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1 Details of the Finite-Element Calculations
We performed finite-element calculations using the COMSOL 5.4 Multi-Physics Modeling Software. We set up
a system with a spherical core particle having a radius of 170 nm. A hollow shell with an inner radius of 370 nm
and shell thickness of 40 nm surrounded it with the core particle positioned at the center of the shell. The sizes
of the core particle and shell were based on the dimensions of the particles used in experiments, which were
synthesized via the method of Watanabe and coworkers.1 The sphere and shell were located on the symmetry
axis of a cylindrical fluid domain with a height and width of 5µm. The core particle is allowed to move through
the shell due to electric and viscous forces acting upon it. Here we describe the boundary conditions in more
detail. We also explain the moving core particle and the mesh during the calculation, and the solver settings.

1.1 Boundary Conditions
Figure S1 shows an overview of the boundary conditions used for each equation that was solved, namely the
Poisson equation, the Nernst-Planck equation and the Stokes equation for an incompressible fluid. The relevant
values for the quantities discussed next are provided in Tables S1 and S2.

1.1.1 The boundary conditions for the Poisson equation.

The left panel in Figure S1 shows the relevant boundary conditions. The right boundary of the simulation box
carries no charge (n̂ · ∇φ = 0), where n̂ is the unit normal to the surface and φ is the electric potential). The
lower, red boundary has an applied voltage, whereas the upper, blue boundary is grounded. This setup allowed
us to apply an external field with minimal effect of the finite size of the calculation volume. The outer box in
the calculation was 5 times larger than shown in Figure S1. All domains have a relative permittivity εr (see
Table S1). Domains with free charges also have a local charge density ρc, which is given by the local abundance
of ions ρc = NA e (z+ c+ + z− c−). Here NA is Avogadro’s constant, e the electron charge, z+ and z− the charge
numbers of the ionic species, and c+ and c− the local concentration of the ionic species. The surfaces of the
core and the shell carry a charge density σ (see Table S2).

1.1.2 The boundary conditions of the Nernst-Planck equations.

The middle panel in Figure S1 shows the relevant boundary conditions. The outer boundaries of the simulation
box are held at a constant ion concentration, which means that these regions serve as a reservoir. The fluid
has a temperature T and the two types of ions, positive and negative, have diffusion coefficients Dpos and
Dneg, respectively. The ion diffusion coefficients within the silica shell wall Ds,j are lower than bulk diffusion
coefficients (Ds,j = ΦpDj), with Φp the porosity. The boundary of the core has a no-flux boundary condition
(n̂ · (J j + ucj) = 0), where u is the flow velocity and cj represent the local ion concentrations; J± indicates the
associated fluxes. There is an open boundary for ions to go through on the shell walls.
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Figure S1: Boundary conditions used for the yolk-shell geometry used in the 2D axisymmetric finite-element calculations.

1.1.3 The boundary conditions for the Stokes equations.

The right panel in Figure S1 shows the relevant boundary conditions. The outer boundaries of the simulation
box are open boundaries ((−pI + η(∇u + (∇u)T ))n̂ = 0). The shell walls have no-slip boundary conditions
u = 0. The core particle moves with a velocity calculated from the electric and hydrodynamic forces acting
on it as described in the Methods section. The fluid has a density ρfluid, a viscosity η, a temperature T and a
volume force F = −eNA(c+ + c−)∇φ.

1.2 Moving Core Particle and Mesh
The rotational symmetry of the system was exploited by performing 2D axisymmetric calculations to minimize
the number of elements required. We used local refinement with small elements in the areas of the double layers
as shown in Figure S2. The thickness of the refined elements was approximately the same as the Debye length.
It is more common to apply a thicker area of refined elements,2–4 but this was not possible here due to the
core being able to approach the shell more closely than two Debye lengths. As we wanted to keep the area of
refined elements the same during the whole simulation, these areas had to be less thick. We compensated for
the thinner area of refined elements by putting more mesh elements in these areas than is common practice,
and also made sure that the elements did not expand too quickly when moving away from these dense mesh
areas. However, the size of the elements was allowed to expand radially outward from the double layers (by a
factor 1.25, up to a maximum element size of 15 nm).

The core particle could move along the symmetry axis. We determined its velocity U via the electric force
F e and the hydrodynamic drag force F h acting on it via Newton’s second law of motion5

F e + F h = 4
3πa

3
particle(ρparticle − ρfluid)dU

dt
, (1)

where ρparticle and ρfluid are the density of the particle and fluid, respectively. The electric force and hydrody-
namic drag force were obtained by integrating the electric and hydrodynamic stress tensors over the surface of
the particle, respectively.

F h =
∮
S

T dS (2)

F e =
∮
S

MdS (3)
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Core particle radius aparticle 170 nm
Inner shell radius ashell 370 nm*
Shell thickness tshell 40 nm*
Shell porosity Φp 0.01− 1
Fluid viscosity η 1mPa s
Fluid density ρfluid 103 kgm−3

Temperature T 293.15K
Particle density ρparticle 2 · 103 kgm−3

Fluid relative dielectric constant εr,fluid 78.4
Particle relative dielectric constant εr,particle 3.8
Shell relative dielectric constant εr,shell (1− Φp) εr,particle + Φp εr,fluid
Positive ion diffusion coefficient D− 1.022 · 10−9 m2s−1

Negative ion diffusion coefficient D+ 2.037 · 10−9 m2s−1

Ion diffusion coefficient in shell Ds,j ΦpDj

Positive ion charge number z+ 1
Negative ion charge number z− −1
Ionic strength I 2mM**
Core particle surface charge density σparticle −6.3 · 10−3 Cm−2 **
Inner & outer shell surface charge density σshell −6.3 · 10−3 Cm−2 **
Length of simulation box 5µm
Voltage V 0.5V
Frequency f 1− 100 kHz

Table S1: Typical values for a finite-element calculation. *For the larger shell: ashell = 496nm tshell = 55nm. ** The
values here are for 2mM salt. In Table S2 we give the values for other salt concentrations.

I 0.002mM 0.2mM 2mM 25mM
σparticle −0.18 · 10−3 Cm−2 −2.1 · 10−3 Cm−2 −6.3 · 10−3 Cm−2 −22.1 · 10−3 Cm−2

σshell −0.095 · 10−3 Cm−2 −2.1 · 10−3 Cm−2 −6.3 · 10−3 Cm−2 −22.1 · 10−3 Cm−2

Table S2: Surface charge densities of the core particle and shell for different salt concentrations.
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The particle position was then updated by multiplying the velocity per timestep and the timestep itself. The
backward differential formula (BDF) method uses non-uniform steps in time to solve the physics for each time
step. When the mesh in the blue region in Figure S2 became too distorted, it was updated to ensure accurate
reproduction of the physics. This was whenever the following criterion was met:

trFTF

2J2/n
− n

2 > 0.5, (4)

where F is the deformation gradient, J its determinant, and n is the space dimension. The internal COMSOL
name for this quantity is "comp1.spatial.1isoMax".

Figure S2: Example of the mesh of the yolk-shell geometry used in the 2D axisymmetric finite-element calculations. The
mesh near the surfaces, at the double layers, is extra refined to deal with large changes in concentration and potential
over a small length. The mesh of the red domain was moved according to the updated particle position. The mesh of
the blue domain was automatically updated when it became too deformed.

We first performed a stationary study with a shell that was open to ions and for which no electric field
was applied. During this study the equilibrium double layers could form. This solution was used as an initial
configuration to perform the time-dependent calculation with the AC electric field. For this calculation the shell
was given a fixed porosity which determined how fast ions diffused through the shell, according to the rules
in Table S1. In the time-dependent solver using the BDF method a relative tolerance of 0.01 was used. This
controls the relative error in each time step. An absolute tolerance factor of 0.5 is applied to scaled variables to
control the absolute error. The time step taken by the solver was allowed to vary up to a maximum of 1/f/100,
where f is the frequency. Furthermore, backward Euler consistent initialization was used. To solve the system
at a certain time step we used a fully coupled solver, with MUMPS as the direct solver for the linear equations.

1.3 Model Verification
In order to ensure that our finite-element model provided acceptable results for the electrophoresis of a particle,
we compared results of our model without the shell with established literature values.5,6 First, we compared
the stationary electrophoretic velocity from our simulations to the work of O’Brien and White.6 For these
calculations we used a constant potential boundary condition to be as close to their conditions as possible. The
electric field strength was set to 100Vm−1 to be in the regime of low electric field. The results are shown in



S5

Figure S3a, which shows good agreement with the work of O’Brien and White.6 Note that in the calculations
in this work the scaled zeta potential is 2. Second, we compared the dynamic electrophoretic velocity under
an AC electric field to the work of Eric Lee.5 For these calculations we used constant surface charge boundary
conditions, as these are also used in the simulations on the yolk-shell system in this work. The electric field
strength was set to 100Vm−1 to be in the low-field regime. The results of these calculations also agree well
with the work of Lee (Figure S3b).5

a) b)

Figure S3: Model verification. a) Results of finite-element calculations of the stationary electrophoretic mobility for
various surface potentials and salt concentrations compared to the work of O’Brien and White (solid lines).6. b) Results
of finite-element simulations of the dynamic electrophoretic mobility for various salt concentrations and frequencies
(scaled surface potential φr = 2) compared to the results of Eric Lee (solid lines).5

1.4 Mesh Refinement
We verified that we had used a sufficiently dense mesh in the areas where this mattered as follows. We made the
mesh in the EDL regions 4, 9, and 16 times more dense and ran the simulations for a shell with 100% porosity
at 100Vmm−1 and 100 kHz. No changes in the electrophoretic velocity of the core particle was observed.

2 Synthesis, Zeta Potential, Etching and Overgrowth of Yolk-Shell
Particles

For the synthesis of the original rattle particles the reader is referred to our previous collaborative work.1 The
zeta potential of the core particles was measured to be −41mV in aqueous solution for the same sample used
in this study.1 To determine the zeta potential of the core, the as-prepared core particles were overgrown with
the sacrificial polystyrene layer. They were then calcinated to remove the polystyrene layer. This allows us
to measure the zeta potential of the cores that have been through the same treatment as the cores within the
yolk-shell geometry. We furthermore measured the zeta potential of the shells of the as-prepared particles and
it was found to be −45 ± 7mV in aqueous solution (2mM LiCl). However, realistically we do not know the
zeta potential of the inner part of the shell (we cannot measure it) and it is likely that the zeta potentials of
the core particles may deviate somewhat when they are in the shells. By mechanically cracking the shells it
may be possible to measure the zeta potential of the cores in the future. As such, we decided to use the same
surface charge density for all silica surfaces in the simulations, leading to −50mV surface potential for the core
and −40mV surface potential for the shell.

The procedure to grow silica on top of the shell of the original rattle particles is as follows (Figure S4). An
aqueous suspension of the rattle particles was mixed with an ethanol solution. The volume fraction of water in
ethanol was 0.25, and the total volume of the mixture was 10mL. After stirring for 5 min at 35 ◦C, 100µL of
100mM NaOH (≥ 98.0%, Sigma-Aldrich) aqueous solution was added to the mixture. An ethanol solution of
tetraethyl orthosilicate (TEOS, ≥ 98.0%, Sigma-Aldrich) (56µL, 1.8M) was injected three times with intervals
of 45 minutes. The total concentration of TEOS was 30mM. The reaction was conducted under stirring at
35 ◦C overnight. The obtained particles were centrifuged twice with ethanol and with water.

The procedure to etch the shells of the original rattle sample is as follows (Figure S5). An aqueous solution
of NaOH (100mM, 287µL) was added to 8.7mL of the dispersion of rattle particles. The mixture was stirred
at 40 ◦C for 7 hours. The solution pH of the mixture was 11.5. The etched particles were centrifuged twice with
water, and redispersed in water.
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Figure S4: The procedure for overgrowing the shells of the rattle particles.

Figure S5: The procedure for etching the shells of the rattle particles.

a) b)

c) d)

Figure S6: Bright-field TEM images of the four different kinds of rattle-type particles used in this study. a) Silica rattles
with a small shell (ashell = 370 nm), b) silica rattles with a large shell (ashell = 496 nm), c) silica rattles with a small
shell that is etched more significantly, d) silica rattles with a small shell that is overgrown with silica.

3 A Closer look at the Electric Field inside the Liquid Cell and
within the Rattle Geometry

Figure S7 shows the electric field in a 3D environment resembling the liquid-cell geometry in the experiments,
where we solved the Poisson equation. The area with water (εr = 78.4) was 100 by 50 by 2 micron. In this
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calculation we placed 200 nm thick SiN windows (εr = 9.5) on the top and the bottom of the water layer. The
electrodes were 50 by 5 by 0.075 micron. The middle of the electrodes were spaced 30µm apart. The height
of the liquid cell and thus the water layer within was taken to be 2µm in this calculation. One electrode was
given a constant potential boundary condition of 3V, while the other was given a ground boundary condition
(0V). The edges of the calculation volume were assumed to have zero charge. It was found that the electric
field between the two electrodes was at least 95Vmm−1 in the area between the electrodes where the recordings
of the yolk-shell particles were done. The electric field did not very significantly with the z height. We thus
expect less than a 5% error in the electric field in our experiments.

We also calculated what the effect of the dielectric constant of the shell was on the electric field within the
yolk-shell geometry. Figure S8 shows the field in and around the yolk-shell geometry upon application of a
100Vmm−1 electric field. A drop of 21% to an average electric field of 79Vmm−1 was observed for a shell
thickness of 40 nm and a shell dielectric constant of εr = 11.3, which corresponds to a shell porosity of 10%.
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Figure S7: Electric field within a liquid cell geometry calculated by solving the Poisson’s equation for a geometry
resembling the liquid cell, where the electrodes are spaced 30µm apart. The color scale indicates the strength of the
electric field.
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Figure S8: Electric field drop within the rattle geometry by only taking the dielectrics of the shell into account. For this
calculation we solved only the Poisson equation to estimate the electric field reduction within the yolk-shell geometry
without taking ions and their movement through the shell into account. The dielectric constant of the shell was the
same as those in the full calculations with a porosity of the shell of 10%: εr = 11.3. The surface potential of the core is
−50mV, and that of the shell is −40mV.
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Figure S9: Electric field strength within the rattle geometry at the maximum of the electric field sine wave (at 4.5π, so
after 2.25 cycles) for different porosities of the shell (as indicated by the percentages in the subfigure titles). The surface
potential of the core is −50mV, and that of the shell is −40mV.
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4 Supporting Figures
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Figure S10: Frequency-dependent mobility of a core particle within a shell under application of a 100Vmm−1 AC electric
field in aqueous solution of 2.00mM LiCl. The electron dose rate was 45 e−nm−2s−1. For each frequency, six consecutive
frames are shown with a frame time of 1 s. While at lower frequencies the core moves parallel to the electric field,
at intermediate frequencies the core moves orthogonal to the electric field. At high frequencies, there is no significant
influence of the electric field.

a) b)

Figure S11: Calculated effect of the surface potential on the core particle and the shell on the displacement of the core
particle. a) Core displacements as function of the core surface potential. The inner shell surface potential was −40mV.
b) Core displacements as function of the inner shell surface potential. The core surface potential was −50mV. The other
parameters are the same as Figure 3 of the main text.
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Figure S12: Calculated effect of the thickness of the shell on the displacement and velocity of the core particle. A 120 nm
thick shell with 10% porosity has a similar effect on the particle velocity as a 40 nm thick shell with 5% porosity. The
other parameters are the same as Figure 3 of the main text.

a) b)

Figure S13: Calculated effect of the diffusion coefficient of the negative ion through the shell on the displacement and
velocity of the core particle. The dielectric constant of the shell was 78.4 and Ds,+ = D+. The other parameters are the
same as Figure 3 of the main text.
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b)
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Figure S14: Calculated flow profiles for a yolk-shell geometry for a shell with 100% porosity during the application of a
100Vmm−1 AC electric field of 50 and 2 kHz. The first image is after 2 cycles of the electric field and the images that
follow are all within half an electric field cycle (phase 4π to 5π). It can be seen that the flow originating from the EDL
on the inner shell wall contributes positively to the velocity of the particle. For 2 kHz the flow profile is different, as the
particle moves significantly during the electric field cycle. The surface potential of the core is −50mV, and that of the
shell is −40mV.

Figure S15: The electric force, hydrodynamic force and the acceleration term as function of time for a free particle
(aparticle = 170nm, κa = 1) when applying a constant electric field of 100Vmm−1. It shows that for the times relevant
in our system using an AC electric field with frequencies of 100 kHz or lower, the acceleration term is negligible.
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