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Combinatorial problems arising in puzzles, origami, and (meta)material design have rare sets of
solutions, which define complex and sharply delineated boundaries in configuration space. These
boundaries are difficult to capture with conventional statistical and numerical methods. Here we show
that convolutional neural networks can learn to recognize these boundaries for combinatorial mechanical
metamaterials, down to finest detail, despite using heavily undersampled training sets, and can successfully
generalize. This suggests that the network infers the underlying combinatorial rules from the sparse training
set, opening up new possibilities for complex design of (meta)materials.
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From proteins and magnets to metamaterials, all around
us systems with emergent properties are made from
collections of interacting building blocks. Classifying such
systems—do they fold, are they magnetized, do they have a
target property—normally involves calculating these prop-
erties from their structure. This is often straightforward in
principle, yet computationally expensive in practice, e.g.,
requiring the diagonalization of large matrices. Machine
learning algorithms such as neural networks (NNs) forgo
the need for such calculations by “learning” the classifi-
cation of structures. In particular, machine learning has
proven successful to find patterns in crumpling [1], active
matter [2–4] and hydrodynamics [5], photonics [6–8],
predict structural defects and plasticity [9,10], design
metamaterials [11–18], determine order parameters [19–
26], identify phase transitions [27–44], and predict protein
structure [45]. In these examples, the relevant property
typically varies smoothly and there is no sharp boundary
separating classes in configuration space. NNs are thought
to be successful because they interpolate these blurred
boundaries, even when the configuration space is heavily
undersampled.
In contrast, combinatorial problems, viz. those where

building blocks have to fit together as in a jigsaw puzzle,
feature a sharp boundary between compatible (C) and
incompatible (I) configurations. Such problems arise in
self-assembly [46,47], folding [48,49], tiling problems
[50], and combinatorial mechanical metamaterials [51–
54]. The latter are created by tiling different unit cells and
are restricted by kinematic compatibility. A simple example
is that of structures that can be either floppy (zero mode) or
frustrated (no zero mode) [Figs. 1(a) and 1(b)]. The floppy
structures require a specific arrangement of building blocks

where all the deformations fit together compatibly (C), and
therefore are rare and very sensitive to small perturbations.
These perturbations are likely to induce frustrated incom-
patible (I) configurations [Fig. 1(b)]. The space of C
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(b)
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FIG. 1. (a) The building block of [51] can be tiled in two
orientations (left) that have a distinct deformation in two
dimensions (right). (b) The building blocks of (a) combine into
larger designs (structures) that are either C (top) or I (bottom). A
change of a single building block can frustrate the deformation
(red circle) and change the structure from one that hosts a zero
mode (a deformation that costs no energy) (C) to one that does
not host a zero mode (I). A set of rules can be formulated for a
unit cell design to have a zero mode [51]. (c) and (d) Conceptual
configuration spaces of a discrete combinatorial metamaterial
problem. Class C (pink lines) exists in a background of class I
(blue), is sensitive to perturbations, and has a complex filamen-
tous structure. Distinguishing between a network with a “coarse”
decision boundary (purple dashed line) (c) versus a network with
a “fine” decision boundary (d) is not possible with the test set
(green dots) due to the undersampled C-I boundary.
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designs can be pictured as needles in a haystack [Figs. 1(c)
and 1(d)] and crucially is determined by a set of implicit
combinatorial rules. Unless we know these rules, these
problems are typically computationally intractable.
Herewe show that convolutional neural networks (CNNs)

are able to accurately perform three distinct classifications of
combinatorial mechanical metamaterials and to generalize to
never-before-seen configurations. Crucially, we find that
well-trained CNNs can capture the fine structure of the
boundary of C, despite being trained on sparse datasets.
These results suggest that CNNs implicitly learn the under-
lying rule-based structure of combinatorial problems. This
opens up the possibility for using NNs for efficient explora-
tion of the design space and inverse design when the
combinatorial rules are unknown.
Coarse vs fine boundaries.—The boundary between C

and I configurations has the shape of needles in a haystack.
Therefore, in a randomly sampled training set, this boundary
will be typically undersampled, e.g., the training set will
contain few I close to C (see Supplemental Material [55]).
We argue that aNNsimply interpolating the training datawill
misclassify most I configurations close to C, resulting in a
coarse decision boundary around C [Fig. 1(c)]. Instead, an
ideal NN should approximate the fine structure of the needles
more closely, resulting in a fine decision boundary around C
[Fig. 1(d)].While thismay sound impossible, let us recall that
this fine structure ultimately arises from combinatorial rules.
These rules are in principle much simpler than the myriad of
compatible configurations C they can generate. Hence, the
question is whether NNs could implicitly learn these rules
and finely approximate the fine boundary with great pre-
cision. Although a NN can classify perfectly the metama-
terial M1 of Figs. 1(a) and 1(b) Table I), this is not sufficient
to address this question because the dataset is too small and
the C configurations are too rare to consider larger configu-
rations (see Supplemental Material [55]).
Metamaterial classification.—Therefore, to see if NNs

are still able to learn the structure of C if the C-I boundary
is undersampled, we consider another combinatorial meta-
material M2 [54] [for details on how we define it, see
Figs. 2(a) and 2(b)]. While metamaterial M1 had a unit cell
of size k × k with k ¼ 1, metamaterial M2 has larger unit
cell size—we focus on k ¼ 5 in the main text and cover the
cases k ¼ 3 to 8 in the Supplemental Material. For such a
metamaterial, the design space is too large to fully map and

class C is rare, yet class C is abundant enough that we can
create sufficiently large training sets to train NNs.
The number of zero modes MðnÞ of a metamaterial

consisting of n × n unit cells depends on the design of the
unit cell: when the linear size n is increased, the number of
zero modes MðnÞ either grows linearly with n or saturates
at a nonzero value [Fig. 2(c)] as MðnÞ ¼ anþ b, where a
and b are positive integers. Accordingly, we can now
specify two well-defined binary classification problems,
which each feature a rare “compatible” (C) class and
frequent “incompatible” (I) class [Figs. 2(d) and 2(e)]:
(i) a > 0 (C) vs a ¼ 0 (I). The metamaterial with a > 0
hosts zero modes that are organized along strips, for which
one can formulate combinatorials rules (see Supplemental
Material [55]); (ii) b > 1 (C) vs b ¼ 1 (I). The meta-
material with b > 1 hosts additional zero modes—up to
6—that typically span the full structure and for which the
rules still remain unknown despite our best efforts. In both
classification problems, a single rotation of one building
block in the unit cell can be sufficient to change class

TABLE I. Confusion matrices of trained CNNs with the lowest
validation loss over the test set for the classification problems of
Fig. 1(b) (M1), Fig. 2(d) (M2.i), and Fig. 2(e) (M2.ii).

M1 predicted M2.i predicted M2.ii predicted

C I C I C I
actual C 19 0 685 1 43418 750

I 0 4896 29 149265 453 105361

(a)

(c)

(b)

(d)

(e)

FIG. 2. (a) Four two-dimensional building blocks (left), com-
bined into a square 5 × 5 unit cell (middle), which is tiled on a
n ¼ 3 grid, form a combinatorial metamaterial (right). (b) The
building blocks feature two zero modes and four orientations with
distinct deformations. (c) The number of zero modes MðnÞ as
function of n for two unit cells. The pink unit cell (circles) differs
by a point mutation from the blue unit cell (squares), yet the pink
unit cell has a ¼ 1 and b ¼ 2 and the blue unit cell has a ¼ 0 and
b ¼ 1. Thus the pink unit cell is classified as class C for both
classification problems while the blue unit cell is classified as
class I for both problems. (d) Probability density function (pdf)
for classification problem (ii). Class C is more rare than class I.
(e) Probability density function for classification problem (i).
Class C is much rarer than class I.
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[Fig. 2(c)]. Hence, the boundary between classes C and I is
sharp and sensitive to minimal perturbations as in the case
of metamaterial M1 [Fig. 1(c)].
If the rules are unknown, the classification of this

metamaterial requires the determination of MðnÞ—via
rank-revealing QR factorization [61]—as function of the
number of unit cells n, which is computationally demand-
ing. For k × k unit cells, the time it takes to compute this
brute-force classification scales nearly cubically with input
size k2. In contrast, classification with NNs scales linearly
with input size and is readily parallelizable. In practice this
makes NNs invariant to input size due to computational
overhead (see Supplemental Material [55]). Hence a trained
NN allows for much more time-efficient exploration of the
design space.
To train our NNs, we generate labeled data through

Monte Carlo sampling the design space to generate 5 × 5
unit cells designs and explicitly calculate MðnÞ for n ∈
f2; 3; 4g to determine the classification. We do this for a
range of k × k unit cells with 3 ≤ k ≤ 8. We focus on 5 × 5
but the results hold for other unit cell sizes (see
Supplemental Material [55]). The generated data is sub-
sequently split into training (85%) and test (15%) sets. As
our designs are spatially structured and local building block
interactions drive compatible deformations, we ask whether
convolutional neural networks (CNNs) are able to distin-
guish between class C and I. The input of our CNNs are
pixelated representations of our designs. This approach faci-
litates the identification of neighboring building blocks that
are capable of compatible deformations (see Supplemental
Material [55]). The CNNs are trained using 10-fold stratified
cross validation. Crucially, we use a balanced training set,
where the proportion of class I has been randomly under-
sampled such that classes C and I are equally represented
(see Supplemental Material [55]).
Despite the complexity of the classification problems,

we find that the CNNs perform very well (Table I). In
particular, the CNNs correctly classify most class C unit
cells as class C, and most class I unit cells as class I.
However, the test set is likely to contain few examples of
class I close to the C-I boundary, especially as C becomes
more rare (Fig. 1(c), see Supplemental Material [55]).
Hence, whether our CNNs capture the complex boundary
of C cannot be deduced from the test set alone. In other
words, the CNNs find the needles in the haystack but it
remains unclear whether the needles are approximated
finely [Fig. 1(c)] or coarsely [Fig. 1(d)] [62].
Combinatorial structure.—To probe the shape of both

the true set of C configurations and the set of classified C
configurations, we start from a true class C configuration,
perform random walks in configuration space, and at each
step probe the probabilities to be in the set of true class C
[Fig. 3(a)]. We randomly change the orientation of a single
random building block at each step s ↦ sþ 1 and average
over 1000 realizations (see Supplemental Material [55])

The probability to remain in true class C, ρC→CðsÞ,
decreases with s and saturates to the class C volume
fraction β for classification (i) and (ii) [Fig. 3(b)]. We note
that we can fit this decay by a simple model, where we
assume that subspace C is highly complex, so that the
probabilities to leave it are uncorrelated. For every step,
there is a chance α to remain C. Once in class I, we assume
any subsequent steps are akin to uniformly probing the
design space such that the probability to become C is equal
to the C volume fraction β. Thus the probability to become
C can be modeled as

ρC→CðsÞ ¼ αs þ βð1 − αs−1Þ: ð1Þ

The uncorrelated nature of the steps are consistent with a
random needle structure [Fig. 1(c)], where the coefficient
α × 45×5 corresponds to the average dimensionality of the
needles and β corresponds to their volume fraction. We can
interpret α as the probability to not break the combinatorial
rules when we randomly rotate a building block.
To see whether the CNNs are able to capture these key

features of space C, we repeat our random walk procedure
using the CNNs’ classification instead, starting from true and
classified C configurations, and obtain the probability
ρ̄C→CðsÞ. The decay of the fold-averaged hρ̄C→CiðsÞ closely
matches that of the true classC for classification problems (i)
and (ii) [Figs. 3(b) and 3(c)]. By fitting the predicted
probability ρ̄C→CðsÞ for each fold to Eq. (1), using measure-
ments of the CNN’s predicted volume fraction β̄ over the test
set to constrain the fit, we obtain the fold-averaged dimen-
sionality ᾱ. For classification (i) we find ᾱ ≈ 0.632� 0.001
closely matches the true α ≈ 0.612� 0.001. In practice, α
corresponds to the fraction of building blocks that are outside
the relevant combinatorial strip. Using a simple counting
argument, we find good agreement with the lower-bound of
α ≃ 3=5 (see Supplemental Material [63]). Similarly, for
classification (ii) we find ᾱ ≈ 0.8514� 0.0005 closely
matches α ≈ 0.846� 0.002. Our results thus demonstrate
that CNNs successfully capture on average the complex local

(a) (b) (c)

FIG. 3. (a) Example of a six-step random walk through design
space (red dots) and sketch of the decision boundary of trained
CNNs that has learned the combinatorial rules (purple dashed
line). (b) Probabilities to remain in true and predicted class C
under random walks of s steps, ρC→CðsÞ (red crosses) and fold-
averaged hρ̄C→CiðsÞ (purple circles) with standard deviation
(purple area), for classification (i) (left) and (ii) (right). The
red continuous line is a least-squares fit to ρC→CðsÞ using Eq. (1).
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shape of the combinatorial space C. Even though during
learning the algorithm “sees” very few class I unit cells that
are close the C-I boundary, the decision boundary still
captures on average the sparsity and fine structure of the
class C subset. Thus we conclude that the CNNs infer
the combinatorial rules [Fig. 1(c)], rather than interpolate
the shape in high dimensional design space [Fig. 1(d)]. In
other words, CNNs are able not only to capture accurately the
volume fraction of the needles, but also to finely distinguish
between needle and hay.
Volume before structure.—But what happens with

smaller CNNs? We focus on classification (i) and probe
how well our CNNs—which consist of a single 20 filters
convolution layer, a single nh neurons hidden layer, and a
two neurons output layer—capture the sparsity and struc-
ture of class C. First we compare their true and predicted
volumes β and β̄ðnhÞ as a function of the number of hidden
neurons nh. The CNNs’ predicted classC volume fraction β̄
approaches the true class C volume fraction β as the
number of hidden neurons nh increases sufficiently, despite
their balanced training set [Fig. 4(a)] [55]. Next we
compare the true and predicted dimensionality α and
ᾱðnhÞ. While for small values of nh, ᾱ overestimates α,
ᾱ closely matches α for large nh [Fig. 4(b)]. For small
number of hidden neurons nh, the CNNs overestimate both
the probability to remain in classC and the rarity of classC;
in other words, small CNNs coarsen the complex shape of
C [Fig. 1(c)]. As seen above, for larger number of hidden
neurons nh both the probability and rarity of C are closely
approximated, thus large CNNs finely capture the complex
shape of C [Fig. 1(d)].
Strikingly, we observe that the predicted class C volume

β̄ more quickly reaches its asymptotic value than the

dimensionality ᾱ. To see this, we plot β̄ðnhÞ − β versus
ᾱðnhÞ − α, which demonstrates that after β̄ closely approxi-
mates β, increasing the number of hidden neurons nh
improves ᾱðnhÞ towards its asymptote α [Fig. 4(c)]—this
observation is also present for other unit cell sizes, see
Supplemental Material [55]. Thus, further increasing the
size of the CNN beyond the point of marginal gain of test
set performance results in a significantly more closely
captured fine structure of C. In other words, to correctly
capture the average dimensionality of the needles requires
more neurons than to capture their volume.
Discussion.—NNs are known to be universal approxi-

mators [64] and efficient classifiers. They often generalize
well when the training data samples representative portions
of the input space sufficiently, even for nonsmooth [63] or
noisy data [65]. As combinatorial problems are sharply
delineated and severely class imbalanced, one expects that
the fine details of an undersampled complex boundary
would be blurred by NNs. Surprisingly, we have shown that
CNNs will closely approximate such a complex combina-
torial structure, despite being trained on a sparse training
set. We attribute this to the underlying set of rules which
govern the complex space of compatible configurations—
in simple terms, the CNN learns the combinatorial rules,
rather than the geometry of design space, which is the
complex result of those rules [66].
Recognizing NNs’ ability to learn these rules from a

sparse representation of the design space opens new
strategies for design. For instance, our CNNs could be
readily used as surrogate models within a design algori-
thm to save computational time. Alternatively, one could
instead devise a design algorithm based on generative
adversarial NNs [67] or variational auto encoders [68]. It is
an open question whether and how such generative models
could successfully leverage the learning of combinatorial
rules [69].
Our Letter shows that metamaterials provide a compel-

ling avenue for machine learning combinatorial problems,
as they are straightforward to simulate yet exhibit complex
combinatorial structure [Fig. 1(c)]. More broadly, applying
neural networks to combinatorial problems opens many
exciting questions. What is the relation between the
complexity of the combinatorial rules and that of the
networks? Can unsolved combinatorial problems be solved
by neural networks? Can neural networks learn size-
independent combinatorial rules? Conversely, can these
problems help us understand why neural networks work so
well [70]? Can they provide insight in how to effectively
overcome strong data imbalance [71]? We believe combi-
natorial metamaterials are well suited to answer such
questions.

The code supporting the findings reported in this Letter
is publicly available on GitLab [72,73] and the data on
Zenodo [74,75].

FIG. 4. (a) Difference between predicted class C volume β̄ðnhÞ
and true class C volume β as a function of number of hidden
neurons nh shows that β̄ðnhÞ approaches β for increasing nh.
(b) Difference between predicted dimensionality ᾱðnhÞ and true
dimensionality α obtained through least-squares fits to Eq. (1) as
a function of the number of hidden neurons nh shows that ᾱðnhÞ
approaches α for increasing nh. (c) Scatter plots of class volumes
β̄ðnhÞ − β versus dimensionality ᾱðnhÞ − α shows that the latter
asymptotes later than the former (nh indicated by color bar). We
use CNNs with a single convolution layer of 20 2 × 2 filters,
which are spatially offset with respect to the unit cell and
subsequently flattened. The flattened feature maps are fully
connected to a layer of nh hidden neurons, which itself is fully
connected to two output neurons that correspond to class C and I.
The CNNs are systematically trained using 10-fold stratified
cross validation for varying numbers of hidden neurons nh.
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