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Supporting Information 1: Atomic Force Microscopy profile of tapered fea-

ture made with Focused Ion Beam

Figure S1: AFM image of a tapered hole with 5 µm radius made with FIB at the edge of the
membrane on top of the supporting frame. The centerline profile (grey dashed line) is depicted in
the image (grey solid line), with the total depth of the hole being 2 µm. The colour scale runs from
light yellow (high) to dark blue (low), the scale bar is 2 µm

Atomic Force Microscopy (AFM) image of a profile resulting from our Focused Ion Beam

milling (FIB) protocol writing concentric circles, shown for a hole with a 5 µm base radius. Milling

is done at the edge of the membrane where it is supported by a silicon frame, allowing AFM

imaging. The image and inset profile illustrate the smooth profile. The depth of the hole is 2 µm.

This depth appears to be set by the underlying frame as the milling rate was found to be much

slower once the frame is reached.
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Supporting Information 2: Illustration of the experimental setup

Figure S2: (top) Schematic of the experimental setup, with 2 reservoirs of equal concentration ρb
of KCl on either side of the membrane. (middle) 3D drawing of the setup, consisting of 2 elec-
trolyte reservoirs and 2 PDMS gaskets. (bottom) Photo of the experimental setup with the mem-
brane and electrode positions indicated. The working electrode (WE) is connected to a Ag/AgCl
wire placed in reservoir R1 facing the large opening of the pore, and the counter and reference
electrodes (CE and ref) are both connected to the second Ag/AgCl wire in reservoir R2, facing the
small pore opening. All components are clamped together using a laboratory clamp.

Schematics and photo of the experimental setup. The setup consists of 2 electrolyte reservoirs

(3D printed in a transparent commercial polymer VeroClear) and 2 Polydimethylsiloxane (PDMS)

gaskets. The reservoirs have a tapered opening leading towards the membrane, to facilitate filling

of the channel without trapping air. The PDMS gaskets (thickness ≈ 1 mm) were cast in an

aluminium mould to obtain the hole in the center, and a recess to fit the membrane. Measurements
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are done in a 2-electrode configuration with the working electrode (WE) connected to a Ag/AgCl

wire in the reservoir facing the large pore opening (R1) and the counter,- and reference electrode

(CE and Ref) connected to a Ag/AgCl wire in the reservoir facing the small pore opening (R2),

as indicated in the photo. The membrane is placed between the gaskets and the setup is tightly

squeezed and held together by a laboratory clamp.
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Supporting Information 3: Current-voltage characterization of as-received

membrane

Figure S3: I-V reference curves determining the leakage current of an as-received membrane,
without any pore. The leakage current is the same for different concentrations of KCl, as indicated
by the legend. The grey dashed line at -0.5 V indicates the potential at which data in Fig. 1 in the
main text is normalized.

Current-voltage (I-V) characterization of an as-received membrane for different concentrations

of KCl. However, the leakage current becomes significant at potentials |∆ψ| ≥ 0.5 V, in particular

considering our measurements at low concentrations where the total current through the pore is in

the 1-10 nA range. The leakage current does not show a clear concentration dependence, despite

differing slightly between different measurements. It is worth mentioning that the setup is disas-

sembled for filling with a different concentration, illustrating the robustness of the sealing by the

gaskets for subsequent measurements at the potentials considered in the main text. The average of

these measurements is used as lower bound of the shaded region in Figure 1(a-d) in the main text

to illustrate the potential contribution by the leakage current, capped at I = 0 for 2 of the curves in

Figure 1(c).
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Supporting Information 4: Calculation of the electric electric field

In this section we will calculate the electric field −∇ψ not only within the pore but also in both

reservoirs. This analysis supposes that the space charge ρe outside the EDL is negligible, ensuring

that the electric field is divergence free ∇2ψ = 0. We assume (i) that the electric field in the bulk

reservoirs far from the pore
√

r2 + x2 ≫ Rb is isotropic and decays like an electric monopole by the

inverse square law ∝ 1/(r2 + x2) and, (ii) that no electric field permeates the channel walls. The

far-from-pore assumption (i) solution breaks down in the near-pore region r2 + x2 ≃ R2
b where the

electric field diverges and therefore a characteristic cut-off length scale for this asymptotic decay

has to be identified. Natural length scales would be the tip and base radii Rt and Rb near which

the far-from-pore solution fails, but to obtain quantitative agreement with numerical calculations

we have to multiply the base and tip radii by π/4. Choosing this factor will also reproduce the

exact resistance for a cylindrical, 2D-pore as derived by Hall.S1 Following assumption (ii) the field

inside the conical pore 0 < x < L scales as ∂xψ ∝ 1/(πR2(x)) as the total, radially integrated,

lateral electric field has to be constant. Combining these expression we find the electric field over

the centre axis r = 0 is given by

−∂xψ(x,r = 0) =



απ2

4
∆ψ

(
π

4
Rb − x

)−2

if x < 0;

α∆ψR−2(x) if 0 < x < L;

απ2

4
∆ψ

(
x+

π

4
Rt −L

)−2

if x > L,

(S1)

where the constant length α = RbRt/(4L+π(Rb +Rt)) can be found by requiring that the electric

field is continuous at the pore edges and the total potential drop equals ψ(−∞)−ψ(∞) = ∆ψ and

the maximum electric field (at the tip) is equal to α∆ψ/R2
t . We have chosen to evaluate the electric

field on the center line where the field is purely axial as to give an explicit expression for one of the

vector components of −∇ψ . Furthermore we note that this component is of greatest interest as it is

responsible for the axial currents through the pore. In Fig.S4 we compare the analytic expression

of the electric field (Eq.(S1)) over the central axes and find good agreement with numerical results.
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Figure S4: (a) Gradient of the electric potential ∂xψ(x) and (b) electric potential ψ(x) along the
central axis r = 0 for the T1 geometry (see the main text) at a vanishing surface potential and
ρb = 1 mM for ∆ψ = 0.01 V with symbols from numerical calculations and lines resulting from
Eq.(S1). This parameter set is representative for our experimental system at high concentrations,
where surface conductance is negligible. The base and tip locations are at x = 0 and x = L denoted
by vertical lines. There is good agreement between numerical and analytic results.
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Supporting Information 5: Scanning Electron Microscope image of pore T1,

after measurements

Figure S5: SEM image of the tapered pore T1 after the measurements. The scale bar is 1 µm

Fig.S5 shows a scanning electron microscope (SEM) image of the tapered pore T1 in the main

text, after the measurements. Both partial clogging and roughening of the pore are observed

thereby changing the pore geometry. Hence clogging will change the pore conductance, which

likely explains the variation of conductance over a series of experiments. The chronology of ex-

periments is from low to high-concentration.
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Supporting Information 6: Inlet-outlet concentration polarization

In this section we will construct a far-from-pore solution demonstrating concentration-polarization

in the bulk reservoir with x < 0 connected to the pore base. Instead of the cylindrical (x,r,θ)

coordinates used in the main text it will be convenient to treat the problem in spherical (s,φ ,θ)

coordinates with s2 = x2 + r2 and cosφ = x/
√

x2 + r2. We consider fluxes far from the pore open-

ing s ≫ L where the electric field Eq.(S1) simplifies to ∂sψ ≃ −απ2∆ψ/(4s2). The aim here is

to calculate ρ̂s(s), with ˆ· · · = (2πs2)−1 ∫ 2π

0
∫

π

π/2 · · ·s2 sin(φ)dφdθ the average over a hemisphere

centered on the origin extending in the bulk with radius s. The hemispherical average ρ̂s(s) is not

representative for the local concentration ρs(s,θ ,φ) which is expected to have a large φ depen-

dence as the electric double layer is localized at φ = π/2 and the far-from-pore Landau-SquireS2

solution for the fluid flow u(s,φ) is much larger at φ = π than at φ = π/2. Both these complicating

factors will expectedly yield a concentration profile with larger deviations from bulk concentration

near the membrane surface φ = π/2 compared to φ = π . Nevertheless our expression for ρ̂s(s)

can explain two experimental observations, (i) concentration-polarization in the bulk reservoir is

expected in the small-pore limit L/Rb ≃ 1 and (ii) the concentration profile extends long distances

into the bulk, exhibiting long-ranged, inverse-square decay.

Integrating the radial component js,s(s,φ) of the salt flux to obtain the total salt flux Ĵ(s) =∫ 2π

0 dθ
∫

π

π/2 dφ sin(φ)s2 js,s(s,φ) and imposing the stationarity condition ∂sĴ = 0 we find a differ-

ential equation for the concentration ρ̂s(s) averaged over a hemisphere,

D(2π∂s(s2
∂sρ̂)−

π3ασ

2s2
e∆ψ

kBT
)+Q∂sρ̂s = 0, (S2)

with s denoting the radius of the hemisphere over which the concentration is averaged, α be-

ing defined below Eq.(S1) and where
∫ 2π

0 dθ
∫

π

π/2 dφ sin(φ)s2ρe(s,φ) =−2πsσ stems from hemi-

spherical charge-neutrality. Furthermore we made the approximation that flow can be considered

to be isotropic which combined with incompressibility yields 2πs2us(s) = −Q, where the minus
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sign was added so that a radially inward flow in the bulk reservoir results in a positive Q fol-

lowing the convention in the main text. Solving Eq.(S2) for ρ̂s with bulk boundary conditions

ρ̂s(∞) = ∂sρ̂s(∞) = 0 we find

ρ̂s(s)−2ρb = ∆ρres

(
exp

( lPe

s

)
− lPe

s
−1

)
s≫|lPe|≃ ∆ρres

2

(
lPe

s

)2

, (S3)

where the measure for the concentration profile extending into the reservoir is

∆ρres =
πσ

4l2
Pe

e∆ψ

kBT

[
RbRt

4L/π +Rb +Rt

]
, (S4)

with the Péclet length lPe = Q/2πD signifying the distance from the origin at which advective

and diffusive transport rates are equal. Note that Q and hence the Péclet length has a sign. The

term in square brackets vanishes in the long-channel-limit as the electric-field in the bulk and

correspondingly ∆ρres go to zero in this limit, which shows that no pore-pore interactions are ex-

pected for long, thin pores. While our solution was specifically derived for the base reservoir with

x < 0 and φ ∈ [π/2,π], our solution Eq.(S3) is valid in the tip-connected reservoir with x > L

and φ ∈ [0,π/2] when interchanging −∆ρres for ∆ρres and −lPe for lPe as the flow and electric

field are anti-symmetric between tip- and base-connected reservoirs. Due to the anti-symmetry of

the far-from-pore solutions the depletion in one reservoir leads to a compensating excess in the

other reservoir for s ≫ |lPe| (where the asymptotic decay is independent from lPe) and the only

contribution to ICR is expected from the near-pore region. The unphysical divergence of the con-

centration profile near the pore for positive (inward) flows s ≪ lPe prevents us from connecting the

far-from-pore solution to the near-pore region. In this regime the large inward flow sweeps up the

concentration profile and concentrates it in the near-pore region where the far-from-pore solution

breaks down.

As the flow is always inwards for one of the two reservoirs there is no scenario where the

far-from-pore solution can be used to describe the entire experimental system. We note that this
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focusing of the concentration profile near the base for positive flows also complicates numerical

calculations: a significant effort was made to obtain numerical calculations from COMSOL, how-

ever no finite-element system could be created that was stable beyond a very narrow parameter

regime. Our numerical calculations always showed reservoir concentration polarization in some

form. The near-pore solution is expected to very sensitively depend on all experimental length

scales, including Péclet and Dukhin length. A "holistic" model describing the entire concentra-

tion profile extending over both the reservoirs and pore would be desirable as it would allow for

quantitative predictions without an "apparent" ψ0 as fit parameter. This problem is left for future

study.
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Supporting Information 7: Conductances at four different concentrations
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Figure S6: Reproduction of Fig.4(a) in the main text at different concentrations with (a) ρb = 1.5
mM, (b) ρb = 10 mM, (c) ρb = 6 mM and (d) ρb = 0.3 mM. Figure (a) represents the best agreement
between theory and experiment we could obtain, (b) and (c) are typical for our experimental results
while (d) shows the large experimental variation typical at low concentrations.
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Supporting Information 8: More fits of experimental data
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Figure S7: Current rectification G−/G+ with the surface potential ψ0 = −0.21 V obtained from
the fit on Ohmic conductance instead of the ideal fitted surface potential for ICR ψ0 = −0.28 V.
The quality of the fit has decreased significantly compared to Fig. 4 in the main text, but the same
qualitative trend can be observed.

△

△

△

△

△△
△△△△
△△△△△

△△ △ △△
△△ △

△△△△ △△

▽

▽
▽

▽▽ ▽▽▽▽▽▽▽ ▽ ▽ ▽ ▽ ▽ ▽

□□

□
□

□ □
□
□

□ □ □ □
□ □

◇
◇
◇

◇

◇ ◇◇
◇

◇ ◇◇ ◇

◇

◇ ◇
◇ ◇

ψ0=-0.21

△ T1 ▽ T2

□ S1 ◇ S2

10-4 10-3 10-2 10-110-1
0

1

2

3

4
0.10.313

ρb [M]

G
0
/G
0,
b

|Du|

Figure S8: Fit of Ohmic conductivity G0 in units of the bulk conductance G0,b with a diffusion
constant D = 1.5 nm−2 ns−1 instead of D = 1nm−2 ns−1 as presented in Fig.3 of the main text.
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Supporting Information 9: Selectivity from literature
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Figure S9: Selectivity as defined by Ref.S3 for our experimental geometry T1 with a surface po-
tential ψ0 = −0.21 V (solid) and ψ0 = −0.07 V (dashed). The selectivity shows a maximum at
ρb ≃ 2 mM (vertical line) for ψ0 = −0.21 V in line with our own experimental and theoretical
results. Using a literature surface potential of ψ0 = −0.07 V little selectivity is expected. This
shows that other theories also require an excessively high surface potential to explain the observed
ICR.
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