive set of order
parameters recently introduced by Boattini et al. [Phys. Rev. Lett. 127, 088007 (2021)]. As we show, when these advanced descriptors are
used, all three methods predict the dynamics with nearly equal accuracy. However, the linear regression is orders of magnitude faster to train,
making it by far the method of choice.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088581

I. INTRODUCTION
The relationship between local structure and dynamics in glassy

systems has been a heavily debated question in condensed matter for
several decades.1–3 Over the last few years, one avenue for exploring
this relationship has been an effort to predict dynamical behavior
based on local structural features using various machine learning
(ML) methods. Pioneered by Cubuk et al.,4 using support vector
machines (SVMs) to predict rearrangement probabilities in glassy
mixtures, this area of research has now embraced a wide variety of
ML techniques, including, e.g., linear regression, convolutional neu-
ral networks (CNNs), graph neural networks (GNNs), autoencoders,
and community inference; see, e.g., Refs. 5–10. This raises the ques-
tion of what ML technique one should choose when predicting the
dynamics of a glassy system.

This question is far from straightforward since in addition to
choosing a machine learning technique one also has to make a
choice with respect to the encoding of the local structure in terms
of data that can be interpreted by an ML algorithm. For most ML
approaches, the structure around a particle is encoded into a set
of structural order parameters that capture, e.g., the local density
and symmetry of the distribution of neighbors around that particle.

However, some sophisticated ML approaches can work from much
more restricted data. For example, in Ref. 5, it was shown that graph
neural networks are capable of predicting the dynamic propensity of
a glassy Lennard-Jones mixture based solely on encoding the struc-
ture into a graph of nearest neighbors and the pair distances between
them. Such data would not be sufficient for, e.g., a simple linear
regression approach, but using a GNN, it was enough to drastically
outperform both SVMs and CNNs trained with more sophisticated
input. More recently, however, it was shown that even a simple linear
regression approach can rival the predictive power of GNNs if sup-
plied with sufficiently intelligent input data.8 In particular, Boattini
et al. proposed a method to iteratively construct generations of struc-
tural order parameters that successively take into account locally
averaged order in expanding shells. These descriptors in combina-
tion with linear regression performed essentially as well as a GNN
that was fed just the particle coordinates.

This raises the intriguing question of whether more sophisti-
cated ML techniques supplied with more intelligently chosen struc-
tural parameters can result in even better predictions. Here, we use
three different ML algorithms—linear regression, neural networks,
and GNNs—to predict the dynamic propensity of a glassy binary

J. Chem. Phys. 156, 204503 (2022); doi: 10.1063/5.0088581 156, 204503-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0088581
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0088581
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0088581&domain=pdf&date_stamp=2022-May-24
https://doi.org/10.1063/5.0088581
https://orcid.org/0000-0001-9432-9680
https://orcid.org/0000-0002-9401-6067
mailto:frank.smallenburg@cnrs.fr
https://doi.org/10.1063/5.0088581

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

hard-sphere mixture, based on the hierarchical set of order para-
meters from Ref. 8 and compare and contrast the results. As we
show, out of the three methods, linear regression provides the best
compromise between accuracy and efficiency when combined with
these advanced structural descriptors.

II. MODEL AND DESCRIPTORS
A. Model

The glassy system that we use here to compare the three dif-
ferent ML methods is a binary hard-sphere mixture at the packing
fraction η = 0.58. It consists of hard spheres of two sizes with a size
ratio of σS/σL = 0.85, where σL(S) is the diameter of a large (small)
particle. The composition xL = NL/(NL +NS) = 0.3, where NL(S) is
the number of large (small) spheres. This is the same glassy mix-
ture as was studied in Refs. 6, 8, and 11, where the packing fraction
η = 0.58 was chosen to ensure that the system is deeply inside the
glassy regime while still having a relaxation time accessible by direct
simulations.

We simulate the evolution of our system using event-driven
molecular dynamics (EDMD).12 The simulations are performed in
the microcanonical ensemble (constant number of large and small
particles NL and NS, volume V , and kinetic energy U). The time
unit of our simulation is defined as τ =

√
mσ2

L/kBT where kB is
Boltzmann’s constant and m is the particle mass. Note that we set the
masses of all particles to be equal. All simulated systems contained
2000 particles in total (600 large and 1400 small).

To generate the initial configurations, we use a separate EDMD
simulation in which the particles grow over time until the desired
packing fraction η = 0.58 is reached. After this, the system is equi-
librated for at least 105τ. Note that from previous work,6 we know
that the relaxation time of this system is of the order of τα = 104τ.

B. Dynamic propensity
To characterize the dynamical heterogeneity in our glassy sys-

tem, we use the dynamic propensity.13,14 This quantity is closely
related to the mean squared displacement in that it measures an
average displacement over time but is measured on a per-particle
basis using a specific snapshot as the initial configuration. To mea-
sure the dynamic propensity, the evolution of a glassy system is
measured multiple times, each time starting from the same initial
configuration, while assigning each particle a random velocity drawn
from a Maxwell–Boltzmann distribution at the desired temperature.
This ensemble is called the isoconfigurational ensemble.13 To obtain
the propensity Δri(t) of particle i, we average the absolute distance
it traveled over the time interval t over all trajectories,

Δri(t) = ⟨∣ri(t) − ri(0)∣⟩iso, (1)

where ⟨⋅⟩iso indicates the average taken over all trajectories in the
isoconfigurational ensemble.

To measure the propensity, we average over simulations start-
ing from 100 different initial configurations. The initial configura-
tions were obtained by rapidly compressing a random configuration
of hard spheres to the desired packing fraction and then relaxing it
in a long EDMD simulation. After equilibration, a set of 100 snap-
shots was extracted, which were then individually allowed to evolve

FIG. 1. Globally averaged dynamical propensity ⟨Δr i(t)⟩ as a function of time.
The insets at the bottom illustrate three different dynamical regimes: the ballistic
regime in which particles are not yet interacting with their neighbors, the caging
regime in which particles are trapped by surrounding particles, and the diffusive
regime where particles have escaped their cages.

in a separate EDMD simulation for at least 104τ to obtain an ini-
tial snapshot. For each initial snapshot, we measure the propensity
by averaging over 50 trajectories with different initial velocities. The
dynamic propensity is measured at a logarithmically spaced set of
time intervals t between t/τ = 10−2 and t/τ = 105.

To illustrate the behavior of the dynamic propensity, we plot
in Fig. 1 the globally averaged dynamic propensity as a function of
time.

C. Structural descriptors
To describe the local environments of particles, we use the

structural order parameters used in Ref. 8, which consist of a com-
bination of radial densities and angular functions measured in
different shells around a particle.

For the radial functions, we use essentially the same descriptors
as used in Refs. 5, 8, and 9. These descriptors measure a weighted
particle density inside a spherical shell with a thickness of approx-
imately 2δ at distance r with respect to a reference particle i. The
functions are defined as

G(0)i (r, δ, s) = ∑
j≠i,sj=s

e−
(rij−r)2

2δ2 . (2)

Here, i is the reference particle, s is the particle type, and rij is the
distance between particles i and j. The summation is carried out
over all particles with particle type sj = s, which means that the radial
density that is measured is type-specific.

J. Chem. Phys. 156, 204503 (2022); doi: 10.1063/5.0088581 156, 204503-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The angular descriptors that we use are based on bond order
parameters.15,16 These bond order parameters expand the local envi-
ronment in terms of spherical harmonics. To obtain the angular
descriptors for a particle i, we first calculate the complex coefficients,

q(0)i (l, m, r, δ) = 1
Z∑i≠j

e−
(rij−r)2

2δ2 Ym
l (rij). (3)

Here, Ym
l (rij) is the spherical harmonic of order l, with m as an

integer that runs from −l to l, and Z is a normalization factor
given by

Z = ∑
i≠j

e−
(rij−r)2

2δ2 . (4)

Note that although the summation runs over all particles, again
the exponent makes sure that mainly particles within a spherical
shell at distance r and thickness 2δ will contribute to q(0)i (l, m, r, δ).
Finally, we sum over m to obtain the rotationally invariant angular
descriptors

q(0)i (l, r, δ) =

¿
ÁÁÀ 4π

2l + 1

m=l

∑
m=−l
∣q(0)i (l, m, r, δ)∣2. (5)

Due to the symmetries of the spherical harmonics, q(0)(l, r, δ) for a
certain l is expected to detect l-fold symmetry in the environment at
the chosen distance r.

Boattini et al.8 showed that the propensity prediction of a par-
ticle improves significantly when the prediction is based not only on
the structural parameters associated with the particle itself but also
on averaged structural information of neighboring particles. This
allows the linear regression to take into account structural informa-
tion from multiple shells of neighbors, providing a more complete
picture of the structural environment. Inspired by the architecture
of graph neural networks, this was done by recursively constructing
higher-order averaged structural parameters, which are defined as

x(n)i =
∑j:rij<rc

x(n−1)
j e−rij/rc

∑j:rij<rc
e−rij/rc

, (6)

where xi can be any of the radial or angular order parameters of
particle i. Additionally, x(n)i represents the nth generation of para-
meter xi, and the sum runs over all neighboring particles within a
cutoff distance rc, including i itself. The cutoff value rc is chosen
to be rc/σL = 2.1, which approximately corresponds to the second
minimum of the radial distribution function.8 However, as already
shown in Ref. 8, the exact value does not have a significant influence
on our results. Note that local averaging of bond order parameters
has also been demonstrated to be extremely effective when used in
the context of detecting crystal structures.15

In total, we consider 354 zeroth-generation structural descrip-
tors: 162 radial descriptors and 192 angular descriptors. For the
radial descriptors, we use 46 equally spaced spherical shells in the
interval r/σL = [0.86, 2.0] with δ = 0.025, 20 equally spaced spher-
ical shells in the interval r/σL = (2.0, 3.0] with δ = 0.05, and 15
equally spaced spherical shells in the interval r/σL = (3.0, 4.5] with
δ = 0.1. The choice of increasing shell spacing for larger distances

was based on the observation that the radial distribution function
typically changes rapidly at short distances but more slowly at larger
distances. For the angular descriptors, we consider l = 1–12 in 16
equally spaced spherical shells in the interval [1, 2.5] with δ = 0.1.
The full environment of each particle is then described with up to
three generations of these 354 parameters each, leading to a total of
1062 parameters.

Before using the structural parameters as an input for the
machine learning algorithms, they are standardized by evaluating

xst
i =

xi − x̄
σx

, (7)

where xi is the vector containing all parameters associated with
particle i, xst

i is the standardized parameter vector, and x̄ and σx
are, respectively, the mean and standard deviation of the parameter
vector considering all particles of the same species as i. The standard-
ization ensures that all descriptors have zero mean and unit variance,
which can be helpful when using regularization in machine learning
techniques. This will be discussed in more detail in the following.

III. MACHINE LEARNING METHODS
In this paper, we compare three different machine learning

approaches for predicting the dynamic propensity based on the
structural parameters introduced above. In particular, we compare
linear regression (LR), neural networks (NN), and graph neural net-
works (GNN). Unless otherwise specified, we train separate models
for large and small particles and separate models for each time inter-
val at which we are trying to predict the dynamic propensity. In all
cases, we use half of the obtained propensity data as training data
and the other half as test data to evaluate the performance of the
optimized model.

Note that each of these approaches has a number of hyper-
parameters that tune the model fitted by the method to the sup-
plied training data. For example, this can be the number of lay-
ers inside the neural network, parameters controlling regulariza-
tion techniques that reduce overfitting, or the learning rate of the
optimization algorithm for NNs and GNNs.

A. Linear regression
Linear regression is the simplest of the three methods and

simply finds the best linear combination of all structural descrip-
tors to predict the dynamic propensity. Here, we make use of
L2-regularization (also known as ridge regression) to reduce over-
fitting.17 This approach penalizes large weights in the linear fit. Note
that this is the reason we standardized our structural parameters:
since the different parameters have the same mean and variance, the
effect of the regularization on each parameter is the same. For linear
regression, the only hyperparameter that can be tuned is α, which
sets the strength of the large-weight penalty in ridge regression.

B. Neural network
Neural networks are loosely based on the biological neural

networks that make up our brains. A neural network consists of mul-
tiple layers of connected nodes, see Fig. 2, which mimic the neurons
and synapses in the brain. The first and last layers are, respectively,

J. Chem. Phys. 156, 204503 (2022); doi: 10.1063/5.0088581 156, 204503-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. A Neural network consisting of an input layer, hidden layers, and an output
layer. The orange and blue circles represent input and output parameters, respec-
tively. The red and green arrows represent the weights that connect each layer in
the neural network.

called the input and output layers, which, in our case, take the struc-
tural parameters of each particle as an input and give the predicted
propensity for a certain time as the output. All the layers that lie
between the input and output layer are called hidden layers. In a
fully connected feed-forward neural network, as we use here, each
node in a specific layer is connected to all the nodes in the following
layer.

Due to the connections between nodes, information can be
passed through the neural network. Each connection between nodes
is associated with a so-called “weight.” The values of the nodes in
the hidden layer and the output layer are found by multiplying the
values of the nodes in the previous layer with the associated weights
and adding a bias. The result is then passed to a non-linear function,
in our case a Rectified Linear Unit (ReLU),17 to yield the value of the
node. Hence, the value of a node am in layer l is calculated as

a(l)m = f (∑
n

w(l)mna(l−1)
n + b(l)m). (8)

Here, f is the ReLU function, w(l)mn is the weight associated with the
connection between nodes n and m, a(l−1)

n is the information of
node n in layer l– 1, and b(l)m is the bias associated with node a(l)m .
The summation over n goes over all nodes in layer l − 1.

We train the neural networks using the Python package
PyTorch18 and, in particular, use an Adam optimizer.19 This opti-
mizer is an extension to the stochastic gradient descent procedure
and is used to find an efficient path to a locally optimal set of weights
and biases via backpropagation.17 Specifically, for each time interval
where we have training data, we train a separate neural network that
predicts the propensity of a particle based on its vector of structural
descriptors.

For neural networks, there are many more hyperparameters
that can be tuned, including the number of layers and the number of
nodes in each layer as well as parameters associated with the learn-
ing process, such as the learning rate and the batch size. As the neural
network turns out to be very sensitive to overfitting, we also run the
neural network with ridge regression and drop-out.20

C. Graph neural networks
GNNs21–23 are a relatively new class of machine learning tech-

niques that combine neural networks with a graph-like data struc-
ture. As there are many variations of GNNs, our description is
necessarily somewhat specific to the GNN we use in this paper.

In contrast to LR and NNs, which consider each particle as a
separate training example, the GNN takes in an entire configuration
at once. As a result, the GNN does not make a propensity prediction
on a single-particle basis but instead simultaneously makes a predic-
tion for all particles (of a chosen species) in a configuration of the
system.

In a GNN, input data are first mapped to a data structure that
consists of a graph that holds numerical data at its nodes and edges
(see Fig. 3). In our case, each node corresponds to a particle in
the configuration for which we are trying to predict propensities.

FIG. 3. (Left) Mapping between the initial configuration data and the graph structure. From the configuration, we determine nearest neighbors in order to set up a graph
structure and then calculate structural parameters to fill in the data at each node and edge. (Right) Node and edge update in a graph layer. To update the node data, the
added and averaged parameters of the connected edges are given to the node neural network together with the information of the node itself. For the edge update, the
information of both neighboring nodes together with the edge information itself is given to the edge neural network. The output of the node/edge network is an updated value
of the node/edge.

J. Chem. Phys. 156, 204503 (2022); doi: 10.1063/5.0088581 156, 204503-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

When two particles are closer to each other than a certain distance
rc = 2.1σL, the corresponding nodes in the graph are connected by
an edge.

As an input, every node holds the structural parameters of the
corresponding particle as well as its species, and each edge holds
information about the distance between the two connected parti-
cles. Like a neural network, a GNN corresponds to a non-linear
function of its input parameters, which gets calculated in multiple
consecutive layers, called graph layers. Each layer itself is a non-
linear function, which takes as an input a graph structure containing
information on all nodes and edges and outputs a new graph struc-
ture with the same graph topology but updated numerical data at the
nodes and edges. For each node and edge, the update that takes place
within this graph layer takes into account not only the information
already at that node or edge but also data from neighboring edges
or nodes, as illustrated in Fig. 3. The internal functions that perform
this update consist of fully connected feed-forward neural networks
as described above. In addition to these graph layers, the full GNN
incorporates an encoder layer, which maps the input node data to
the data structure used in the graph layers, and a decoder, which
makes a propensity prediction for each particle of a chosen species,
based on the updated node data. Both of these layers are standard
feed-forward neural networks. Note that analogous to the GNN in
Ref. 5, our GNN additionally provides each graph layer with infor-
mation about the graph data output by the encoder. In other words,
a node update takes into account (i) the node’s current values, (ii)
the aggregated current values of all edges connected to the node, and
(iii) the node’s values as they were just after the encoder layer.

The core benefit of the GNN is that the prediction for the
propensity of a given particle can include information about the
structure of multiple shells of neighboring particles. The distance
over which information is included can be controlled by the num-
ber of included graph layers. As such, the GNN inherently includes
the feature of recursively considering the average local structure of
shells of neighbors.

IV. RESULTS
In this section, we first look at each method independently and

explore the influence of the different hyperparameter settings and
the inclusion of different generations of structural order parameters.
In all cases, to compare the predictions to the measured propensity,
we use the Pearson correlation coefficient. The Pearson correla-
tion coefficient is a measure for the linear correlation between two
datasets. In particular, if X and Y are both lists of numbers, their
correlation is given by

ρ = cov(X, Y)
σXσY

, (9)

with cov(X, Y) being the covariance between X and Y and σX(Y)
being the standard deviation of X(Y). By construction, ρ lies between
−1 and 1 with 1 indicating perfect positive linear correlation between
the two datasets.

A. Linear regression
The only hyperparameter for linear regression is the regular-

ization parameter α. As optimizing the fit for a single parameter

FIG. 4. Pearson’s correlation coefficient ρ between the dynamic propensity as pre-
dicted by linear regression and measured in simulations as a function of time,
analyzed for three different generations of order parameters. Results are shown
for the large particles.

is trivial, here, we only present results that correspond to the best
choice of α, optimized between 10−5 and 104 for the large particles.
In Fig. 4, we show the linear regression performance for differ-
ent generations of order parameters. In all cases, when we refer to
a generation, we include all lower generations as well. Note that
these results are consistent with Ref. 8. We clearly see that the pre-
dictions from the zeroth generation of descriptors are significantly
worse than the ones including higher-generation data at least for
longer times. In particular, we see that the information of the higher-
order generations only starts to influence the performance when the
system enters the caging regime. This is what we expected: before
entering the caging regime, not enough time has passed for parti-
cles to be influenced by particles from further away, meaning that
higher-order generations will not add relevant information about
the expected trajectories. Although adding the second generation of
order parameters still improves the predictions for the propensity,
the effect is small in comparison to the improvement of adding the
first generation. Adding even higher generations (not shown here)
does not significantly improve the performance beyond this point.8

B. Neural networks
For the neural networks, in addition to the number of gen-

erations and regularization parameters, there are many hyperpa-
rameters to optimize. Since trying out all possible combinations of
settings would not be feasible, we limit ourselves to a small num-
ber of different combinations, shown in Table I. The network is
trained on large and small particles separately in around 500 epochs,
where an epoch represents one pass over the full dataset used for
training. In order to limit overfitting, after each epoch, we evalu-
ate the performance of the NN on the test dataset and eventually
use the network that had the highest correlation for this test data.
In total, for each time interval and for each generation of structural
parameters, we trained five networks. Their performance is shown
in Fig. 5. Here, all networks are trained using three generations of
structural parameters.

J. Chem. Phys. 156, 204503 (2022); doi: 10.1063/5.0088581 156, 204503-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. Hyperparameters for different neural networks used to predict the propen-
sity. Each row corresponds to a line in Fig. 5. The Batch size specifies the number
of training data examples passed through the neural network before updating the
weights and biases. The Learning rate specifies the initial learning rate of the Adam
optimizer, which modulates how much weights and biases are adjusted after each
batch. The Hidden layers entry contains both information about the number of hidden
layers in the network as well as the number of nodes in each hidden layer (shown in
brackets). Drop-out shows the fraction of nodes in the second hidden layer that is set
to zero during drop-out, and α represents the value of the parameter associated with
L2-regularization.

Number
Batch
size

Learning
rate

Hidden
layers Drop-out α

1 50 10–4 1 (16) 0 0
2 50 10–4 3 (16,16,16) 0 0
3 50 10–4 2 (16,16) 0 1.0
4 50 10–4 3 (16,16) 0.25 0
5 50 10–4 3 (16,16) 0.25 0.01

FIG. 5. Correlation between the dynamic propensity as predicted by neural net-
works and measured in simulations as a function of time, analyzed for different
hyperparameters as specified in Table I. Results are shown for the large particles.

Although the overall behavior of the neural network accuracy
over time is similar to that found for linear regression, we see signifi-
cant variation in performance between the different hyperparameter
choices. In particular, we see that only using a single NN layer (blue
line) or no regularization (blue and yellow lines) leads to worse per-
formance, especially at shorter times. However, once we include
at least two NN layers and regularization, the results are relatively
robust: the other three lines essentially coincide except for noise.

In order to examine the influence of different generations of
order parameters on the performance, in Fig. 6, we show the perfor-
mance of the NN for different generations with the hyperparameters
optimized for each time interval. Contrary to what we saw in the
case of linear regression, providing the NN with more generations of
order parameters does not always improve the performance, some-
thing that is especially clear for short times. This is likely the result of
the higher number of weights and biases that the NN training needs
to optimize when higher-order descriptors are included.

FIG. 6. Correlation between the dynamic propensity as predicted by neural net-
works and measured in simulations as a function of time, analyzed for three
different generations of order parameters. Results are shown for the large
particles.

C. Graph neural networks
In Ref. 5, Bapst et al. demonstrated that hyperparameters did

not play a large role in the accuracy of their GNNs for predicting
dynamic propensity. Since the training of a GNN is considerably
more expensive than a normal neural network, here, we do not
focus on optimizing the hyperparameters but instead consider a
few different variations of supplying data to the GNN. As a base-
line, we consider a GNN with four graph layers, which considers
the zeroth generation of structural parameters as the node inputs
and the absolute distance between particles as the edge inputs. The
GNN is trained separately to predict the propensities of the large
and small particles but takes the information of all particles into
account for both trainings. As a variation on this baseline, we also
consider (i) a GNN that predicts both the propensity of both the
large and small species simultaneously, (ii) a GNN that incorporates
all three generations as node data, and (iii) a GNN that uses the x,
y, and z components of the vectors between neighboring particles as
edge data. A complete summary of all relevant (hyper)parameters is
shown in Table II.

In Fig. 7, we show the performance of the different variations
of GNN. Clearly, none of the changes made to the GNN inputs
have a significant effect on the overall performance. The most sig-
nificant difference is associated with the networks that trained both
small and large particles simultaneously—this adaptation performed
worse for our system. In contrast to linear regression and neural net-
works, where taking into account additional generations clearly led
to some improvement in the performance, evidently, the inherent
local averaging of the GNN is already sufficient to incorporate this
type of structural information. Additionally, we observe that com-
pared to the NN, the GNN is less sensitive to overfitting, resulting
in relatively smooth lines. This is actually quite remarkable since the
number of weights and biases that needs to be optimized in a GNN
is significantly larger than in the case of a NN. Moreover, none of the
training runs in Fig. 7 used any regularization methods. The fact that
GNNs, compared to NNs, have less trouble converging and are less
sensitive to overfitting might be due to the fact that they are trained

J. Chem. Phys. 156, 204503 (2022); doi: 10.1063/5.0088581 156, 204503-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE II. Hyperparameters for different graph neural networks used to predict the propensity. Each row corresponds to a line in Fig. 7. In the table, the following abbreviations
are used: GL is the number of graph layers, Node enc H.L. and Edge enc H.L. represent, respectively, the number of hidden layers in the node and edge encoder (for both, the
number of input parameters is equal to the number of parameters associated with a node or an edge, while the number of output parameters is equal to ten), Node H.L and Edge
H.L. show the number of hidden layers for the, respectively, the node and edge hidden layers together with the number of nodes in each layers (the number of output nodes
for each of these networks is equal to ten), Node gen represents up to how many generations of structural order parameters we provide the GNN with, and Edge par indicates
whether the edge input is given by the absolute distance between particles (r) or the vector distance (x, y, z). Finally, Tog or Sep represents whether we train the network together
(Tog) for small and large particles or train two separate networks (Sep).

Nr. Batch size Learning rate GL Node enc H.L Edge enc H.L. Node H.L Edge H.L. Node gen Edge par Tog or Sep

1 5 10–4 4 2 (50, 50) 1 (5) 2 (30, 16) 2 (16, 16) 1 r Sep2 (16, 16) 2 (16, 16)

2 5 10–4 4 2 (50, 50) 1 (5) 2 (30, 16) 2 (16, 16) 3 r Sep2 (16, 16) 2 (16, 16)

3 5 10–4 4 2 (50, 50) 1 (5) 2 (30, 16) 2 (16, 16) 1 x, y, z Sep2 (16, 16) 2 (16, 16)

4 5 10–3 4 2 (50, 50) 1 (5) 2 (30, 16) 2 (16, 16) 1 x, y, z Sep2 (16, 16) 2 (16, 16)

5 5 10–4 4 2 (50, 50) 1 (5) 2 (30, 16) 2 (16, 16) 1 r Tog2 (16, 16) 2 (16, 16)

6 3 10–4 3 2 (50, 50) 1 (5) 2 (30, 16) 2 (16, 16) 1 r Tog2 (16, 16) 2 (16, 16)

FIG. 7. Correlation between the dynamic propensity as predicted by graph neural
networks and measured in simulations as a function of time, analyzed for different
variations of the GNN model, which can be found in Table II.

and evaluated on entire snapshots at once. Realistically, in a snap-
shot, we know that there are strong correlations in mobility between
neighboring particles. The fact that the GNN can take into account
the mobility of neighboring particles will likely lead to smoother
variation of the predicted propensity in space than the NN or LR,
which results in fewer outliers.

D. Comparing the three methods
Finally, in Fig. 8, we compare the performance of all three

methods. Again, we take for each time interval the best-performing
result from either LR, NN, or GNN. The results of the three meth-
ods are remarkably similar, suggesting that all three approaches are
capable of extracting essentially the same information from the input

data. Overall, the NN approach performs the worst likely due to an
inability to find the globally optimal solution to its training problem.
Intuitively, the fit from linear regression could be reproduced essen-
tially exactly by the NN with a sufficiently good optimization. Hence,
at any point where the NN performs less well than the LR solution,
there is at least some failure to fully optimize the network.

As we saw earlier, GNNs are less sensitive to their hyperpa-
rameters than NNs and converge more easily. Moreover, during
intermediate times in the caging regime and the beginning of the
diffusive regime, GNNs slightly outperform LR. This implies that
the averaging that takes place in a GNN provides the network with
slightly different information than the averaged parameters of the
first and second generation. However, the improvement is extremely
limited and comes at the cost of a significantly more computationally
costly training process. To illustrate this, for one choice of hyperpa-
rameters and the full set of time intervals, a typical training process
takes ∼3 min for LR, 24 h for NNs, and 6.5 h for GNNs. Note that
these times are achieved by a laptop central processing unit (CPU)
for the LR, while the NN and GNN trainings made use of an Nvidia
GeForce RTX 2080 Ti GPU. We conclude that given the discussion
above, linear regression is the preferred method; it is fast and robust
and provides accurate predictions. Note that for all three methods,
the evaluation of the trained model on a snapshot for each method
is faster than the calculation of the order parameters we use as an
input.

Overall, the behavior of the correlation between predicted and
measured propensity is fully consistent between the three meth-
ods. Regardless of the chosen approach, we observe a peak in the
correlation at short time intervals, a relatively low correlation at
intermediate time scales, and then an increase at longer time scales,
which reaches a peak at time scales comparable to the structural
relaxation time. This behavior is consistent with past observations
in both hard-sphere and Kob-Andersen models where supervised
machine learning was used to predict propensity.5,8 Qualitatively,

J. Chem. Phys. 156, 204503 (2022); doi: 10.1063/5.0088581 156, 204503-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 8. Comparison of the accuracy of the dynamic propensity prediction over
time as obtained with LR, NN, and GNN. Results are shown for both the (a) large
and (b) small particles. For each point in time, we use for each method the set of
hyperparameters that resulted in the best performance.

this behavior can be understood from the dynamics occurring in
these different time scale regimes. At extremely short time scales
(t/τ ≲ 0.01), particles move ballistically and are not yet influenced
by their local environment; hence, prediction of their dynamics
based on local structure is difficult. At slightly longer time scales,
particles start to be influenced by the proximity of their nearest
neighbors, which are easily detectable based on (primarily radial)
structural order parameters. This is represented by an increase in
the accuracy of the prediction. At intermediate time scales (1 ≲ t/τ
≲ 100, see Fig. 1), particles are largely caged by their neighbors.
While particles fluctuate within their cages, their dynamic propen-
sity is not strongly linked to the captured local structure of their
environment, leading to low correlations. However, going to even
longer time scales, close to the structural relaxation time of t/τ = 104,
the system becomes dynamically heterogeneous with some areas
rearranging faster than others. Apparently, these areas are readily
detectable by our structural order parameters. Finally, in the limit
of long time scales, dynamical heterogeneity becomes weaker and

eventually vanishes, and the link between the initial local structure
and dynamics is lost.

One intriguing question is how the relatively low-quality pre-
dictions at intermediate time scales could be improved. A closer
investigation of the origin of the low correlation reveals that the
group of particles that is hardest to predict in this time regime is typ-
ically the set of particles that is initially far removed from their local
cage centers. This can be intuitively understood from the fact that the
measured structural descriptors of these particles may not be repre-
sentative of their true cage environment felt at later times. A possible
solution to this issue is potentially the consideration of the structure
of an (effective) inherent state24–26 of the initial configuration, which
we will explore in the future work.

V. CONCLUSION
In this paper, we compared three different ML methods for pre-

dicting the dynamic propensity of a glassy system at different times,
namely, linear regression, neural networks, and graph neural net-
works. We find surprisingly little difference in their performance
over the full range of time intervals considered. The intuitive con-
clusion one can draw from the similar results of the three methods
is that our prediction, at this point, is limited not by our fitting
approach but rather by the information contained in the set of struc-
tural order parameters. On the bright side, this means that given
this set of descriptors, a simple and efficient ML method such as
linear regression is sufficient for essentially optimal predictions. On
the other hand, it suggests that more advanced ML techniques are
not likely to provide a solution to the question of how to further
improve the prediction of dynamics in these systems. Here, we have
focused on a single packing fraction (η = 0.58), but we expect the
comparison between different methods to be qualitatively the same
at different packing fractions. In general, correlations between the
structure and dynamic propensity are known to increase as the glass
transition is approached,6,11,27 but this will be independent of the
chosen fitting method.

The main question that remains is what information are we cur-
rently missing in order to improve our ability to predict the dynamic
propensity, particularly, in the caging regime, where the correla-
tion between prediction and reality is currently minimal? While
answering this question will require further research, our results
here suggest that linear regression is likely a sufficient method for
evaluating the predictive capabilities of new sets of structural order
parameters.

ACKNOWLEDGMENTS
The authors would like to thank Marjolein de Jager for many

discussions. L.F. and E.B. acknowledge funding from the Nether-
lands Organisation for Scientific Research (NWO) (Grant No.
16DDS004), and L.F. acknowledges funding from NWO for a Vidi
grant (Grant No. VI.VIDI.192.102).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

J. Chem. Phys. 156, 204503 (2022); doi: 10.1063/5.0088581 156, 204503-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1L. Berthier and G. Biroli, “Theoretical perspective on the glass transition and
amorphous materials,” Rev. Mod. Phys. 83, 587 (2011).
2C. P. Royall and S. R. Williams, “The role of local structure in dynamical arrest,”
Phys. Rep. 560, 1 (2015).
3H. Tanaka, H. Tong, R. Shi, and J. Russo, “Revealing key structural features
hidden in liquids and glasses,” Nat. Rev. Phys. 1, 333–348 (2019).
4E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J. Rottler, D. J. Durian,
E. Kaxiras, and A. J. Liu, “Identifying structural flow defects in disordered solids
using machine-learning methods,” Phys. Rev. Lett. 114, 108001 (2015).
5V. Bapst, T. Keck, A. Grabska-Barwińska, C. Donner, E. D. Cubuk, S. S. Schoen-
holz, A. Obika, A. W. R. Nelson, T. Back, D. Hassabis, and P. Kohli, “Unveiling the
predictive power of static structure in glassy systems,” Nat. Phys. 16, 448 (2020).
6E. Boattini, S. Marín-Aguilar, S. Mitra, G. Foffi, F. Smallenburg, and L. Filion,
“Autonomously revealing hidden local structures in supercooled liquids,” Nat.
Commun. 11, 5479 (2020).
7J. Paret, R. L. Jack, and D. Coslovich, “Assessing the structural heterogeneity of
supercooled liquids through community inference,” J. Chem. Phys. 152, 144502
(2020).
8E. Boattini, F. Smallenburg, and L. Filion, “Averaging local structure to pre-
dict the dynamic propensity in supercooled liquids,” Phys. Rev. Lett. 127, 088007
(2021).
9S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, and A. J. Liu,
“A structural approach to relaxation in glassy liquids,” Nat. Phys. 12, 469 (2016).
10D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang, S. A. Ridout, B. Xu, G.
Zhang, P. K. Morse, J.-L. Barrat et al., “Predicting plasticity in disordered solids
from structural indicators,” Phys. Rev. Mater. 4, 113609 (2020).
11S. Marín-Aguilar, H. H. Wensink, G. Foffi, and F. Smallenburg, “Tetrahedrality
dictates dynamics in hard sphere mixtures,” Phys. Rev. Lett. 124, 208005 (2020).
12D. C. Rapaport, “The event-driven approach to N-body simulation,” Prog.
Theor. Phys. Suppl. 178, 5–14 (2009).
13A. Widmer-Cooper, P. Harrowell, and H. Fynewever, “How reproducible are
dynamic heterogeneities in a supercooled liquid?,” Phys. Rev. Lett. 93, 135701
(2004).

14A. Widmer-Cooper and P. Harrowell, “On the study of collective dynamics
in supercooled liquids through the statistics of the isoconfigurational ensemble,”
J. Chem. Phys. 126, 154503 (2007).
15W. Lechner and C. Dellago, “Accurate determination of crystal structures based
on averaged local bond order parameters,” J. Chem. Phys. 129, 114707 (2008).
16P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, “Bond-orientational order in
liquids and glasses,” Phys. Rev. B 28, 784 (1983).
17C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics) (Springer-Verlag, 2006).
18A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An imperative style, high-
performance deep learning library,” Advances in Neural Information Processing
Systems (Curran Associates, 2019), Vol. 32, p. 8026.
19D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 (2014).
20N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res. 15, 1929 (2014); available at http://jmlr.org/papers/
v15/srivastava14a.html.
21P. W. Battaglia, J. B. C. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre,
F. Song, A. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. Allen, C. Nash, V. J.
Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li,
and R. Pascanu, “Relational inductive biases, beep learning, and graph networks,”
arXiv:1806.01261 (2018).
22P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende et al., “Interaction networks
for learning about objects, relations and physics,” Advances in Neural Information
Processing Systems (Curran Associates, 2016), Vol. 29, p. 4502.
23F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE Trans. Neural Networks 20, 61 (2009).
24U. Buchenau, “Thermodynamics and dynamics of the inherent states at the glass
transition,” J. Non-Cryst. Solids 407, 179 (2015).
25D. A. Stariolo, J. J. Arenzon, and G. Fabricius, “Inherent structures dynamics in
glasses: A comparative study,” Physica A 340, 316 (2004).
26F. H. Stillinger and T. A. Weber, “Hidden structure in liquids,” Phys. Rev. A 25,
978 (1982).
27A. J. Dunleavy, K. Wiesner, R. Yamamoto, and C. P. Royall, “Mutual informa-
tion reveals multiple structural relaxation mechanisms in a model glass former,”
Nat. Commun. 6, 6089–6098 (2015).

J. Chem. Phys. 156, 204503 (2022); doi: 10.1063/5.0088581 156, 204503-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1103/revmodphys.83.587
https://doi.org/10.1016/j.physrep.2014.11.004
https://doi.org/10.1038/s42254-019-0053-3
https://doi.org/10.1103/physrevlett.114.108001
https://doi.org/10.1038/s41567-020-0842-8
https://doi.org/10.1038/s41467-020-19286-8
https://doi.org/10.1038/s41467-020-19286-8
https://doi.org/10.1063/5.0004732
https://doi.org/10.1103/PhysRevLett.127.088007
https://doi.org/10.1038/nphys3644
https://doi.org/10.1103/physrevmaterials.4.113609
https://doi.org/10.1103/physrevlett.124.208005
https://doi.org/10.1143/ptps.178.5
https://doi.org/10.1143/ptps.178.5
https://doi.org/10.1103/physrevlett.93.135701
https://doi.org/10.1063/1.2719192
https://doi.org/10.1063/1.2977970
https://doi.org/10.1103/physrevb.28.784
https://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1806.01261
https://doi.org/10.1109/tnn.2008.2005605
https://doi.org/10.1016/j.jnoncrysol.2014.08.025
https://doi.org/10.1016/j.physa.2004.04.022
https://doi.org/10.1103/physreva.25.978
https://doi.org/10.1038/ncomms7089

