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ABSTRACT
Spherically symmetric atom-centered descriptors of atomic environments have been widely used for constructing potential or free energy
surfaces of atomistic and colloidal systems and to characterize local structures using machine learning techniques. However, when par-
ticle shapes are non-spherical, as in the case of rods and ellipsoids, standard spherically symmetric structure functions alone produce
imprecise descriptions of local environments. In order to account for the effects of orientation, we introduce two- and three-body orientation-
dependent particle-centered descriptors for systems composed of rod-like particles. To demonstrate the suitability of the proposed functions,
we use an efficient feature selection scheme and simple linear regression to construct coarse-grained many-body interaction potentials
for computationally efficient simulations of model systems consisting of colloidal particles with an anisotropic shape: mixtures of col-
loidal rods and non-adsorbing polymer coils, hard rods enclosed by an elastic microgel shell, and ligand-stabilized nanorods. We validate
the machine-learning (ML) effective many-body potentials based on orientation-dependent symmetry functions by using them in direct
coexistence simulations to map out the phase behavior of colloidal rods and non-adsorbing polymer coils. We find good agreement with
the results obtained from simulations of the true binary mixture, demonstrating that the effective interactions are well described by the
orientation-dependent ML potentials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091319

I. INTRODUCTION

Anisotropic molecules and colloids are able to self-assemble
into complex structures with competing orientational and trans-
lational order, ranging from liquid crystals1,2 to empty liquids.3
Among colloidal systems, non-spherical particles have long been
known and modern synthetic routes allow for a great variety of
particles with different shapes.4 For example, in addition to rod-
like particles of biological origin, such as viruses,5–7 colloidal rods
can also be synthesized from a wide range of materials, including
boehmite,8 β-ferric oxyhydroxide (FeOOH),9 gold,10 silica,11 cellu-
lose,12 and titanium dioxide (TiO2) nanocrystals.13 The assembly of
such elongated particles has become increasingly popular because
it allows for the formation of ordered superstructures exhibit-
ing collective physical properties that depend on the shape and

size of the constituent particles.14 By precisely controlling physico-
chemical parameters and boundary conditions of a self-assembly
process, particle-based simulations can be especially effective in
providing a clear insight into the link between the detailed inter-
actions among particles/molecules and the resulting equilibrium
properties.

Historically, there have been basically two approaches to model
non-spherical particles: atomistic and coarse grained.15 In the for-
mer approach, chemistry-level details are well represented at the
expense of a larger computational cost. In the latter, many atoms
are grouped together into single sites (beads and superatoms) that
generally do not show a spherical symmetry. In such cases, generic
single-site ellipsoidal pair potentials and simple hard-particle mod-
els have been widely used, thereby providing an understanding of
the physics behind their mesoscopic and macroscopic behaviors.2
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For an accurate representation of specific systems with complex
interactions, developing predictive and computationally tractable
coarse-grained (CG) models is necessary. However, this is not a
trivial task. Difficulties arise, in part, because at such a resolution
level, the formal integration of a set of degrees of freedom leads
to effective interaction potentials that typically require a descrip-
tion beyond the pairwise approximation.16,17 The many-body terms
in these CG potentials are, in general, very difficult to take into
account17 as it has been recognized in developing reduced-order
models for star polymers,18,19 colloid–polymer mixtures,20,21 and
ligand-stabilized nanoparticles.22,23 In addition, even though the
evaluation of these many-body potentials is, in general, computa-
tionally cheaper than simulating the full or fine-grained system, the
computational cost may still be high and limit the range of accessible
time- and length-scales.

In the past years, data-driven or machine learning (ML)
approaches have been successfully applied to build accurate and
computationally efficient potentials for molecular and atomistic sys-
tems and more generally to establish the relationship between a
specific atomic configuration and the properties that can be com-
puted by ab initio methods.24 In the field of soft matter and colloidal
systems, a ML approach based on simple linear regression has been
recently employed to efficiently represent many-body interactions
in spherical microgel particles in 2D25 and to build an effective one-
component interaction Hamiltonian for a mixture of colloidal hard
spheres and non-adsorbing polymer coils.26 In these approaches,
the use of ML techniques was shown to serve as a powerful tool
for speeding up by several orders of magnitude simulations that
incorporate effective many-body interactions.

The construction of ML potentials follows two main steps:
the transformation of the atomic positions into suitable descrip-
tors and the subsequent association of a (free) energy with this
structure using a functional form provided by a ML method.27

In general terms, the descriptors correspond to quantities that
are easier to evaluate than the properties one ultimately aims
at predicting but strongly correlate with the to-be-predicted
properties.24 In practice, these descriptors are determined by apply-
ing geometric and algebraic operations on the Cartesian coordinates
of the system, ultimately transforming them into mathematical
objects that satisfy the conditions of smoothness and symmetry with
respect to isometries.24 Typical representations based on descrip-
tors of atomic/particle environments involve bond-order parameters
and Fourier series of structural invariants.28 However, the most
commonly used representations include atom-centered symmetry
functions (SFs)27,29 and the smooth overlap of atomic positions
(SOAP).30 For the purpose of constructing not only accurate but
also computationally efficient potentials for anisotropic colloids or
molecules, ML approaches, such as those from Refs. 25 and 26, are
appealing. Nevertheless, available descriptors or structure functions,
such as the original atom-centered SFs by Behler and Parrinello,29

are, by construction, spherically symmetric and do not take into
account orientation and alignment effects of non-spherical parti-
cles. Thus, in order to represent the many-body CG potentials in
such systems using ML methods based on local structure charac-
terization, suitable descriptors that capture this crucial aspect are
needed.

Within the recent efforts in correlating the structure and
dynamics in disordered systems, there have been some attempts

in describing the local structure of systems composed of elon-
gated particles by using spherically symmetric SFs.28 However, these
approaches are simply based on describing continuous elongated
bodies, such as ellipsoids by two distinct monomers. Hence, under
such considerations, the individual structure functions for a refer-
ence elongated particle depend on either the position of the two
individual monomers and the centroid of surrounding neighbors
or a centroid and the two monomers composing a dimer of neigh-
boring particles. Therefore, descriptors that are able to explicitly
and simultaneously incorporate information on the orientation of
a reference non-spherical particle and its neighbors are still missing.

Here, we propose two- and three-body orientation-dependent
particle-centered descriptors suitable for describing the local struc-
ture and constructing many-body potentials for systems com-
posed of rod-like particles, including spherocylinders, rigid linear
chains, and ellipsoids. Using a recently proposed feature selection
scheme and linear regression,25,26 we construct effective many-
body potentials for model systems of colloidal hard rods and
non-adsorbing polymer coils and for core–shell microgel rods. Fur-
thermore, the same approach is used to represent the effective
orientation-dependent two-body potential of mean force (PMF) of
ligand-stabilized nanorods.

The remainder of this article is organized as follows: in Sec. II,
we discuss the orientation-dependent descriptors for rod-like par-
ticles. The feature selection scheme and regression method used to
construct the ML potentials for the three systems discussed above are
briefly described in Sec. III. In this section, we also demonstrate the
suitability of the particle-centered orientation-dependent descrip-
tors for encoding information on the local structure of systems
composed of prolate ellipsoidal particles. The accuracy of the coarse-
grained ML potentials is further tested by directly comparing the
results obtained from Monte Carlo simulations of the “true” full sys-
tems with those coming from simulations using the reduced-order
ML potentials. We conclude with a final discussion and remarks in
Sec. IV.

II. SYMMETRY FUNCTIONS FOR ROD-LIKE PARTICLES
To introduce the orientation-dependent symmetry functions

(ODSFs), we consider model systems of uniaxial particles with
a spherocylindrical shape (cylinders of length L and diameter D
capped with two hemispheres at both ends) and ellipsoids of rev-
olution for which two of the perpendicular semi-axes are equal but
different, in general, from the third: σ∥ ≠ σ� = σ

�
′ . In these cases,

each particle i is characterized by its center-of-mass position vector,
Ri, and the orientation vector of its long axis, ûi. The descrip-
tors discussed next are a function of scalars that depend on these
quantities. We note that, due to their general functional form, the
ODSFs are also valid for rigid linear chains of arbitrary dimensions
(fused- and tangent-sphere models) and for oblate ellipsoids with an
infinite-fold rotational symmetry around the ûi axis.

We start the discussion of the functional form of the ODSFs
by introducing a cutoff function fc(Rij): a monotonically decreasing
function that smoothly goes to 0 in both value and slope at a cutoff
distance rc. Here, we consider a cutoff function of the form

fc(Rij) =
⎧⎪⎪⎨⎪⎪⎩

tanh3(1 − Rij/rc) for Rij ≤ rc,

0 for Rij > rc,
(1)
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where Rij = ∣Ri − Rj∣ is the center-of-mass distance between particles
i and j at positions Ri and Rj, respectively. Each symmetry func-
tion discussed below is multiplied by one or more cutoff functions
to ensure that the total symmetry function decays to zero in value
and slope at the cutoff radius. Consequently, particles beyond the
cutoff radius do not enter the reference particle contributions. We
note that Eq. (1) was introduced in Ref. 27 and also used in Refs. 26
and 31.

To describe the local environment of a rod-like particle, we start
from the spherically symmetric two-body radial SFs G(2),R intro-
duced by Behler and Parrinello for constructing high-dimensional
neural network potentials,29

G(2),R(i; η, Rs) =∑
j

e−η(Rij−Rs)
2

⋅ fc(Rij), (2)

which is a sum of Gaussians multiplied by a cutoff function. The
width of the Gaussians is defined by parameter η, and the cen-
ter of the Gaussian distributions can be shifted to a certain radial
distance by parameter Rs. In Fig. 1, we plot several example spher-
ically symmetric two-body radial SFs, G(2),R(i; η, Rs), for different
sets of parameters. While these functions are able to capture two-
body correlations between spherically symmetric particles, they are
not suitable for encoding information on the relative orientation
of rod-like particles. To correctly describe the local environment
of such anisotropic bodies, it is necessary to account for the ori-
entational degrees of freedom. To this end, we introduce two
orientation-dependent two-body SFs, G(2),OD1 and G(2),OD2 , and one
orientation-dependent three-body SF, G(3),OD. The first ODSF is
physically motivated and is based on the assumption that for a ref-
erence particle i, the correlation with a neighboring particle j occurs
within an ellipsoid of revolution centered around particle i, with a
variable spatial extent of the ellipsoid 2σ∥ along the principal axis ûi
and 2σ� perpendicular to it. By associating an anisotropic (trivari-
ate) Gaussian with every ellipsoid, we thus compute a two-body
function proportional to the mathematical overlap of the Gaussian
of the reference particle and that of a neighbor. Such a function is

efficiently represented by the so-called “overlap model” potential as
introduced by Berne and Pechukas.32 The resulting ODSF for parti-
cle i is therefore a sum of cut-off functions multiplied by the overlap
of its anisotropic Gaussian with those of neighboring particles j,

G(2),OD1(i; σ∥, σ�) =∑
j

ε(ûi, ûj) ⋅ e−(Rij/σ(û i ,û j ,R̂ ij))
2

⋅ fc(Rij), (3)

where ε(ûi, ûj) and σ(ûi, ûj, R̂ij) are the angle-dependent strength
and range parameters, which, for pairs of identical particles, read

ε(ûi, ûj) = [1 − χ2(û i ⋅ û j)2]−1/2
, (4)

σ(ûi, ûj, R̂ij) =σ
⎛
⎝

1 − 1
2

χ
⎧⎪⎪⎨⎪⎪⎩

(R̂ ij ⋅ û i + R̂ ij ⋅ û j)
2

[1 + χ(ûi ⋅ ûj)]

+
(R̂ ij ⋅ û i − R̂ ij ⋅ û j)

2

[1 − χ(ûi ⋅ ûj)]

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

−1/2

, (5)

where R̂ij = Rij/Rij is the unit vector along the center-of-mass dis-
tance vector between particles i and j, Rij = Ri − Rj, and σ =

√
2σ�

and χ = (σ2
∥
− σ2
�)/(σ2

∥
+ σ2
�) are the range and anisotropy para-

meters, respectively. The two parameters that control the shape of
this function are the spatial extents of the ellipsoid of revolution
along the principal axis and perpendicular to it, i.e., σ∥ and σ�. This
function carries a direct dependence on the relative orientation of
the two rods and is sensitive enough to simultaneously capture infor-
mation on the inter-particle distances as can be appreciated from
Fig. 2.

The second ODSF considered here corresponds to a gener-
alization of the G(2),R(i; η, Rs) function to non-spherical particles,
where Rij is replaced by the minimum distance between the long
axes of the two particles, dm,ij(Rij, ûi, ûj).33,54 As in the case of the
G(2),R(i; η, Rs)-type functions, the width of the Gaussians is defined

FIG. 1. Two-body radial (R) symmetry function G(2),R as a function of the center-of-mass distance Rij/D between two (rod-like) particles with diameter D. The cut-off value
is set to rc/D = 6.5. (a) G(2),R for Rs = 0 and different values of η as labeled. (b) G(2),R at fixed η = 10 and for different shifting distances Rs as labeled.
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by parameter α, and the center of the Gaussian distributions can be
shifted by parameter Rm,

G(2),OD2(i; α, Rm) =∑
j

e−α(dm,ij(Rij ,û i ,û j)−Rm)
2

⋅ fc(Rij). (6)

In Fig. 3, we exemplify the plot of G(2),OD2(i; α, Rm) for varying
parameters.

Finally, we also introduce an angular three-body ODSF
G(3),OD(i; σ∥, σ�, λ, ξ) that depends on the angle θijk = arccos(Rij
⋅ Rik/(RijRik)) centered at reference particle i,

G(3),OD(i; σ∥, σ�, λ, ξ) = 21−ξ∑
j,k≠i
(1 + λ cos θijk)

ξεij(ûi, ûj)εik(ûi, ûk)εjk(ûj, ûk)

× e−(R2
ij/σ

2
ij(û i ,û j ,R̂ ij)+R2

ik/σ
2
ik(û i ,û k ,R̂ ik)+R2

jk/σ
2
jk(û j ,û k ,R̂ jk)) fc(Rij) fc(Rik) fc(Rjk), (7)

where the indices j and k run over all the neighbors of particle i and
ξ and λ are two parameters that determine the shape of the func-
tion. The parameter λ can have the values +1 or −1 and determines
the angle θijk at which the angular part of the function has its maxi-
mum. The angular resolution is provided by parameter ξ, while the
terms σab(ûa, ûb, R̂ab) and εab(ûa, ûb) control the radial resolution
via the anisotropy parameters as defined above. The angular part
of this function for λ = 1 and −1 and different ξ values is shown in
Fig. 4.

The ODSFs introduced here provide a rotationally and trans-
lationally invariant description of the environment because they
depend on the internal coordinates Rij, dm,ij, and θijk and scalar prod-
ucts of pairs of vectors. Because of the sum over all neighbors within
rc, they are invariant with respect to any permutation of equiva-
lent particles in the environment. As it will become apparent in
Sec. III, when describing the local environment of elongated parti-
cles, several ODSFs that carry different structural information are

FIG. 2. Two-body orientation-dependent symmetry function G(2),OD1 as a function
of the center-of-mass distance Rij/D between two rods with diameter D. Three
different relative orientations are considered. The function is shown for values
σ∥/D = 3 and σ�/D = 0.5. The cut-off value is set to rc/D = 6.5.

combined together. Therefore, the unique significance of the indi-
vidual functions is generally lost, but when they are used as a group,
a more complete and unbiased description of the local structure is
achieved.

III. MACHINE-LEARNING POTENTIALS FOR ROD-LIKE
PARTICLES

In this section, we demonstrate the suitability of the ODSFs for
rod-like particles as descriptors for constructing ML coarse-grained
potentials for varying systems with different levels of complexity.
More specifically, in order to show the generality of the approach,
we chose model systems of prolate Gay–Berne particles, mixtures of
spherocylindrical colloids and non-adsorbing polymers, core–shell
microgel rods, and ligand-stabilized nanorods. By selecting these
models, we cover anisotropic particles represented as prolate ellip-
soids, spherocylinders, and rigid linear chains of fused and tangent

FIG. 3. Two-body orientation-dependent symmetry function G(2),OD2 as a function
of the minimum distance dm,ij/D between the central axes of two rod-like particles
with diameter D for different values of α as labeled. The cut-off value is set to
rc/D = 6.5, and the center-of-mass distance is fixed at Rij/D = 5.

J. Chem. Phys. 157, 024902 (2022); doi: 10.1063/5.0091319 157, 024902-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. Angular contribution of the three-body orientation-dependent symmetry function G(3),OD for a particle with only two neighbors. (a) G(3),OD for λ = 1 and (b) G(3),OD for
λ = −1. The function is plotted for different values of ξ as labeled.

sites. In all cases, we construct ML potentials as linear combinations
of a number of symmetry functions NSF . Here, the goal is to express
the total effective potential of a system of N non-spherical particles
with positions {Ri} and orientations {ûi} as

Φ({Ri, ûi}) =
N

∑
i

NSF

∑
k

ωkGk(i), (8)

where Gk(i) is the kth descriptor describing the local environment
of particle i and ωk is the coefficient (weight) of the correspond-
ing SF, which is fixed by the fitting procedure. Note that since
Φ({Ri, ûi}) is expressed as a sum of per-particle contributions, the
fitting of an N-particle system can be extended to simulations with
a different number of particles. We select the optimal subset of
descriptors using the feature selection scheme of Ref. 25, which we
briefly summarize below.

For a given dataset at hand, which typically consists of a collec-
tion of particle configurations and the corresponding values of the
to-be-predicted quantities (e.g., energy), a training/validation split
of the whole data is used. We note that unless stated otherwise, an
80/20 training/validation split of the whole datasets is adopted here.
The first step of the method involves the creation of a large but
manageable pool of candidate SFs. This is done by calculating, for
every particle in the different configurations in the training dataset,
M SFs with different sets of parameters. Then, an optimal subset of
NSF <M SFs is selected from the pool in a step-wise fashion. The
first SF that is selected corresponds to the one with the largest cor-
relation with the target function as quantified by the square of the
Pearson correlation coefficient, defined as

ck =
∑j(∑iGk(i)∣j −∑iGk(i))(ϕ∣j − ϕ)

σSD(∑iGk(i))σSD(ϕ)
, (9)

where∑iGk(i)∣j represents the sum of the kth SF over all particles i in
configuration j and ϕ∣j denotes the target variable evaluated for this
configuration. ∑iGk(i) and ϕ correspond to arithmetic means over
all the configurations in the dataset and σSD(∑iGk(i)) and σSD(ϕ)

to their standard deviations. The next SF is then selected based on
the highest increase in the linear correlation between the currently
selected set and the target data as determined using the coefficient of
multiple correlation as follows:

R2 = cTR−1c, (10)

where cT = (c1, c2, . . .) is the vector whose ith component is given by
the Pearson correlation coefficient, ci, between the ith SF and the tar-
get data, and R is the correlation matrix of the current set of SFs with
elements ℛ ij representing the Pearson correlation function between
the ith and jth SFs. In the case of only one SF, R2 reduces to c2

i .
We note that R2 can also be computed as the fraction of variance
that is explained by a linear fit (including an intercept) of the target
function in terms of the SFs in the set. The latter way of computing
R2 turns out to be slightly more expensive but has the advantage of
being numerically more stable.25

Maximizing the increase in the linear correlation with the tar-
get variable guarantees that only SFs that add relevant information
are selected.25 This process is repeated iteratively, and new SFs are
selected until the correlation stops increasing appreciably. This indi-
cates that the remaining SFs in the pool add negligible (irrelevant)
information to the model. In turn, this constitutes a simple rule to
optimize the number of selected SFs as their inclusion would sim-
ply imply an unnecessary numerical overhead. All the parameters
employed to generate the pool of SFs that are used to build the
CG effective potentials for the different systems discussed next are
reported in the supplementary material. We note that (if sufficient)
using linear regression instead of other more complex schemes, such
as nonlinear neural networks, might have some important advan-
tages, namely, the deterministic against the stochastic optimization
of model parameters, the control on the number of features, and
the final reduced computational cost.25 The latter aspect, as it can
be inferred, is, in part, determined using the optimal value of
NSF and the type of descriptor used in the ML potential. In the
supplementary material, we briefly discuss the computational cost
of the potentials constructed for the systems introduced next.
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A. Application to ellipsoids: The Gay–Berne model
To test the performance of the orientation-dependent descrip-

tors, we start by constructing interaction potentials of particles with
ellipsoidal symmetry. In particular, for instructive purposes, we use
the well-known Gay–Berne (GB) model, in which the anisotropic
pair potential reads

ϕGB(Rij, ûi, ûj) = 4ε′(R̂ij, ûi, ûj)[ρ−12
ij − ρ−6

ij ], (11)

where

ρij =
Rij − σ(ûi, ûj, R̂ij) + σ0

σ0
, (12)

Rij is the distance between the centers of mass of particles i and j,
and R̂ij = Rij/Rij is the unit vector along the separation vector
Rij = Ri − Rj. The anisotropic contact distance σ(ûi, ûj, R̂ij) and the
depth of the interaction energy ε′(R̂ij, ûi, ûj) depend on the orien-
tational unit vector, length-to-breadth ratio (κ = σ∥/σ�), and the
energy depth anisotropy (κ′ = ε�/ε∥), which correspond to the ratio
of the size and energy parameters in the end-to-end (∥) and side-
by-side (�) configurations. The contact distance function is given
by Eq. (5), while the depth interaction energy reads

ε′(R̂ij, ûi, ûj) = ε × [ε(û i, û j)]ν × [ε1(R̂ ij, û i, û j)]
μ, (13)

where ε(ûi, ûj) is defined by Eq. (4),

ε1(R̂ij, ûi, ûj) = 1− χ′

2
[(R̂ ij ⋅ û i + R̂ ij ⋅ û j)2

[1 + χ′(ûi ⋅ ûj)]
+ (R̂ ij ⋅ û i − R̂ ij ⋅ û j)2

[1 − χ′(ûi ⋅ ûj)]
],

(14)

and χ′ = [(κ′)1/μ − 1]/[(κ′)1/μ + 1]. In the above equations, ε
and σ0 represent the energy and length scales of the interaction,
respectively. Here, we use the well-known GB model, with char-
acteristic parameters (κ, κ′, μ, ν) = (3.0, 5.0, 2.0, 1.0), which were
originally used by Gay and Berne.34

In particular, we focus on fitting the potential energies ϕ of
both dimer and trimer configurations (confined to equilateral tri-
angles only, i.e., Rij = Rik = Rjk). To generate a training dataset, we
perform Monte Carlo (MC) simulations of dimers and trimers at
reduced temperature T∗ ≡ kBT/ε = 1.0, where we fix the particle
positions, but allow them to freely rotate in space and measure their
total potential energy in 250 different samples collected from runs
of 2.5 × 106 MC cycles. For each system, 100 separation distances
in the range 0.85 ≤ Rij/σ0 ≤ 4.95 are considered. The selected range
of separation distances contains both high-energy (repulsive) and
low-energy (attractive) configurations. With this choice, each set
contains a total of 25 000 samples, from which 80% are used for
training and 20% are reserved for validation. We perform two differ-
ent fits: (i) using two-body radial G(2),R SFs, which only depend on
the distance between centroids of particles, and (ii) using two-body
orientation-dependent G(2),OD1 ODSFs. In both cases, we restrict
the number of descriptors to NSF = 70 and set the cut-off value at
rc/σ0 = 6.5. Parity plots, comparing the original ground truth (train-
ing and validation) and predicted potential energies using the two

ML models for the dimers and trimers, are reported in Fig. 5. Since
our datasets contain configurations at fixed Rij and varying par-
ticle orientations (for which the potential energy differs slightly),
small clouds of points are identified. The models constructed with
only G(2),R SFs show a correlation coefficient of R2 ≈ 0.9 and root
mean square errors (RMSE), which are defined by the simple relation
R2 = 1 − RMSE2/σ2

SD(ϕ), of ∼0.30ε and 0.55ε on both the training
and validation sets of trimers and dimers, respectively. However, as
it can be expected, they present a critical defect as shown in Fig. 5.
In particular, since the descriptors are unable to encode information
on the orientation-dependence of the interactions, the models assign
the same energy to configurations with identical Rij but with a dif-
ferent relative orientation of the particles. In contrast, when G(2),OD1

SFs are employed, the resulting models not only present a correla-
tion coefficient of R2 ≈ 0.99 and RMSE values of 0.11ε and 0.46ε for
trimers and dimers, respectively, but are also able to capture accu-
rately the orientation-dependence of the interaction energy. If the
dimer and trimer datasets are combined and fitted simultaneously,
the quality of the resulting model with the same number of features
remains virtually unaffected.

B. Effective one-component Hamiltonian for colloidal
hard rods and non-adsorbing polymer coils

We continue our discussion by applying the ODSFs for con-
structing a direct relationship between the structure and effective
many-body interactions in systems of rod-like particles with a sphe-
rocylindrical shape. Such a particle shape has been widely used
to represent generic colloidal nanorods and to investigate their
phase behavior and self-assembling behavior.35–37 Here, we consider
a system of sterically stabilized colloidal rods and non-adsorbing
polymer coils. By departing from the thermodynamic potential
of the full binary mixture, we formally reduce the problem to a
colloid-only effective Hamiltonian, which incorporates many-body
effects. A ML model is then constructed to represent such an
effective Hamiltonian as a function of all colloid coordinates and
orientations.

A simple model for the mixture is the so-called
Asakura–Oosawa (AO) model, where the colloids are treated
as hard particles, while the non-interacting polymer coils are
regarded as point particles, which are excluded from the surface
of the colloids by a distance equal to the radius of gyration of the
polymer Rg .20,21,38,39 The diameter of the coils is σp = 2Rg . The
colloids are represented by hard spherocylinders, which consist of
cylinders of diameter σc and length L with semi-spherical caps at
both ends with diameter σc. The pair potentials of this model are
given by

ϕcc(Rij, ûi, ûj) =
⎧⎪⎪⎨⎪⎪⎩

∞ for dm,ij(Rij, ûi, ûj) < σc,

0 otherwise,
(15)

ϕcp(Ri − rj, ûi) =
⎧⎪⎪⎨⎪⎪⎩

∞ for dm,ij(Ri − rj, ûi) < σcp,

0 otherwise,
(16)

ϕpp(rij) = 0, (17)
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FIG. 5. Parity plots comparing total interaction energies of the true Gay–Berne model with characteristic parameters (κ, κ′, μ, ν) = (3.0, 5.0, 2.0, 1.0) and the ML model
constructed using only two-body radial G(2),R SFs (left) and with two-body orientation-dependent G(2),OD1 SFs (right). In both models, the number of descriptors is NSF = 70.
(a) and (b) Results for the dimer configurations. (c) and (d) Comparison for the trimer configurations.

where σcp = (σc + σp)/2; Rij = Ri − Rj with Ri and Rj the center-of-
masses of spherocylinders i and j, respectively; dm,ij(Rij, ûi, ûj) is
the minimum distance between the central axes of the two sphe-
rocylinders with orientations ûi and ûj; dm,ij(Ri − rj, ûi) is the min-
imum distance between the spherocylinder axis and the polymer
center-of-mass at rj in the case of colloid–polymer interactions; and
rij = ∣ri − rj∣ is the distance between the two polymer center-
of-masses.

The total interaction Hamiltonian of the mixture of Nc colloidal
rods and Np polymer coils in a volume V at absolute tempera-
ture T reads H = Hcc +Hcp +Hpp, where Hcc = ∑Nc

i<jϕcc(Rij, ûi, ûj),
Hcp = ∑Nc

i=1∑
Np
j=1ϕcp(Ri − rj, ûi), and Hpp = ∑Np

i<jϕpp(rij) = 0. By keep-
ing constant the number of colloids Nc and treating the polymer
coils grand-canonically, in which the polymer fugacity zp is fixed,
the thermodynamic potential of the binary mixture, F(Nc, zp, V , T),
can be written as a function of an effective one-component (only col-
loids) Hamiltonian where the polymer coils are formally integrated
out,

exp[−βF] = 1
Nc!Λ3Nc

c
∫

V
dRNc ∫ dû Nc exp[−βHeff], (18)

where β = (kBT)−1 with kB the Boltzmann constant and Heff = Hcc
+Ω, with Ω the grand potential of a “sea” of the ideal polymer at
fugacity zp in the external field of a fixed configuration of Nc colloidal
rods.20,21,40 For the AO model, the grand potential Ω reads

Ω = −zpVf ({Ri, ûi}), (19)

where Vf ({Ri, ûi}) is the free volume available for the polymer in
the static configuration of Nc colloidal rods with positions {Ri}
and orientations {ûi} and with i = 1, . . . , Nc. Vf can be seen as the
volume outside the Nc depletion zones and can be decomposed
into zero-, one-, two-, three-, and higher-body contributions,
Vf = V(0)f +∑

Nc
i=1V(1)f (Ri, ûi) +∑Nc

i<jV
(2)
f (Ri, Rj, ûi, ûj) + V(3+)f . In

turn, for a fixed colloid configuration, the volume outside the
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Nc depletion zones will be determined by the size ratio q = σp/σc
between the polymer coils and colloids. For q < 0.1547, a mapping
onto an effective one-component system with an effective Hamilto-
nian based on pairwise additive depletion potentials is exact.21,41,42

However, for larger q, the many-body contributions in V(3+)f must
be considered.

For spherical colloids, the effective pair potential is given by
the AO depletion potential that is known analytically.20 However,
no analogous analytic expression exists for the overlap volume of
two depletion zones of finite spherocylinders with arbitrary orienta-
tions and positions, and hence, V(2)f can only be approximated as in
Ref. 42 or calculated numerically. It turns out that the numerical
evaluation of V(2)f is almost as expensive as that of the whole free
volume Vf , which prevents us from using such an approach in long
simulations of large systems. Therefore, in order to construct for
the first time a full many-body effective one-component interaction
Hamiltonian for such a mixture, which is computationally efficient,
we fit Vf as a function of all colloid coordinates using a set of ODSFs
as discussed above.

To build the training dataset, we perform MC simulations on
Nc = 768 colloids with L/σc = 5, size ratio q = 1.0, polymer fugac-
ity zp = 0, and colloid packing fraction ηc = πσ2

c(2σc/3 + L)Nc/(4V)
∈ [0.13, 0.66], with a packing fraction spacing of δηc = 0.005. From
each simulation of 1 × 107 MC cycles, consisting of Nc attempts
of rotating or translating particles, we collect 300 equilibrated,
well-spaced configurations and measure Vf using a numerical
integration.20,26 The resulting dataset contains a total of 27 900
representative particle configurations at different colloid densities,
from which 80% for training and 20% for testing are used. Among
the different thermodynamic states used for training, isotropic (I),
nematic (N), smectic (Sm), and crystal (X) phases,35 which are
characterized by different degrees of orientational and positional
order, are considered. To quantify the importance of the many-
body contributions to the effective potential in each of the stable
phases, we calculate P(n), the probability that we find n = n(r)
overlapping depletion layers at spatial coordinate r.20,26 In Fig. 6,
we show P(n) for varying packing fractions ηc, including exam-
ples of I, N, Sm, and X phases. In the high-density X phase at
ηc = 0.66, we find that even four-body contributions to Vf become
non-negligible.

To fit Vf , we create a manageable pool of M = 365 candidate
SFs, setting the cut-off value at rc/σc = 7.0. The results of the fitting
are reported in Fig. 7. In particular, we show the RMSE of the lin-
ear fits with the actual Vf as a function of the number of selected
SFs for both the training and test sets. For NSF > 104, the correla-
tion coefficient is R2 ≈ 0.99 and the normalized RMSE, defined as
NRMSE ≡ RMSE/∣Vmax

f − Vmin
f ∣, is on the order of 1 × 10−3, which

clearly indicates the quality of the linear fit and ultimately the ability
of the ODSFs as fingerprints to encode information about the struc-
ture of the system of non-spherical particles. As described above, the
feature selection method used here sequentially picks up the descrip-
tors from the pool of candidate SFs based on the increase in linear
correlation. Figure 7(b) shows the type of descriptor that is sequen-
tially selected from the pool of candidate SFs. We clearly observe
that the G(2),OD2(i; α, Rs) descriptors describe best the variance of
the data.

FIG. 6. Probability of n overlapping depletion layers for a mixture of colloidal rods
with a length-to-diameter ratio L/σc = 5 and non-adsorbing polymer coils of dia-
meter σp with size ratio q = σp/σc = 1 at polymer fugacity zp = 0 and colloid
packing fraction ηc as labeled.

To validate the ML model and in order to assess its trans-
ferability, we calculate the (partial) phase diagram of the effective
one-component system using canonical MC simulations. In partic-
ular, we focus on the binodals for the isotropic fluid phases.42 To
compute such binodals, we perform direct coexistence simulations
of the effective one-component system of Nc = 896 colloids in elon-
gated simulation boxes of volume V with edges Lx = Ly ≥ 3L and
Lz = 3Lx at varying polymer fugacities zp. We fit the effective many-
body Hamiltonian as evaluated in simulations on the full binary
system with NSF = 120, which provides a NRMSE of 8 × 10−4. In
order to confirm the accuracy of the fitted model, we also compute
the coexistence curves from grand canonical Monte Carlo (GCMC)
simulations of the full rod-sphere binary mixture, where Nc, zp, V ,
and T are kept constant. In Fig. 8, we report the phase diagrams in
the (ηc, zp) plane as obtained from simulations of the two models. At
sufficiently high polymer fugacity, we find a coexistence between a
low-density isotropic gas IG phase and a high-density isotropic liquid
IL phase. We find a good correspondence between the two models
and also agreement with previous results from GCMC simulations
by Jungblut et al.43 For zp ≥ 1.38, a broad coexistence between the
isotropic gas IG and nematic N phase is observed. Again, we find
good agreement between the ML model and the “true” binary mix-
ture. We highlight that since we do not include any two-phase
systems with interfaces in our training set nor configurations at non-
zero zp, reproducing the coexisting curves with MC simulations of
the ML model proves the transferability to finite zp and also that
the ML potential captures the dependence on density that a real-
istic description must have to be able to calculate phase diagrams
accurately.

C. Many-body interactions of core–shell microgel rods
The third model we consider is a coarse-grained represen-

tation of core–shell microgel (CSM) rods based on the models
proposed in Refs. 25 and 44. These models capture the many-body
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FIG. 7. (a) Root mean square error (RMSE) as a function of the number of SFs in the subset NSF for the effective one-component many-body Hamiltonian of a mixture of
sterically stabilized colloidal rods and non-adsorbing polymer coils. The RMSE values (in σ3

c units) are shown for the training and validation sets. The correlation coefficient
R2 as a function of NSF is shown in the inset. (b) Type of SF as a function of the index chosen in the feature selection method.

interactions arising when elastic spheres are strongly deformed at
high densities and high pressures.

Here, we represent the core–shell microgel rod as a hard sphe-
rocylindrical core surrounded by a deformable shell. To represent
the shape anisotropy of the particle, we describe the rod as an assem-
bly of deformable spheres with rigid hard cores. The particle is
constructed as follows: the rigid hard cores of the particles are repre-
sented in a “linear tangent” fashion,45 where n spherical hard cores
of diameter σA are linearly aligned and tangent to their neighbors

as depicted in Fig. 9(a). Subsequently, each rigid core is surrounded
by a deformable shell. The diameter of the rod is σB = σA + λ, where
λ/2 is the effective length of the deformable shell. In order to capture
the elastic deformation due to an interaction with another CSM par-
ticle, we discretize the surface of the deformable particle by a large
number of Np points, which are evenly distributed on the surface.
When a microgel particle is deformed due to overlap with another
particle, each point on the surface of this deformable shell will be
pushed radially to the point of intersection of the two spheres. The

FIG. 8. (a) Phase diagram of a mixture of sterically stabilized colloidal rods of length-to-diameter ratio L/σc = 5 and non-adsorbing polymer coils of diameter σp = 1.0
in the colloid packing fraction ηc–polymer fugacity zp representation. The size ratio of the mixture is q = σp/σc = 1. Filled circles correspond to results obtained from
grand-canonical Monte Carlo (GCMC) simulations of the true binary mixture, whereas empty squares represent those obtained from direct coexistence Monte Carlo
simulations using the fitted many-body ML potential. Empty pentagons represent previous results reported by Jungblut et al.43 A broad coexistence region between an
isotropic gas phase IG and an isotropic liquid phase IL is identified. At high polymer fugacity zp, the IG phase is in equilibrium with a nematic N phase. The absolute errors
(δABS ≡ ∣ηc,ML − ηc,GCMC∣) of the coexisting colloid packing fraction predictions are shown in the inset as a function on the polymer fugacity zp. (b) Typical configurations
of the fluid phase equilibria of the colloid–polymer mixture as obtained from direct coexistence simulations using both the full binary mixture (top) and the CG ML potential
(bottom). The gray spheres correspond to the polymer coils, and in the CG representation, the depletion layers of every spherocylinder are displayed. The color of the
rod-like particles is assigned according to their orientation in space.
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FIG. 9. (a) Schematic picture of a core–shell microgel (CSM) rod-like particle. The core consisting of tangent hard spheres is depicted in green. The surface of the elastic
microgel shell is shown in blue, where only the points on the surface are depicted for clarity. The visual representation of the deformation of the shell due to an overlap
between two different rods (top view) is shown below. (b) Type of SF as a function of the index chosen in the feature selection method. (c) Root mean square error (RMSE; in
kBT units) as a function of the number NSF of SFs, where both the training and validation sets are plotted. The inset of (c) shows the correlation coefficient R2 as a function
of NSF . (d) Parity plot comparing the total elastic energy predictions of the ML model and the true model in configurations consisting of Nc = 768 CSM rod-like particles.

elastic energy corresponding to the deformation of particle i is then
approximated by the weighted sum of the elastic energies associated
with each point on its surface as25

βϕi =
K
2

Np

∑
l=1

wl

σ2
B
(δrl

σB
)

2

, (20)

where K is an elastic constant with the dimension of energy, l runs
over all the Np points on the surface of the deformable particle i,
wl is the surface area of the associated Voronoi cell of point l, and
δrl is the length of the radial deformation from the surface of par-
ticle i to the plane of intersection of the two spheres, as shown in
Fig. 9(a). When particle i overlaps with more than one particle at the

same time, we evaluate for each point l on the surface of particle i δrj
l

for each interacting particle j and use the maximum deformation to
evaluate the elastic energy, i.e., the length of the radial deformation
from the surface of particle i to the intersection of all the spheres is
δrl = max δrj

l .
We consider a core–shell microgel rod with a rigid core con-

sisting of n = 5 hard spheres. Following our notation of the hard-rod
model, the length of the hard rod that forms the CSM particle is
L = 4σA with semi-spherical caps at both ends with diameter σA.
The elastic particle has a diameter of σB = 1.35σA, corresponding to
λ/2 = 0.175σA. We discretize the surface of each sphere composing
the rod with Np = 200 points, which we find a good compromise
between accuracy and efficiency. Finally, we set the elastic constant
to K = 500kBT.
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The computational cost of evaluating the elastic energy of
deformable spheres is very high, as all the Np points on the surface of
each sphere have to be taken into account when a Monte Carlo move
is performed. The use of ML potentials to incorporate the many-
body interactions of a 2D system of elastic spheres speeded up the
energy evaluations considerably.25 The need of a ML technique for
the present model is even more crucial as there is a dramatic increase
of points Np = 200 × 5 on the surface of each microgel rod to be
evaluated. Hence, this model represents a perfect example where the
orientation-dependent symmetry functions can be used to reduce
the computational cost in simulating these systems.

In order to apply the ODSFs to the CSM rod-like particles, we
first build a dataset based on the total elastic energy associated with
configurations in different conditions. Due to the high computa-
tional cost of the model, we use the same equilibrated configurations
as in Sec. III B that correspond to Nc = 768 rod-like particles. For
each configuration, we calculate the elastic energy of each particle
using Eq. (20) and subsequently the total elastic energy of the system.
The training and validation configurations correspond to various
thermodynamic states ranging from isotropic, nematic, smectic to
crystalline phases. We proceed as in Sec. III B by generating a pool of
ODSFs and selecting a subset of them that capture best the variance
of the target energy. Here, we use a cut-off of rc/σA = 6.5 and take
50 ODSFs, which give R2 ≈ 0.99 and minimize the root mean square
error on both training and validation sets, providing a NRMSE of
2 × 10−3. In contrast with the model shown in Sec. III B, the variance
of the data is best captured using the G(2),OD1(i; σ∥, σ�) descrip-
tors as shown in Fig. 9(b). Note that with just a small number of
ODSFs, the data are already well described as the correlation coef-
ficient approaches quickly to R2 ≈ 0.99 and the RMSE is quickly
minimized. Finally, we test the fitting by predicting the energies of
the validation set. In Fig. 9(d), we show the comparison of the pre-
dicted energy and the one calculated from Eq. (20) and observe a
perfect agreement between the two of them. We thus show that the
ODSFs work well to capture the many-body elastic energy of CSM
rod-like particles. This opens the door to explore the phase behavior
and structural properties of complex systems, such as CSM rods.

D. Two-body potential of mean force
of ligand-stabilized nanorods

Finally, we consider a chemistry-specific CG model of ligand-
stabilized nanorods, for which we use the ODSFs to fit the effective
two-body potential of mean force (PMF). In this model, the ligands
are represented as chains of five CG beads, approximately corre-
sponding to alkyl ligands of 18 carbon atoms and a headgroup (e.g.,
thiol or amine), as shown in Fig. 10(a). Nanocrystal cores (NCs) are
modeled as rigid bodies composed of a cylinder of length L = 20 nm
and diameter D = 4.2 nm, with semi-spherical caps at both ends. The
orientation of a particle is thus determined using the central axis of
its cylindrical core. The surface coverage, calculated as the number
of ligand molecules per surface area, is 5.5 nm−2.46 The CG ligands
are covalently bonded to the nanocrystal cores, and the interactions
between the constituent CG beads are described by the MARTINI
force field. For simplicity, we consider only “C1”-type MARTINI
beads.47 To account for the solvent implicitly, we use the approach
reported by Fan and Grünwald,48 where pair interactions between

non-bonded beads are described through a modified Lennard-Jones
(LJ) potential, which reads

ϕ(r; s) =
⎧⎪⎪⎨⎪⎪⎩

ϕLJ(r) + (1 − s)ε for r ≤ 21/6 σ,

sϕLJ(r) for 21/6σ < r ≤ rc,
(21)

where the quality of the solvent is controlled by the parameter
0 ≤ s ≤ 1 with s = 0 corresponding to a good solvent and s = 1 to a
bad solvent or vacuum, and

ϕLJ(r) = 4ε[(σ
ε
)

12
− (σ

ε
)

6
] (22)

is the standard Lennard-Jones (LJ) potential, where σ = 0.47 nm and
ε = 0.8365 kcal mol−1 are the length- and energy-scale parameters of
the pair interaction, respectively; r is the separation distance between
pairs of coarse-grained sites; and rc = 1.2 nm is the cut-off radius of
the interactions. We set the solvent parameter s = 0.3. Within the
chains, intramolecular interactions acting on the centers of bonded
CG sites are described using a harmonic bond-stretching potential
as follows:

ϕbond(b) = 1
2

Kb(b − b0)2, (23)

with the bond force constant Kb = 149.3787 kcal mol−1 nm−2 and
b and b0 = 0.47 nm the instantaneous and equilibrium bond dis-
tances, respectively. Similarly, the angle-bending between triplets of
connected beads is modeled via a harmonic potential as follows:

ϕangle(θ) = 1
2

Kθ(cos θ − cos θ0)2, (24)

where Kθ = 2.9876 kcal mol−1 denotes the angle force constant and
θ and θ0 = 180○ the instantaneous and equilibrium angle-bending
values, respectively. Interactions between NC cores are neglected
as these forces, for small NCs, are typically much weaker than
ligand–ligand interactions.22,49,50 We perform molecular dynamics
(MD) simulations on systems of 21132 CG beads using the software
package Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS).51 To avoid finite size effects, we employ a cubic simu-
lation box of side length 10L. We remove overlaps of ligand beads
in the initial configurations by energy minimization. Simulations
are performed in the canonical ensemble (NVT) at temperature
T = 300 K, which is maintained constant with a Nosé–Hoover ther-
mostat. The equations of motion are integrated with a time step of
20 fs for up to 107 steps, and statistics are collected over the last 106

steps.
To compute the effective pair interactions between the ligand-

stabilized nanorods, we calculate the PMF for three different relative
particle orientations, as shown in Figs. 10(b)–10(d), using constraint
MD simulations.52 For each PMF calculation, we perform simula-
tions with the nanorod cores frozen at 120 different distances Rij.
For each of these simulations, the mean force Fm is calculated as the
average force between the centers of mass of the two nanorods along
the centre-of-mass distance vector Rij,22

Fm(Rij) =
1
2
⟨(Fi − Fj) ⋅ R̂ij⟩NVT;Rij ,ûi ,ûj

, (25)
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FIG. 10. (a) Schematic representation of a ligand-stabilized nanorod of length L and diameter D. Only a portion of the ligands is shown to better appreciate the morphology
of the particles. The blue beads correspond to CG ligand atoms, and the green beads represent the nanocrystal core atoms. In the CG representation, a single ligand
(octadecanethiol) contains five CG beads that represent 18 carbon atoms (cyan) and a thiol group (yellow). (b)–(d) Potential of mean force Φ as a function of center of
mass distance Rij for three different relative nanorod orientations, as illustrated in the snapshot of each plot. Green filled circles correspond to the values obtained from
constraint MD simulations, whereas blue lines correspond to the values predicted by the ML model. The absolute errors (δABS ≡ ∣ΦML −ΦMD∣) of the potential of mean
force predictions are shown in the insets as a function of the center of mass distance Rij .

where Fi and Fj are the total forces acting on the center of mass of
each core and R̂ij is the unit vector connecting the two rods along the
reaction coordinate Rij. Angular brackets denote ensemble averages
in the canonical ensemble with the constraint separation Rij and ori-
entations ûi and ûj of the NCs. The PMF Φ(Rij) is then computed
using

Φ(Rij) = ∫
∞

Rij

Fm(Rij)dR′ij. (26)

In Figs. 10(b)–10(d), the computed PMF curves clearly show that
the effective interactions between the nanorods are repulsive at short
distances and attractive at larger distances. In particular, we find that
when the particles are parallel aligned, the strength of the effective

attractive interaction is the strongest, with a deep local minimum of
−46.7kBT at Rij/D = 2.1. The value of the well depth for the side-by-
side configuration is around seven times larger than that of the other
two configurations.

To employ the ML approach explained above, we combine the
data points of the three measured PMFs into one training dataset
that includes particle–particle distances with corresponding orien-
tations and free energies associated with them. We perform the fits
using two-body ODSFs with a cut-off of rc/D = 8.0 and restrict the
number of descriptors to NSF = 100. In the supplementary material,
we show the RMSE as a function of the number of SFs and the
type of SF as a function of the index chosen in the feature selection
scheme. The ML models constructed with the two ODSFs intro-
duced in Sec. II present a correlation coefficient R2 ≈ 0.99 and a
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NRMSE of 7.8 × 10−3. To further test the accuracy of the ML model,
we evaluate Φ using a single interaction site representation for the
particles. In particular, for each of the three relative orientations, we
generate up to 500 configurations at fixed distance Rij and evalu-
ate the PMF using the fitted model. Considering that the generated
particle configurations are all different from those included in the
original training dataset, the agreement with the values obtained
from the MD simulations [see Figs. 10(b)–10(d)] highlights the abil-
ity of the ML model to accurately interpolate between structures and
smoothly recover (predict) Φ. This coarse-graining strategy, which is
based on a mapping that projects fine-grained configurations of the
complex nanorods onto a lower-dimensional representation (a sin-
gle site model), can be used to efficiently explore the phase behavior
and structural properties by long simulations of large system sizes.
The quality of the fitted CG potential will obviously reflect that of the
underlying fine-grained model. Thus, its predictive power and accu-
racy would strongly depend on the quality of the training dataset
(e.g., the number of training samples and the numerical precision
of the measured PMF). Furthermore, as discussed above, for a given
dataset, the quality of the fitted CG potential can be controlled in our
approach by the number of descriptors NSF .

IV. CONCLUSIONS
In summary, we have proposed new orientation-dependent

particle-centered descriptors that effectively map a static configura-
tion of anisotropic rod-like particles into a suitable representation
that can be employed to construct a machine learning model to
regress a structure–property relation. To demonstrate the ability of
the functions in describing orientation and alignment effects, we
have used simple linear regression to construct an effective single-
component Hamiltonian for hard colloidal rods and non-adsorbing
polymer coils by formally integrating out the polymers and fit-
ting the grand potential (free volume) that incorporates many-body
effects. The resulting ML potential was used in direct coexistence
simulations to calculate the phase diagram of the mixture. We found
good agreement with the results obtained from simulations of the
true binary mixture. Additionally, an accurate and computationally
efficient many-body interaction potential of anisotropic core–shell
microgel particles has been fitted on the basis of the proposed
descriptors. The same approach has also been used to represent the
effective orientation-dependent two-body potential of mean force
of a chemistry-specific nearly-atomistic model of ligand-stabilized
nanorods.

The methodology presented here can be seen as a bottom-
up coarse-graining strategy valuable for speeding up simulations
of complex anisotropic particles. The speedup achieved with the
ML potentials depends on the details of the precise underlying
fine-grained model and the type and number of descriptors that
are used for the construction of the ML potentials. Roughly, we
find that the ML potentials are 20 times slower for the case of
Gay–Berne ellipsoids, three orders of magnitude faster for the
colloid–polymer mixtures, and three times faster for the microgel
particles (see the supplementary material). It would be interesting
to extend this approach to construct CG models with anisotropic
building blocks (superatoms and beads) that are able to capture
the large-scale properties of specific molecular systems, in the

same spirit as the ellipsoid-based models developed for semiflex-
ible polymers.53 This strategy may also allow one to move from
idealized to predictive models of mesogenic molecules, relevant in
the field of liquid crystals. Furthermore, the proposed functions
could be exploited in a ML approach to address how the orienta-
tional structure and shape anisotropy determine the dynamics of
elongated particles. Finally, we note that the functions discussed
here are perfectly suited for describing the orientational and trans-
lational degrees of freedom of anisotropic uniaxial particles with
an elongated or oblate shape. Therefore, it would be of interest to
develop new descriptors suited for mapping the configurations of
non-spherical particles with more complex symmetry (e.g., biaxial
particles).

SUPPLEMENTARY MATERIAL

See the supplementary material for a complete list of para-
meters used to construct the initial pool of candidate SFs for building
the CG potentials for the different models, learning curves, and a
brief discussion on the computational efficiency of the ML poten-
tials. Additionally, simple example FORTRAN functions to evaluate
the SFs are also provided.
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