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In this Supplemental Material, we go into more depth on the specific methods used and mentioned in the main
paper.

I. ORDER PARAMETER

We use the number of particles of the solid nucleus n as an order parameter for studying crystal nucleation [1–3].
One of the most commonly used techniques for differentiating between liquid and solid on a single-particle level is the
one introduced by Ten Wolde et al. [1]. This technique uses the bond orientational order parameters qlm to determine
the number of solid-like connections ξ of each particle and labels a particle as solid when ξ ≥ ξc, with ξc a cutoff
value. These bond-orientational order parameters are given by

qlm(i) =
1

Nb(i)

∑
j∈Nb(i)

Ylm (θij , ϕij) , (S1)

where Nb(i) is the number of neighbors of particle i, Nb(i) is the set of neighbors of i, Ylm (θ, ϕ) are the spherical
harmonics with m ∈ [−l, l], and θij and ϕij are the polar and azimuthal angles of rij = r(j) − r(i), and r(i) is the
position of particle i. The number of solid-like connections of particle i is then determined via

ξ(i) =
∑
j∈Nb

H (dl(i, j)− dc) , (S2)

where H is the Heaviside step function, dc is the dot-product cutoff, and dl(i, j) is the dot product given by

dl(i, j) =

∑m=l
m=−l qlm(i)q∗lm(j)√(∑m=l

m=−l |qlm(i)|2
)(∑m=l

m=−l |qlm(j)|2
) , (S3)

with ∗ indicating the complex conjugate. The neighbors of particle i are defined as all particles j with |rij | < rc, and
a cluster contains all solid particles that have a solid neighbor in the same cluster. For all simulations we use l = 6
and the cutoff values dc = 0.7 and ξc = 6. The nearest neighbor cutoff rc is chosen to be approximately the position
of the first minimum of the radial distribution function for each state point.

II. UMBRELLA SAMPLING

The Gibbs free-energy barrier associated with crystal nucleation can be determined via [2, 3]

β∆G(n) = constant− lnP (n), (S4)

where P (n) is the probability of observing a cluster of size n. To measure P (n) we use MC simulations in the NPT -
ensemble combined with umbrella sampling [4–6]. This technique adds a biasing potential to the interaction potential
of the system that drives the simulation to a preferred region of configuration space by artificially making a specific
part of phase space more probable. The typical biasing potential used for computing nucleation barriers is given by
[1, 7, 8]

βUbias

(
n(rN )

)
=

λ

2

(
n(rN )− nc

)2
, (S5)

where λ is a coupling parameter, n(rN ) is the size of the largest cluster present in the configuration rN , and nc is the
target cluster size.

Thus, by choosing a suitable value for λ, we can force n(rN ) to fluctuate around nc. Then, by performing the
simulation for multiple values of nc, we can compute different “windows” of the barrier. To compute a window, we
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measure the biased probability distribution Pbias(n;nc) for clusters of size n and calculate the corresponding Gibbs
free energy using

β∆G(n;nc) = χ(nc)− lnPbias(n;nc)−
λ

2
(n− nc)

2
, (S6)

where χ(nc) is a constant shift needed to stitch the different windows together nicely [3]. By ensuring that consecutive
windows overlap, the shifts can be calculated. For all nucleation barriers, we use λ = 0.02, take nc with an interval
of 10, and perform 4 independent runs for each window. Note that for the first window, the barrier is determined
without the use of a biasing potential and takes all present clusters into account. For the remainder of the barrier the
presence of small clusters can be neglected [3].

III. FITTING THE NUCLEATION BARRIER

We compare our nucleation barriers to classical nucleation theory (CNT). In this simple theoretical model, it is
assumed that crystal nucleation is controlled by the competition between the free-energy gain of the bulk crystal phase
with respect to the fluid phase and the free-energy cost of making a fluid-crystal surface interface. More specifically,
the Gibbs free-energy cost for making a spherical nucleus of radius R is given by

∆G(R) = 4πγR2 − 4

3
π|∆µ|ρsR3, (S7)

where γ is the fluid-crystal interfacial free energy, |∆µ| is the difference in chemical potential between the crystal
and fluid phases, and ρs is the density of the crystal phase. The maximum height ∆G∗ and critical radius R∗ of the
nucleation barrier described by Eq. (S7) are given by

∆G∗ =
16πγ3

3|∆µ|2ρ2s
; R∗ =

2γ

|∆µ|ρs
. (S8)

The nucleation barrier can be fitted to CNT by realizing that the measured radius depends on the specific choice
for dc and ξc. Assuming that the measured radius R(dc, ξc) differs from the unique radius associated with CNT with
a constant shift α(dc, ξc) [8], we obtain the equation

β∆G(n; dc, ξc) = δ + 4πβγ

[(
3n(dc, ξc)

4πρs

)1/3

− α(dc, ξc)

]2

− 4π

3
β|∆µ|ρs

[(
3n(dc, ξc)

4πρs

)1/3

− α(dc, ξc)

]3

, (S9)

where we used that the measured cluster size n(dc, ξc) can be related to the radius R(dc, ξc) by

n(dc, ξc) =
4πR(dc, ξc)

3ρs
3

. (S10)

The constant shift δ is added to Eq. (S9) for the reason that the nucleation barrier obtained via umbrella sampling
is only expected to match CNT near the top of the barrier. For all nucleation barriers, we fit approximately the top
third of the barrier. Furthermore, note that the specific choice for dc and ξc does not affect the barrier height, only
the width [8], and by using Eq. (S9) to fit the barrier one can also obtain the interfacial free energy γ independent of
the choice for dc and ξc.

IV. NUCLEATION RATE

The nucleation rate per unit volume k is related to the nucleation barrier by [2, 9]

k = Ae−β∆G∗
, (S11)

where e−β∆G∗
is the probability of forming a critical nucleus, and A is a kinetic factor, which provides a measure for

the rate with which a critical nucleus grows. The latter can be approximated as [2, 3, 9]

A ≈ ρfn∗

√
|β∆G′′(n∗)|

2π
, (S12)
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with n∗ the size of the critical nucleus, ρ the density of the supersaturated fluid, fn∗ the rate at which particles are
attached to the critical nucleus, and ∆G′′(n) the second derivative of the nucleation barrier. The attachment rate is

related to the mean squared deviation of the cluster size ⟨∆n2(t)⟩ = ⟨(n(t)− n∗)
2⟩ at the top of the barrier by [2, 3]

fn∗ =
1

2

⟨∆n2(t)⟩
t

. (S13)

To compute ⟨∆n2(t)⟩, we start numerous kinetic Monte Carlo (KMC) simulations in the NV T -ensemble at the top
of the barrier and measure n(t). We then use the long-time behavior of ⟨∆n2(t)⟩ to compute fn∗ [8]. In the main
paper, we report k and fn∗ in terms of the long-time diffusion coefficient Dl. To obtain Dl, we simply fit the long-
time diffusion of the mean-squared displacement obtained from KMC simulations of the supersaturated fluid at the
appropriate packing fraction.
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