
Supplemental of "Machine Learning of Implicit Combinatorial Rules in Mechanical
Metamaterials"

Ryan van Mastrigt,1, 2, ∗ Marjolein Dijkstra,3 Martin van Hecke,2, 4 and Corentin Coulais1
1Institute of Physics, Universiteit van Amsterdam,

Science Park 904, 1098 XH Amsterdam, The Netherlands
2AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

3Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics,
Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

4Huygens-Kamerling Onnes Lab, Universiteit Leiden,
Postbus 9504, 2300 RA Leiden, The Netherlands

(Dated: September 15, 2022)

Floppy and frustrated structures

In this section, we discuss in more detail the metama-
terial M1 of Fig. 1. We first derive the design rules that
lead to floppy structures, then we discuss the rarity of
such structures.

Design rules for floppy structures

Here we provide a brief overview of the rules that lead
to floppy structures for the combinatorial metamaterial
M1 of Fig. 1. The three-dimensional building block of
this metamaterial can deform in one way that does not
stretch any of the bonds: it has one zero mode (see [1] for
details of the unit cell). In two dimensions, there are two
orientations of the building block that deform differently
in-plane. We label these two orientations as green/red
and white (Fig. 1(a)).

We can formulate a set of rules for configurations of
these building blocks in two dimensions. Configurations
of only green/red building blocks or white building blocks
deform compatibly (C): the configuration is floppy. A sin-
gle horizontal or vertical line of white building blocks in
a configuration filled with green/red building blocks also
deforms compatibly. More lines (horizontal or vertical)
of white blocks in a configuration filled with green/red
blocks deform compatibly if the building block at the in-
tersection of the lines is of type green/red (Fig. 1(b)).

In summary, we can formulate a set of rules:

i All white building blocks need to be part of a hori-
zontal or vertical line of white building blocks.

ii At the intersection of horizontal and vertical lines of
white building blocks there needs to be a green/red
building block.

If these rules are met in a configuration, the configuration
will be floppy (C). A single change of building block is
sufficient to break the rules, creating an incompatible (I)
frustrated configuration (Fig. 1(b)).

Rarity of floppy structures

Here we show how the rarity of class C depends on the
size of the kx × ky configuration. To show this, we sim-
ulate configurations with varying kx, ky ∈ {2, 3, 4, 5, 6}.
The size of the design space grows exponentially as 2kxky ,
yet the fraction of class C configurations decreases expo-
nentially with unit cell size (Fig. A1). Thus the number
of C configuration scale with unit cell size at a much
slower rate than the number of total configurations. For
large configuration size, the number of C configurations
is too small to create a sufficiently large class-balanced
training set to train neural networks on.

2 3 4 5 6
ky

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

pd
f

kx =2
kx =3
kx =4
kx =5
kx =6

Figure A1. Probability density function (pdf) of kx×ky class
C configurations.

2

Zero modes in combinatorial metamaterials

In this section, we present theoretical and numerical re-
sults at the root of the classification of zero modes in the
combinatorial metamaterial M2 of Fig. 2. We first derive
the zero modes of the building block, then we postulate
a set of rules for classification (i) of unit cells. Finally,
we provide numerical proof of those rules.

Zero Modes of the Building Block

The fundamental building block is shown schemati-
cally in Fig. A2. Each black line represents a rigid bar,
while vertices can be thought of as hinges; the 11 bars
are free to rotate about the 8 hinges in 2 dimensions.
The colored triangles form rigid structures, i.e. they will
not deform. From the Maxwell counting [2] we obtain
Nzm = 2 · 8− 11− 3 = 2, where the 3 trivial zero modes
in 2 dimensions, translation and rotation, are subtracted
such that Nzm is the number of zero modes of the build-
ing block. The precise deformation of these two zero
modes can be derived from the geometric constraints of
the building block.

To derive the zero modes to linear order, we note that
they preserve the length of all bars, such that the modes
can be characterized by the hinging angles of the bar. Let
A,B,C,D, and E denote these angles. Going around the
loop ABCDE, the angles add up to 3π:

A+B + C +D + E = 3π. (A1)

Next, we expand the angles from their rest position to
linear order:

A = π
2 + α, B = 3π

4 + β, C = π
2 + γ,

D = π
2 + δ, E = 3π

4 + ϵ. (A2)

Then, from the condition that the bars cannot change

AB

C

D

E

Figure A2. Schematic real space representation of the build-
ing block. A, B, C, D, and E label the five corners that can
change angle under zero-energy deformations.

length, we obtain

1− cos (A) = 3− 2 cos (C)− 2 cos (D) + 2 cos (C +D),
(A3)

and

sin (D)− sin (D + E)√
2

= sin (C)− sin (C +B)√
2

. (A4)

Up to first order in α, β, γ, δ, ϵ, equations (A3) and (A4)
can be rewritten as:

α = 2γ + 2δ, (A5)

δ + ϵ = β + γ. (A6)

Together with the loop condition (A1), we obtain a set
of three equations which express α, δ and ϵ in β and γ:α

δ
ϵ

 =

−2 −2
−1 −2
2 3

(
β
γ

)
. (A7)

This demonstrates that we can choose the two parame-
ters β and γ arbitrarily, while still satisfying equations
(A1), (A5) and (A6), consistent with the presence of two
zero modes.

We now choose the basis of the zero modes such that
the first zero mode is the deformation of the square
BCDE, such that α = 0. This leads to the well-known
counter-rotating squares (CRS) mode [3, 4] when tiling
building blocks together. Thus we choose the basis(

β
γ

)
= MCRS

(
−1
1

)
+MD

(
3
−1

)
. (A8)

MCRS is the amplitude for the counter-rotating squares
mode, while MD is the amplitude of the mode that does
change corner A. We refer to this mode as the diagonal
mode.

By tiling together the building block in different ori-
entations, we can create 4k

2

size k × k unit cells. These
unit cells — and metamaterials built from them — may
have more or less zero modes than the constituent build-
ing blocks, depending on the number of states of self-
stress. Previous work on 2 × 2 unit cells showed that
each unit cell could be classified based on the number of
zero modes [5]. Here, we consider the previously unex-
plored cases of 3× 3 up to 8× 8 square unit cells.

Rule-based classification of unit cells

Unit cells are classified based on the number of zero
modes M(n) for n ≥ 2 as either class I or class C as
described in the main text. Here we formulate a set of
empirical rules that distinguishes class I unit cells from
class C unit cells for classification (i).

3

Any finite configuration of building blocks, no mat-
ter the orientation of each block, supports the counter-
rotating squares (CRS) mode with open boundary condi-
tions, where all building blocks will deform with MCRS ̸=
0 and MD = 0. They must all have equal magnitude
|MCRS |, but alternate in sign from building block to
building block in a checkerboard pattern, similar to the
ground state of the anti-ferromagnetic Ising model on
a square lattice. An arbitrary configuration in the real
space representation, and the CRS mode of that config-
uration in the directed graph representation, are shown
in Fig. A3(a).

However, precisely because the building block supports
another mode, there could in principle be other collective
modes than the CRS mode in any given configuration.
We have observed that class C unit cells have a specific
structure, which we refer to as a strip mode. A strip mode
spans the unit cell periodically in one direction, such that
the total number of zero modes for a configuration of n×n
tiled unit cells grows linearly with n.

The pattern of deformations for these modes consists
of two rectangular patches of building blocks with CRS
modes (where MD = 0 for every building block) — po-
tentially of different amplitude — separated by a strip of
building blocks (the strip) that connects these patches,
where MD ̸= 0. A unit cell configuration with a strip
mode, which consists of building blocks in a strip of
block-width W = 2 that deform with MD ̸= 0, and build-
ing blocks in the two areas outside of the strip, U & V,

(a)

U

V

stripW

(b)

Figure A3. Schematic and pixel representation of modes in a
4×4 unit cell. (a) Schematic deformation of counter-rotating
squares mode (top unit cell, blue) and a strip mode (bottom
unit cell, pink). The strip mode spans the entire area of the
strip (white) of width W = 2, while the areas U and V do
not deform. (b) Respective pixel representations of the left
unit cells. Paired unit cells are highlighted through red dots
connected by orange lines. Note that the top unit cell does
not contain a strip that meets the strip mode rules, while the
bottom unit cell does.

that do not deform, is shown in Fig. A3(a). Note that
the CRS mode can always be freely added or subtracted
from the total configuration.

i We conjecture that the presence of a strip mode is
a necessary and sufficient condition for a unit cell
to be of class C.

We verify (i) below. Moreover, we now conjecture a set
of necessary and sufficient conditions on the configuration
of the strip that lead to a strip mode. Underlying this
set of conditions is the notion of paired building blocks:
neighboring blocks that connect with their respective A
corners, or equivalently, blocks that have their black pix-
els in the same plaquette in the pixel representation, see
Fig. A3(b). Depending on the orientation of the paired
building blocks, pairs of these blocks are referred to as
horizontal, vertical or diagonal pairs. The set of con-
ditions to be met within the strip to have a horizontal
(vertical) strip mode can be stated as follows:

ii Each building block in the strip is paired with a
single other neighboring building block in the strip.

iii Apart from horizontal (vertical) pairs, there can be
either vertical (horizontal) or diagonal pairs within
two adjacent rows (columns) in the strip, never
both.

Consider the unit cells of Fig. A3, the top unit cell has
multiple paired building blocks, but contains no horizon-
tal (or vertical) strip where every block is paired. Con-
versely, the bottom unit cell does contain a strip of width
W = 2 blocks where every block is paired to another
block in the strip. Consequently, the bottom unit cell
obeys the rules and supports a strip mode, while the top
unit cell does not.

Each indivisible strip of building blocks for which these
conditions hold, supports a strip mode. For example, if
a unit cell contains a strip of width W = 2 which obeys
the rules, but this strip can be divided into two strips of
width W = 1 that each obey the rules, then the width
W = 2 strip supports two strip modes, not one.

We refer to (i) as the strip mode conjecture, and (ii)
and (iii) as the strip mode rules. We now present numer-
ical evidence that supports these rules.

Numerical evidence for strip mode rules

The conjecture and rules (i)-(iii) stated in the previous
section can be substantiated through numerical simula-
tion. To do so, we determine the class of randomly picked
unit cells.

To assess the rules, a large number of square unit
cells are randomly generated over a range of sizes k ∈
{3, 4, 5, 6, 7, 8}. For each unit cell configuration, nx × ny

4

metamaterials, composed by tiling of the unit cells, are
generated over a range of nx = ny = n ∈ {1, 2, 3, 4} for
k ≤ 4. From k ≥ 6 onward, the 1 × 1 configuration is
generated, as well as nx × 2 and 2 × ny configurations
with nx, ny ∈ {2, 3, 4} to save computation time.

The rigidity, or compatibility, matrix R is constructed
for each of these configurations, subsequently rank-
revealing QR factorization is used to determine the di-
mension of the kernel of R. This dimension is equivalent
to the number of zero modes of the configuration, M(n)
is then equal to this number minus the number of trivial
zero modes: two translations and one rotation.

From the behavior of M(n) as a function of n, we de-
fine the two classes: I and C. In Class I M(n) saturates
to a constant for n ≥ 2, thus class I unit cells do not con-
tain any strip modes. Note that they could still contain
additional zero modes besides the CRS mode. In Class
C M(n) grows linearly with n for n ≥ 2, therefore class
C unit cells could support a strip mode [6]. Moreover,
if conjecture (i) is true, the number of strip modes sup-
ported in the class C configuration should be equivalent
to the slope of M(n) from n ≥ 2 onward.

In class I, M(n) is constant for sufficiently large n,
thus class I unit cells do not contain any strip modes.
Note that they could still contain additional zero modes
besides the CRS mode. In class C M(n) grows linearly
with n for sufficiently large n, therefore class C unit cells
could support a strip mode. Moreover, if conjecture (i) is
true, the number of strip modes supported in the class C
configuration should be equivalent to the slope of M(n)
for sufficiently large n.

To test conjecture (i) and the strip mode rules (ii) and
(iii), we check for each generated unit cell if it contains a
strip that obeys the strip mode rules. This check can be
performed using simple matrix operations and checks [7].
If (ii)-(iii) are correct, the number of indivisible strips
that obey the rules within the unit cell should be equal
to the slope of M(n) for class C unit cells, and there
should be no strips that obey the rules in class I unit
cells. Simulations of all possible k = 3 unit cells, one
million k = 4, 5, 6 unit cells, two million k = 7 unit cells,
and 1.52 million k = 8 unit cells show perfect agreement
with the strip mode rules for unit cells belonging to ei-
ther class I or C, see Fig. A4. Consequently, numerical
simulations provide strong evidence that the strip mode
rules as stated are correct.

Constructing and Training Convolutional Neural
Networks for metamaterials

In this section, we describe in detail how we construct
and train our convolutional neural networks (CNNs) for
classifying unit cells into class I and C. We first transform
our unit cells to a CNN input, secondly we establish the
architecture of our CNNs. Next, we obtain the training

set, and finally we train our CNNs.

Pixel Representation

To feed our design to a neural network, we need to
choose a representation a neural network can understand.
Since we aim to use convolutional neural networks, this
representation needs to be a two-dimensional image. For
our classification problem, the presence or absence of a
zero mode ultimately depends on compatible deforma-
tions between neighboring building blocks. As such, the
representation we choose should allow for an easy identi-
fication of the interaction between neighbors.

In addition to being translation invariant, the classifi-
cation is rotation invariant. While we do not hard code
this symmetry in the convolutional neural network, we
do choose a representation where rotating the unit cell
should still yield a correct classification. For example,
this excludes a representation where each building block
is simply labeled by a number corresponding to its ori-
entation. For such a representation, rotating the design
without changing the numbers results in a different inter-
play between the numbers than for the original design.
Thus we cannot expect a network to correctly classify the
rotated design.

For both metamaterials, we introduce a pixel represen-
tation. We represent the two building blocks of metama-
terial featured in Fig. 1 as either a black pixel (1) or a
white pixel (0) (Fig. A5(a)). A kx × ky unit cell thus
turns into a kx × ky black-and-white image.

Likewise, we introduce a pixel representation for the
metamaterial M2 of Fig. 2 which naturally captures the
spatial orientation of the building blocks, and emphasizes
the interaction with neighboring building blocks. In this

I

C

m
od

e
sc

al
in

g

0

18888

243254

0

3£ 3

C I
rules

I

C

m
od

e
sc

al
in

g

0

234133

765245

0

4£ 4

0

4653

995347

0

5£ 5

C I
rules

0

46518

953482

0

6£ 6

0

454

1999546

0

7£ 7

C I
rules

0

11777

1508223

0

8£ 8

Figure A4. Confusion matrices for classification based on
mode scaling in comparison to classification based on rules
(i)-(ii). The k × k unit cell size is indicated on top of each
matrix.

5

representation, each building block is represented as a
2×2 matrix, with one black pixel (1) and three white (0)
pixels, see Fig. A5(b). The black pixel is located in the
quadrant where in the bars-and-hinges representation the
missing diagonal bar is. Equivalently, this is the quadrant
where in the directed graph representation the diagonal
edge is located. Moreover, in terms of mechanics, this
quadrant can be considered floppy, while the three others
are rigid.

This representation naturally divides the building
blocks into 2 × 2 plaquettes in which paired building
blocks are easily identified, see Fig. A5(b). Building
blocks sharing their black pixel in the same plaquette are
necessarily paired, and thus allow for deformations be-
yond the counter-rotating squares mode. Note that this
includes diagonally paired building blocks as well. By
setting the stride of the first convolution layer to (2, 2),
the filters only convolve over the plaquettes and not the
building blocks, which do not contain any extra informa-
tion for classification.

CNN architecture details

To classify the unit cells into class I and C, we use
a convolutional neural network (CNN) architecture. We
first discuss the architectures used to obtain the results of
Tab. 1. Then we discuss the architecture used to obtain
the results of Fig. 4.

For the metamaterial M1 of Fig. 1, the CNN consists of
a single convolution layer with 20 2 × 2 filters with bias
and ReLu activation function. The filters move across
the input image with stride (1, 1) such that all build-
ing block interactions are considered. Subsequently the
feature maps are flattened and fully-connected to a hid-
den layer of 100 neurons with bias and ReLu activation
function. This layer subsequently connected to 2 output
neurons corresponding to C and I with bias and softmax
activiation function. The input image is not padded.
Since a network of this size was already able to achieve
perfect performance, we saw no reason to go to a bigger

(a) pixelate

convolve

pixelate

convolve

(b)

Figure A5. Unit cell designs of the combinatorial metama-
terials in Fig. 1 (a) and Fig. 2 (b) and their respective pixel
representations. The blue squares indicates how the build-
ing blocks are transformed to pixels, the green squares show
which part of the unit cell is convolved by the first convolu-
tion layer.

network.
For the metamaterial M2 of Fig. 2 and classification

problem (i) we first periodically pad the input image with
a pixel-wide layer, such that a 2k × 2k image becomes a
2k+2× 2k+2 image. This image is then fed to a convo-
lutional layer, consisting of 20 2× 2 filters with bias and
ReLu activation function. The filters move across the in-
put image with stride (2, 2), such that the filters always
look at the parts of the image showing the interactions
between four building blocks (Fig. A5(b)). Subsequently
the 20 k+1× k+1 feature maps are flattened and fully-
connected to a hidden layer of 100 neurons with bias
and ReLu activation function. This layer is then fully-
connected to 2 output neurons corresponding to the two
classes with bias and softmax activation function. From
the hyperparameter grid search (see section CNN hyper-
parameter grid search details) we noted that this nf and
nh were sufficiently large for good performance.

For classification (ii) we again pad the input image
with a pixel-wide layer. The CNN now consists of three
sequential convolutional layers of increasing sizes 20, 80,
and 160 filters with bias and ReLu activation function.
The first convolution layer moves with stride (2, 2). The
feature maps after the last convolutional layer are flat-
tened and fully-connected to a hidden layer with 1000
neurons with bias and ReLu activation function. This
layer is fully-connected to two output neurons with bias
and softmax activation function. This network is larger
than for classification (i); we saw noticeable improve-
ments over the validation set when we considered larger
networks. This is most likely a result of the (unknown)
rules behind classification (ii) being more complex.

The networks are trained using a cross-entropy loss
function. This loss function is minimized using the Adam
optimization algorithm [8]. This algorithm introduces
additional parameters to set before training compared
to stochastic gradient descent. We keep all algorithm-
specific parameters as standard (β1 = 0.9, β2 = 0.999,
ϵ = 1e − 07), and only vary the learning rate η from
run to run. The network for the classification problem of
Fig. 1 uses a weighted cross-entropy loss function, where
examples of C are weighted by a factor 200 more than
examples of I.

To obtain the results of Fig. 4, we use the architec-
ture of classification (i) and vary the number of neurons
nh in the hidden layer. We keep the number of filters
the same. To obtain this architecture, we performed a
hyperparameter grid search, where we varied the num-
ber of filters nf of the convolution layer and the learning
rate η as well. The details are discussed in the section
CNN hyperparameter grid search details. The total num-
ber of parameters for this network with nf filters and nh

neurons is

(4 + 1)nf + ((k + 1)2nf + 1)nh + (nh + 1)2. (A9)

6

Training set details

Each classification problem has its own training set.
For the classification problem of Fig. 1, the networks
are trained on a training set Dt of size |Dt| = 27853
that is artificially balanced 200-to-1 I-to-C. Classifica-
tion problem (i) has a class balanced training set size of
|Dt| = 793200. Problem (ii) has a training set size of
|Dt| = 501850. For the classification problems (i) and
(ii), the class is determined through the total number of
modes M(n) as described in the subsection Numerical
evidence for strip mode rules. For the metamaterial M1
of Fig. 1, we determine the class through the rules as
described in the section Floppy and frustrated structures.

Since there is a strong class-imbalance in the design
space, for the network to learn to distinguish between
class I and C, the training set is class-balanced. If the
training set is not class-balanced, the networks tend to
learn to always predict the majority class. The train-
ing set is class-balanced using random undersampling of
the class I designs. For problem (i), with the strongest
class-imbalance, the number of class C designs is artifi-
cially increased using translation and rotation of class C
designs. We then use stratified cross-validation over 10
folds, thus for each fold 90% is used for training and 10%
for validation. The division of the set changes from fold
to fold. To pick the best performing networks, we use
performance measures measured over the validation set.

To show that our findings are robust to changes in unit
cell size, we also train CNNs on classification problem (i)
for different k × k unit cell sizes. The size of the train-
ing set Dt for each unit cell size k is shown in Tab. A1.
Increasing the unit cell size increases the rarity of C and
the size of the design space. This leads a more strongly
undersampled C-I boundary as we will show in the next
section.

Sparsity of the training set

To illustrate how sparse the training set is for classi-
fication problem (i), we divide the number of training
unit cells per class, |Dt(Class)| over the estimated total
number of k× k unit cells of that class, |ΩD(Class)|. We
estimate this number for class C through multiplying the

Table A1. Details of the hyperparameter grid search.

k size of Dt size of Dtest

3 31180 39321
4 397914 150000
5 793200 149980
6 1620584 150000
7 292432 600000
8 1619240 144000

volume fraction of class C β in a uniformly generated
set of unit cells with the total number of possible unit
cells |ΩD| = 4k

2

: |ΩD(C)| ≈ β|ΩD|. Likewise, we deter-
mine the ratio for class I. The resulting ratio for class C
and I is shown in Fig. A6(a). Clearly, for increasing unit
cell size k, the class sparsity in the training set increases
exponentially. Consequently, the neural networks get rel-
atively fewer unit cells to learn the design rules bisecting
the design space for increasing unit cell size.

Moreover, the training set unit cells of different class
are, on average, farther removed from one another for
increasing unit cell size k. The distance between two
unit cells |∆X| is defined as the number of building
blocks with a different orientation compared to their cor-
responding building block at the same spatial location in
the other unit cell. So two k × k unit cells can at most
be k2 building blocks removed from one another, if every
single building block has a different orientation compared
to its corresponding building block at the same spatial lo-
cation in the other unit cell. Note that we only consider
different orientations in this definition, we do not define
an additional notion of distance between orientations of
building blocks.

By measuring the distance in number of different build-
ing block orientations |∆X| between every class C to ev-
ery class I unit cell, we obtain the probability density
function of distance in number of different building blocks
between two unit cells of different class in the training
set, see Fig. A6(b). Consequently, if k increases, the net-
works are shown fewer examples of unit cells similar to
each other, but of different class. Thus the boundary be-
tween C and I is undersampled in the training set, with
few I designs close to the boundary.

3 5 7
k

10-28

10-22

10-16

10-10

10-4

jD
t(

C
la

ss
)j

j
D
(C

la
ss

)j

I
C

0 20 40 60
j¢Xj

0.0

0.1

0.2

0.3

pd
f

3
4
5
6
7
8

(a) (b)

Figure A6. Training set details for classification problem (i) of
metamaterial M2. (a) Fraction of the total unit cells of class
C that are in the training set. (b) Average absolute distance
|∆X| in number of building blocks between class C and class
I unit cells in the training set.

7

CNN hyperparameter grid search details

To see how convolutional neural network (CNN) size
impacts classification performance, a hyperparameter
grid search is performed. We focus on classification prob-
lem (i), which features a shallow CNN with a single con-
volution layer and single hidden layer as described in sec-
tion CNN architecture details. This search varied three
hyperparameters: the number of filters nf , the number of
hidden neurons nh, and the learning rate η. The number
of filters nf runs from 2 to 20 in steps of 2, the number
of hidden neurons nh first runs from 2 to 20 in steps of
2, then from 20 to 100 in steps of 10. The learning rate
ranges from η ∈ 0.0001, 0.001, 0.002, 0.003, 0.004, 0.005.
For each possible hyperparameter combination, a 10-
fold stratified cross validation is performed on a class-
balanced training set. Early stopping using the valida-
tion loss is used to prevent overfitting.

To create the results of Fig. 4, nf has been fixed to
20 since most of the performance increase seems to come
from the number of hidden neurons nh after reaching a
certain treshhold for nf as we will show in section As-
sessing the performances of CNNs. The best η is picked
by selecting the networks with the highest fold-averaged
accuracy over the validation set.

Assessing the performances of CNNs

In this section, we describe in detail how we assess the
performance of our trained convolutional neural networks
(CNNs). We first quantify performance over the test set,
then we define our sensitivity measure. Finally, we apply
this sensitivity measure to the CNNs.

Test set results

After training the CNNs on the training sets, we test
their performance over the test set. The test set consists
of unit cells the networks have not seen during training,
and it is not class-balanced. Instead, it is highly class-
imbalanced, since the set is obtained from uniformly sam-
pling the design space. In this way, the performance of
the network to new, uniformly generated designs is fairly
assessed.

For the classification problem of metamaterial M1,
the test set Dtest has size |Dtest| = 4915. Classifica-
tion problem (i) for metamaterial M2 has test set size
|Dtest| = 149982. Problem (ii) for M2 has test set size
|Dtest| = 149980.

Precisely because the test set is imbalanced, standard
performance measures, such as the accuracy, may not be
good indicators of the actual performance of the network.
There is a wide plethora of measures to choose from [9].
To give a fair assessment of the performance, we show

the confusion matrices over the test sets for the trained
networks with the lowest loss over the validation set in
Tab. 1.

Varying the unit cell size

To see how the size of the unit cell impacts network
performance, we performed a hyperparameter grid search
as described in section CNN hyperparameter grid search
details for k × k unit cells ranging from 3 ≤ k ≤ 8. We
focus on classification problem (i). The size of the test
set Dtest is shown in Tab. A1.

To quantify the performance of our networks in a single
measure, we use the Balanced Accuracy:

BA =

〈
1

2

(
VTC

VTC + VFI
+

VTI

VTI + VFC

)〉
(A10)

=

〈
1

2
(TCR + TIR)

〉
, (A11)

where VTC, VTI, VFC, and VFI are the volumes of the
subspaces true class C TC, true class I TI, false class
C FC, and false class I FI (Fig. 1(c, d)). We do not
consider other commonly used performance measures for
class-imbalanced classification, such as the F1 score, since
they are sensitive to the class-balance.

The BA can be understood as the arithmetic mean
between the true class C rate TCR (sensitivity), and true
class I rate TIR (specificity). As such, it considers the
performance over all class C designs and all class I designs
separately, giving them equal weight in the final score.
Class-imbalance therefore has no impact on this score.

Despite the complexity of the classification problem,
we find that, for sufficiently large nf and nh, the bal-
anced accuracy BA approaches its maximum value 1 for
every considered unit cell size k (Fig. A7(a)). Strikingly,
the number of filters nf required to achieve large BA
does not vary with k. This is most likely because the
plaquettes encode a finite amount of information—there
are only 16 unique 2×2 plaquettes. This does not change
with unit cell size k, thus the required number of filters nf

is invariant to the unit cell size. The number of required
hidden neurons nh increases with k, but not dramati-
cally, despite the combinatorial explosion of the design
space. To interpret this result, we note that a high BA
corresponds to correctly classifying most class C unit cells
as class C, and most class I unit cells as class I. Hence,
sufficiently large networks yield decision boundaries such
that most needles are enclosed and most hay is outside
(Fig. 1(c, d)). However, whether this decision boundary
coarsely (Fig. 1(c)) or finely (Fig. 1(d)) approximates the
structure close to the needles cannot be deducted from a
coarse measure such as the BA over the test set.

The usage of BA to show trends between neural net-
work performance and hyperparameters is warranted,

8

since no significant difference between the true class C
rate TCR and true class I rate TIR appears to exist, see
Fig. A7. Evidently TCR and TIR depend similarly on
the number of filters nf and number of hidden neurons
nh. This is to be expected, since the networks are trained
on a class-balanced training set.

The effect of class-imbalance on CNN performance can
be further illustrated through constructing the confusion

12

20

60

100

n
h

k= 3

4 10 16
nf

4

12

20

60

100

n
h

k= 4

k= 5

4 10 16
nf

k= 6

k= 7

4 10 16
nf

k= 8

0.0

0.2

0.4

0.6

0.8

1.0
BA

12

20

60

100

n
h

k= 3

4 10 16
nf

4

12

20

60

100

n
h

k= 4

k= 5

4 10 16
nf

k= 6

k= 7

4 10 16
nf

k= 8

0.0

0.2

0.4

0.6

0.8

1.0

TCR

®

12

20

60

100

n
h

k= 3

4 10 16
nf

4

12

20

60

100

n
h

k= 4

k= 5

4 10 16
nf

k= 6

k= 7

4 10 16
nf

k= 8

0.0

0.2

0.4

0.6

0.8

1.0

TIR

®

(b)

(c)

(a)

Figure A7. (a) Heatmaps of the fold-averaged balanced ac-
curacy BA for CNNs with nf filters and nh hidden neurons
trained on k × k unit cells indicated on top of each heatmap.
(b) Heatmaps of the fold-averaged true class C rate ⟨TCR⟩.
(c) Heatmaps of the fold-averaged true class I rate ⟨TIR⟩.

matrices (Fig. A8(b)). Though all CNNs show high true
C and I rates, the sheer number of falsely classified C
unit cells can overtake the number of correctly classified
C unit cells if the class-imbalance is sufficiently strong,
as for the 7× 7 unit cells.

Increasing the size of the training set

To illustrate how the size of the training set Dt in-
fluences the performance over the test set, we compare
CNNs trained on two training sets of different size con-
sisting of 7 × 7 unit cells—the unit cell size with the
strongest class-imbalance. We use the fold-averaged bal-
anced accuracy BA to quantify the performance. The
training sets are obtained from 1M and 2M uniformly
sampled unit cells respectively, and the number of class
C unit cells is artificially increased using translation and
rotation to create class-balanced training sets. The best
BA is more than a factor 2 smaller for CNNs trained on
the larger training set, compared to the smaller training
set (Fig. A9). Thus, lack of performance due to a strong
data-imbalance can be improved through increasing the
number of training samples.

Random walk near the class boundary

To better understand the complexity of the classifica-
tion problem, we probe the design space near test set unit
cell designs. Starting from a test set design X0 with true
class C, we rotate a randomly selected unit cell to create
a new unit cell design X1. We do this iteratively up to
a given number of steps s to create a chain of designs.
For each generated design, we assess the new true class

I

C

ac
tu

al

15

2794

36334

0

3£ 3

C I
predicted

I

C

ac
tu

al

184

35096

114544

79

4£ 4

29

685

149265

1

5£ 5

C I
predicted

37

6804

143153

6

6£ 6

6554

56

293389

1

7£ 7

C I
predicted

213

1070

142705

12

8£ 8

Figure A8. Confusion matrices over the test set for trained
CNNs with the highest accuracy over the class-balanced vali-
dation set. The k×k unit cell size is indicated on top of each
matrix.

9

using the design rules for classification (i) and through
calculating M(n) for n ∈ {3, 4} for classification (ii).

For each unit cell size k, we take s = k2 steps in design
space. The probability to transition from an initial 5× 5
design X0 of class C to another design Xs of class C as a
function of s random walk steps in design space pC→C(s),
is shown in Fig. 3(b, c) for classification problems (i) and
(ii).

We repeat the random walks for other k × k unit cells
for problem (i). A clear difference between the differ-
ent unit cell sizes is visible. Both the rate at which the
probability decreases initially, and the value to which it
saturates differs per unit cell size (Fig. A10).

For even unit cell size, the dominant strip mode width
is W = 1 (Fig. A3) and each class C design is most likely
to just have a single strip mode. Thus, the probability to
transition from C to I relies on the probability to rotate a
unit cell inside the strip of the strip mode, which is 1/k,
so αt ≈ 1/k. For odd unit cell sizes, the dominant strip
mode width is W = 2, such that αt ≈ 2/k.

To understand the asymptotic behavior, we note that
for large s the unit cells are uncorrelated to their original
designs. Thus, the set of unit cells are akin to a uniformly
sampled set of unit cells. Consequently, the probability
to transition from C to C for large s is approximately
equal to the true class C volume fraction β.

0 20 40 60 80 100
nh

10-2

10-1

1
¡
B
A

size of Dt =152488
size of Dt =292432

Figure A9. Balanced accuracy BA for CNNs with nf = 20
trained on a smaller training set (circles) and larger training
set (squares). The size of the training set is indicated in the
legend.

Random walk near the decision boundary

In addition to the true class, we can assess the pre-
dicted class by a given network for each unit cell in
the random walk. This allows us to probe the decision
boundary, which is the boundary between unit cells that
a given network will classify as C and those it will classify
as I. By comparing the transition probabilities for given
networks to the true transition probability we get an in-
dication of how close the decision boundary is to the true
class boundary.

To quantitatively compare the true class boundary
with the decision boundaries, we fit the measured transi-
tion probability for each network to Eq. (1) of the Main
Text with ᾱ as fitting parameter. We start from designs
with true and predicted class C, and track the predicted
class for the random walk designs. We set the asymp-
totic value to the predicted class C volume fraction β̄
(Fig. A11(a)) for each network. From this we obtain a
10-fold averaged estimate of ᾱ.

Additionally, we do this for varying unit cell size k for
classification problem (i) using the hyper parameter grid
search networks. We use CNNs with fixed number of
filters nf = 20 and varying number of hidden neurons
nh. We select the networks with the best-performing
learning rate η over the validation set, and obtain a 10-
fold averaged estimate of ᾱ for each nh (Fig. A11(b)).

100 101
s

0.0

0.2

0.4

0.6

0.8

½
C
!
C

3
4
5
6
7
8

Figure A10. Probability ρC→C (polygons) to transition from
initial design X0 of class C to another design Xs of class C as a
function of s random walk steps in design space starting from
the initial design. The legend indicates the polygon and color
for each unit cell size k. The continuous lines are obtained
from a least-squares fit using Eq. (1) of the Main Text.

10

Small networks tend to overestimate the class C di-
mensionality α (Fig. A11(b). Larger networks tend to
approach the true α for increasing number of hidden neu-
rons nh. For large data-imbalance, as is the case for k = 7
and k = 8, even the larger networks overestimate α. This
is not a fundamental limitation, and can most likely be
improved by increasing the size of the training set, see
section Increasing the size of the training set. We con-
jecture that this is due to the higher combinatorial com-
plexity of the C subspace for larger unit cells, which re-
quires a larger number of training samples to adequately
learn the relevant features describing the subspace. The
trend shown in Fig. 4(c) holds across all unit cell sizes
(Fig. A11(c)).

Computational time analysis

In this section we discuss the computational time it
takes to classify a k × k unit cell design by calculating
the number of zero modes M(n) for n ∈ {2, 3, 4} using

3 4 5 6 7 8
k

10-4

10-3

10-2

10-1

100

¯

¹̄

¯

3 4 5 6 7 8
k

0.4

0.6

0.8

1.0

®

¹®
®

0

25

50

75

100
nh(a) (b)

0.0

0.1

0.2

¹̄
¡
¯

k= 3

0.0 0.1 0.2
¹®¡®

0.0

0.1

0.2

¹̄
¡
¯

k= 4

k= 5

0.0 0.1 0.2
¹®¡®

k= 6

k= 7

0.0 0.1 0.2
¹®¡®

k= 8

0

20

40

60

80

100
nh(c)

Figure A11. (a) Classification problem (i) Class C volume
fraction β (red) as a function of unit cell size k. The predicted
class C volume fraction β̄(nh) (for nf = 20) approaches β for
increasing number of hidden neurons nh (colorbar). (b) True
dimensionality α (red) and predicted dimensionality ᾱ(nh)
(colorbar) obtained through least-squares fits to data as in
Fig. 3(b) for all k. The estimated α for both odd (dashed line)
and even (dashdotted line) k agree well with α. (c) Scatter
plots of class volume fractions β̄(nh) − β versus dimension-
ality ᾱ(nh) − α shows that the latter asymptotes later than
the former (nh indicated by a colorbar, and unit cell size k
indicated on top of each graph)

rank-revealing QR (rrQR) decomposition. The first al-
gorithm takes as input a unit cell design, creates rigidity
matrices R for each n, and calculates the dimension of
the kernel for each matrix using rrQR decomposition.
The classification then follows from the determination of
a and b in M(n) = an+ b as described in the main text.

We contrast this brute-force calculation of the class
with a trained neural networks time to compute the clas-
sification. We consider a shallow CNN with a single con-
volution layer of nf = 20 filters, a single hidden layer of
nh = 100 hidden neurons and an output layer of 2 neu-
rons. The network takes as input a k×k unit cell design in
the pixel representation (with padding) and outputs the
class. The number of parameters of these CNNs grows
with k, see eq.(A9). We focus on networks trained on
classification problem (i).

The brute-force calculation scales nearly cubically with
input size k2, while the neural network’s computational
time remains constant with unit cell size k. This is due to
computational overhead—the number of operations for a
single forward run of our CNN scales linearly with k2, but
can run in parallel on GPU hardware. This highlights the
advantage of using a neural network for classification: it
allows for much quicker classification of new designs. In
addition, the neural network is able to classify designs
in parallel extremely quickly: increasing the number of
unit cells to classify from 1 to 1000 only increased the
computational time by a factor ≈ 1.33.

Please note that this analysis does not include the time
to train such neural networks, nor the time it takes to
simulate a large enough dataset to train them. Clearly
there is a balance, where one has to weigh the time it
takes to compute a sufficiently large dataset versus the
number of samples that they would like to have classified.
For classification problems (i) and (ii) it did not take
an unreasonable time to create large enough datasets,
yet brute-forcing the entire design space would take too
much computational time. Our training sets are large
enough to train networks on—of order 105—but are still
extremely small in comparison to the total design space,
such that the time gained by using a CNN to classify
allows for exploring a much larger portion of the design
space as generating random designs is computationally
cheap.

∗ r.vanmastrigt@uva.nl
[1] C. Coulais, E. Teomy, K. De Reus, Y. Shokef, and

M. Van Hecke, Combinatorial design of textured mechan-
ical metamaterials, Nature 535, 529 (2016).

[2] J. C. Maxwell, L. on the calculation of the equilibrium and
stiffness of frames, The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 27, 294
(1864).

[3] J. N. Grima, A. Alderson, and K. Evans, Auxetic be-

mailto:r.vanmastrigt@uva.nl

11

haviour from rotating rigid units, Physica Status Solidi
(b) 242, 561 (2005).

[4] C. Coulais, C. Kettenis, and M. van Hecke, A characteris-
tic length scale causes anomalous size effects and bound-
ary programmability in mechanical metamaterials, Nature
Physics 14, 40 (2018).

[5] A. Bossart, D. M. Dykstra, J. van der Laan, and
C. Coulais, Oligomodal metamaterials with multifunc-
tional mechanics, Proceedings of the National Academy
of Sciences 118, 21 (2021).

[6] There is a small and exponentially decreasing portion of
unit cells that requires to calculate M(n) with n = 5 and
6 to determine whether they belong to class I or C. We
leave these out of consideration in the training data to
save computational time.

[7] See https://uva-hva.gitlab.host/
published-projects/CombiMetaMaterial for code
to check the rules.

[8] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv preprint arXiv:1412.6980 (2014).

[9] M. Hossin and M. N. Sulaiman, A review on evaluation
metrics for data classification evaluations, International
Journal of Data Mining & Knowledge Management Pro-
cess 5, 1 (2015).

3 4 5 6 7 8
k

0

10

20

30

40

50

60

70

t(
s)

Figure A12. Computation time t measured in seconds s to
classify k× k unit cells by total number of modes M(n) (red)
versus using a trained convolutional neural network (blue).

https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial
https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial

	Supplemental of "Machine Learning of Implicit Combinatorial Rules in Mechanical Metamaterials"
	Floppy and frustrated structures
	Design rules for floppy structures
	Rarity of floppy structures

	Zero modes in combinatorial metamaterials
	Zero Modes of the Building Block
	Rule-based classification of unit cells
	Numerical evidence for strip mode rules

	Constructing and Training Convolutional Neural Networks for metamaterials
	Pixel Representation
	CNN architecture details
	Training set details
	Sparsity of the training set
	CNN hyperparameter grid search details

	Assessing the performances of CNNs
	Test set results
	Varying the unit cell size
	Increasing the size of the training set
	Random walk near the class boundary
	Random walk near the decision boundary

	Computational time analysis
	References

