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S0: Granulation in industrial systems

Many industrial operations require the incorporation of powders into liquids. Often liquid is pro-

gressively added to dry powder, thus starting at high solid volume fraction and necessarily going

through a granulation stage. Further addition of liquid results in an ‘overwet’ state in which gran-

ules no longer form, i.e. a suspension with high solids loading.

Two good examples of this are the production of molten chocolate 1 and the preparation of

concrete 2. Comparison of Fig. 1 (main), Fig. S1 and Fig. 2 in reference 2 reveals a striking similar-

S1



ity in phenomenology for these chemically disparate systems, suggesting a ubiquitous underlying

physical mechanism.

Figure S1: Reproduced from 1. All images are 40mm wide.

Importantly, in the concrete and spheriglass/water/glycerol system used in this work, the

transition from granules to flowing suspension at fixed processing conditions is realised by pro-

gressively increasing the proportion of liquid, thus decreasing ϕ. In the model chocolate system

however, the volume fraction remains constant and instead the jamming point, ϕJ, is increased as

agglomerates in the system are gradually broken up by mechanical action. As shown in this work,

it is the sign and magnitude of ϕ − ϕJ which determines whether a system a system will form

granules or suspension and engineering either parameter can achieve the desired effect.

S1: Model system details

Potter Spheriglass 5000 (A-Type) are uncoated soda-lime glass particles, largely spherical in shape

(see Fig. S2). Scanning electron microscopy ( S2a) shows that the particles are highly polydisperse

and there exists a non-spherical proportion. Static light scattering measurements (Beckman Coul-

ter LS 13 320) gives a volume-weighted mean diameter of 7.2 µm. The full distribution of sizes

is shown in S2b. The polydispersity is defined as the full-width half maximum size range of the
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main peak, divided by the mean, giving a value of 147%. Detailed particle shape analysis by imag-

ing deposits of highly diluted suspensions deposited on microscope slides enables a quantitative

analysis of circular and non-circular particle projections.
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Figure S2: (a) SEM image of Spheriglass 5000. The particles are largely spherical, with some irregularly shaped

shards. Scale bar = 10 µm (b) Volume-weighted distribution of particle diameters with a mean of 7.2 µm. (c) Shape

analysis shows that ≈ 45% of the particles (by area) have a circularity C > 0.90, with ≈ 75% with C > 0.50.

We quantify circularity, C, as:

C =
4πA

P 2
,

where A and P are the particle area and perimeter respectively. Using this imaging technique we

are able to analyse ∼ 6 × 104 individual particles. We find that ≈ 75% (by area) of the particles

have C > 0.50, with ≈ 45% of the particles have C > 0.90. These non-spherical particles will

have an effect on the geometric packing of the system and will hence affect both ϕrcp and ϕm.
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In aqueous conditions, Spheriglass surface chemistry is dominated by silanol groups, render-

ing the surface hydrophilic. These groups dissociate to form surface charge, such that a repulsive

inter-particle potential is generated.

In order to calculate volume fractions, we convert mass fractions using the densities of the

materials. The glycerol-water mixture has a density of 1.243(2) g cm−3, measured using an Anton

Paar DMA 4500 density meter at 19 ◦C. The density of Spheriglass is 2.64(5) g cm−3, measured

by pynometry in a volumetric flask using a 0.885 M NaOH solution. The Spheriglass was dried in

a vacuum oven at 120 ◦C to remove any adsorbed moisture from the atmosphere.

S2: Granulation equipment

The granulation equipment used in this work consists of a high-torque overhead mixer (Ika Eu-

rostar Power Control-Visc), driving an aluminium impeller with three equi-spaced blades (see

Fig. S3). Powders and liquid were mixed inside a cylindrical glass dish with liquid added at

15mLmin−1 using a syringe pump (New Era Pump Systems Inc. NE-1000) via tubing with an

internal diameter ≈ 1mm through a hole in the perspex lid. Clamps were used to hold the lid down

and avoid movement of the dish relative to the axis of rotation of the impeller.

High-speed photography was used to measure the average drop diameter upon exiting the

tubing, and was determined to be 4.57(7)mm.

Two different sizes of mixer and dish were used in this work. Details are given in Table S1,
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Figure S3: (a) The high-shear mixing apparatus used in this work: 1⃝ Overhead mixer, 2⃝ syringe containing

the glycerol-water mixture, 3⃝ syringe pump used to control the addition of liquid, 4⃝ mixing dish and blade.

(b) Schematic of the high-shear mixing blade, dimensions are detailed in Table S1.

with reference to Fig. S3b. For high-stress sample preparation, the total mixing time was fixed

at 3 minutes following liquid addition. At 1000 rpm, this gives a total of 3000 revolutions, at

which point the size distribution had stopped changing, as determined by eye. For low-stress

measurements, the samples were mixed for 30 minutes, at which point the size distribution had

stopped changing. At 50 rpm, this gives a total of 1500 revolutions; continuing mixing to 3000

revolutions to match the high-shear value gave no appreciable change in size distribution.

S3: ϕJ as a function of stress

In the main text (Fig. 2) we obtained ϕm and ϕrcp by fitting Eq. 1 to the high- and low-stress

viscosities respectively. These give us the two limiting volume fractions which define flow or
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Large Small

r(mm) 54.4 36.4

L(mm) 17.8 11.6

θ(◦) 120 120

ω(◦) 45 45

Dish diameter (mm) 110.7 75.4

Dish height (mm) 60.9 40.9

Vtot(cm
3) 586.1 182.6

Vfill(cm
3) 75 45

Radial distance to hole (mm) 34.1 18.4

Table S1: High-shear mixer dimensions; see Fig. S3b for symbol definition.
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granulation in the phase diagram (Fig. 3, main text), but to complete the boundary, we need to

know how ϕJ varies for all stresses.

In order to find ϕJ(σ) we perform the same analysis used to obtain ϕm and ϕrcp for each of

the intermediate stresses, denoted by the different colours in S4a. We then fit Eq. 1 (main text) to

the relative viscosity as a function of volume fraction for each of these stresses, S4b. In these fits

we fix λ = 1.72, the average value calculated for ϕm and ϕrcp.

Following this, we can then plot ϕJ as a function of stress, S4c. We can then fit this data

using the following form:

ϕJ(σ) =

(
1− exp

[
−
(
σ̂⋆

σ

)β
])

(ϕrcp − ϕm) + ϕm, (S1)

where β is the stretch in the exponential part and σ̂⋆ is related to the experimentally measured σ⋆

by a β dependent factor. Performing this analysis gives σ̂⋆ = 3.57Pa and β = 0.745. We then use

Eq. S1 and the fitted parameters to construct the σ-ϕ phase diagram (Fig. 3, main text).

S4: Vortex mixer stress estimation

The mixing action of the vortex mixer is very different to that of the high shear mixer discussed

in the main text. Most significantly, it does not have a blade with which to mechanically stir the

sample, instead using the inertia of the material to set up flow and induce a mixing action.

For solid granules, the mixing action provides rapid oscillations, resulting in a complex mix-

ing pattern involving many collisions with both other granules and the walls of the vial. Although
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Figure S4: (a) Relative viscosity, ηr, as a function of applied stress, σ for different volume fractions, ϕ. Points are

coloured according to applied stress. Grey symbols represent data for which either the flow was unsteady (i.e. onset of

discontinuous shear thickening), or the sample edge started to show signs of fracture. These grey points are not used

in the determination of ϕJ(σ) (b) ηr vs ϕ. Colours same as (a) and each fitted with Eq. 1 (main text) with λ = 1.72 (c)

ϕJ as a function of applied stress from fits to Eq. 1 (main text) to the data in (b).

these collisions may in fact exert stresses higher than the onset stress, the strain may not be high

enough to shear thicken the samples.

Previous work has found that liquid drops which jam and solidify upon impact with solid

surfaces with which the binder has a low contact angle, can relax in a few milliseconds back to a

flowing state 3. These droplets stick to the surface preventing further collisions, thus minimising

the effect of these high stresses while vortex mixing. Since these samples often stick to the vial

and are highly viscous, the rotational mixing action of vortex mixer causes centrifugal body force

that applies a stress to the sample that varies with radius.

Due to the rotation of the vortex mixer, a centrifugal force is experienced by the material in
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Figure S5: Schematic of a vial on the vortex mixer. The vial rotates about the center point, c, with angular velocity,

ω. The vial has a diameter r1, and the vortex mixer has an orbital radius of r2. The outer point of the vial follows

the large black dashed ring with radius R = r1 + r2, but the vial itself does not rotate, instead a point in the vial, for

example the red point highlighted, follows the dashed red circle and thus experiences a range of accelerations during

a single revolution of the mixer.

the rotating frame of reference. The acceleration experienced by the rotating material is normally

termed the relative centrifugal force (RCF) and is a number that gives the acceleration in terms of

g, the gravitational acceleration. The RCF can be calculated:

RCF =
Rω2

g
, (S2)

where R is the radial distance from the center of rotation and ω is the angular velocity. This can

be re-written in terms of N , the number of revolutions per minute (rpm) of the vortex mixer:

RCF =

(
2π

60

)2
R

g
N2. (S3)

The vial has a radius of r1 = 10mm and the mixer has a radial orbit of r2 = 2mm. This gives a

combined centrifugal radius of R = r1+r2 = 12mm. The vortex mixer is operated at a maximum

rate of 425 rpm, measured using a tachometer (Lutron DT-2236), giving RCF = 2.423.
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Suppose we have two spherical particles of equal size, one touching the vial wall and the

other approaching it in a radial direction from the center of the vial. At the point of maximum

acceleration, the spheres will experience an acceleration of ∼ 2.4g. We can calculate the force

acting between the two particles as they collide using the acceleration and the mass of the particles:

F =
4

3
πr3(ρp − ρl)× 2.4g, (S4)

where ρp and ρl are the particle and liquid densities respectively. We can then estimate a stress

scale, by dividing this force by an interaction area:

σvortex =
F

πa2
=

4

3
r(ρp − ρl)× 2.4g. (S5)

If we suppose the particles have a radius a = 5 µm (approximately equal to the peak size of both

Spheriglass samples), and use the material densities measured in section S1, we get a stress of

≃ 0.22Pa. This value is below the onset stress, σ⋆ ≃ 1Pa, such that particle contacts remain in

the hydrodynamically lubricated, frictionless state in the vortex mixer.

This value constitutes an upper bound on the stress. Since the vial orientation remains fixed

throughout the vortex mixer rotation, the acceleration experienced at any point in the sample varies

with mixer rotation angle. Additionally, for any point in the sample located closer to the center of

the vial, the magnitude of the acceleration will decrease, since the RCF varies with R.

S6: Granule structure

In order to determine the structure of granules we sliced them open and revealed a core-shell

structure, Fig. S6. In order to better examine the interior structure we used scanning electron
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microscopy (SEM) (Jeol JSM-6010PLUS/LV), but due to the high vacuum operation of the SEM

we had to modify the liquid binder in order to avoid evaporation. In order to do this we introduced

a water-soluble cross-linking monomer (Sartomer SR610) and UV initiator to the binder phase.

The prepared granules were then exposed to UV light in order to set the glue.

Due to the opacity of the material, in most cases very little of the binder set, making cutting

the granules without damaging the structure impossible. Thermally activating initiators were also

tried, but we found that liquid evaporated from the shell, making it very friable and impossible to

cut.
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Figure S6: (a) Cross section of a granule prepared using low stress at ϕ = 0.70, in which the binder has been cross

linked. The core-shell structure is clear and we measure the shell thickness as ≃ 45d, where d is the mean primary

particle diameter. (b) Schematic of a core-shell granule, with total radius R and core radius rc. The shell contains a

very small proportion of the liquid (ϕshell
sl → 1). The core has a stress dependent packing, ϕJ, and can vary between

ϕm at high stress and ϕRCP at low stress.

In S6a we show a granule granulated at low stress at ϕ = 0.70. The shell has a thickness of
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≈ 45d, where d is the mean primary particle diameter. A schematic of the structure is shown in

S6b, with the total granule radius, R, the core radius, rc and the shell thickness, ts.

We see from S6a, the core of the granule appears to be densely packed, with no dry powder

or air inclusions. In order to determine how representative this is of granules in general we used X-

ray tomography (SkyScan 1172) to scan the entire volume of several granules. Due to the density

difference between the solid and liquid phases, using this technique we are only able to see air

voids which are larger than several particle sizes, hence we don’t observe the core shell structure.

In Fig. S7 we show the x-z projection of a granule (a), with a number of x-y slices at the

marked positions (b-e). In these binarised images the white part is the glass particles and the black

is air. We do see a small number of small air pockets in the granules, however these only account

for ≲ 2% of the total granule volume and do not change the interpretation of our data.
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Figure S7: (a) Transmission image of a granule in the Skyscan 1172. Binarised slices of the 3D reconstruction

corresponding to location (b) A, (c) B, (d) C, (e) D. Scale bars are 1mm. White regions correspond to the location of

solid particles, with the (internal) black regions corresponding to pockets of air.
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S1 S7: Granule size

We measure the distribution of granule sizes by sieving into different mesh sizes ranging from

90 µm to 20mm and weighing the mass contained in each. The sieving was performed by gently

agitating the sieve stack by hand, rather than using a mechanical sieve shaker in order to minimise

granule breakage. In the main text we create a model a single size of granule to fit the mean granule

size. To further refine this model we introduced a polydispersity in granule sizes into the model in

order to better represent the reality of the measured granule sizes.

We start by assuming there exists a distribution of granule radii, R, with a probability density

function, p(R), of a log-normal distribution:

p(R) =
1

Rχ
√
2π

exp

[
−(lnR− ν)2

2χ2

]
, (S6)

where ν and χ are the mean and standard deviation of the log of the distribution respectively. The

log-normal distribution has moments:

ms =

∫ ∞

0

p(R)Rs dR

= exp

[
sν +

1

2
s2χ2

]
. (S7)

We can then write the volume of solid, Vs, and volume of liquid, Vl, in the system as:
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Vs = ϕJ ·
4

3
π

∫ ∞

0

p(R)R3 dR, (S8)

Vl = (1− ϕJ) ·
4

3
π

∫ ∞

ts

p(R)(R− ts)
3 dR, (S9)

where ϕJ is the stress-dependent internal volume fraction of the granule.

We have assumed here that all granules have radii larger than the shell thickness ts. We write

the total volume fraction as an integral sum over all granule sizes:

ϕ =
Vs

Vs + Vl
=

ϕJ

∫ ∞

0

p(R)R3 dR

ϕJ

∫ ∞

0

p(R)R3 dR + (1− ϕJ)

∫ ∞

ts

p(R)(R− ts)
3 dR

. (S10)

We can evaluate Vs using the moments of the log-normal distribution defined in Eq. S7:

Vs = ϕJ ·
4

3
π exp

[
3ν +

9

2
χ2

]
. (S11)

Vl needs a little more work in order to make progress with Eq. S10. We can start by expanding

the polynomial term in Eq. S9:

(R− ts)
3 = R3 − 3R2ts + 3Rts

2 − ts
3, (S12)

and substituting this expansion into the definition of Vl:

Vl = (1−ϕJ)·
4

3
π

(∫ ∞

ts

p(R)R3dR−ts

∫ ∞

ts

p(R)R2dR+ts
2

∫ ∞

ts

p(R)RdR−ts
3

∫ ∞

ts

p(R)dR

)
−Vair.

(S13)
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In order to evaluate the integrals we can make use the result for the log-normal cumulative distri-

bution function:

∫ x

0

p(t) dt =
1

χ
√
2π

∫ x

0

1

t
exp

[
−(ln t− ν)2

2χ2

]
dt

=
1

2
+

1

2
erf
[
lnx− ν√

2χ

]
, (S14)

where ‘erf’ is the error function. In order to evaluate integrals between the limits of ts and ∞, we

can subtract Eq. S14 from 1 to obtain:

∫ ∞

ts

p(R) dR =
1

2
− 1

2
erf
[
ln ts − ν√

2χ

]
, (S15)

We can then evaluate the integrals in Eq. S13, using solutions of the following form:

∫ ∞

ts

p(R)Rs dt =
∫ ∞

ts

1

Rχ
√
2π

exp

[
−(lnR− ν)2

2χ2

]
Rs dR

=

∫ ∞

ts

1

Rχ
√
2π

exp

[
−(lnR− ν)2

2χ2

]
exp [s lnR] dR

= exp

[
sν +

1

2
s2χ2

] ∫ ∞

ts

1

Rχ
√
2π

exp

[
−(lnR− (ν + sχ2))

2

2χ2

]
dR

= exp

[
sν +

1

2
s2χ2

] [
1

2
− 1

2
erf
[
ln ts − (ν + sχ2)√

2χ

]]
, (S16)

where we have used the following expansion to obtain the final form of the exponents:
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s lnR− (lnR− ν)2

2χ2
= −−2χ2s lnR + (lnR)2 − 2 lnRν + ν2

2χ2

= − 1

2χ2

[
(lnR)2 − 2

(
ν + sχ2

)
lnR +

(
ν + sχ2

)2
+ ν2 −

(
ν + sχ2

)2 ]

= − lnR− (ν + sχ2)
2

2χ2
− ν2 + (ν + sχ2)

2

2χ2

= − lnR− (ν + sχ2)
2

2χ2
+

s (2ν + sχ2)

2
. (S17)

We can then use Eq. S16 to give a final form of Vl:

Vl = (1− ϕJ) ·
4

3
π

(
exp

[
3ν +

9

2
χ2

] [
1

2
− 1

2
erf
[
ln ts − (ν + 3χ2)√

2χ

]]
− 3ts exp

[
2ν + 2χ2

] [1
2
− 1

2
erf
[
ln ts − (ν + 2χ2)√

2χ

]]
+ 3ts

2 exp

[
ν +

1

2
χ2

] [
1

2
− 1

2
erf
[
ln ts − (ν + χ2)√

2χ

]]
− ts

3

[
1

2
− 1

2
erf
[
ln ts − ν√

2χ

]])
(S18)

Equations S11 and S18 can then be substituted into Eq. S10, allowing the volume fraction

to be calculated as a function of ν and χ. In order to compare these fits to our measured data, we

need to calculate the volume weighted mean radius, R̄, which we can write as:
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R̄ =

∫ ∞

0

p(R)R4 dR∫ ∞

0

p(R)R3 dR
. (S19)

This can be evaluated by comparing the integrals to the moments for the log-normal distri-

bution given by Eq. S7:

R̄ =
m4

m3

=
exp [4ν + 8χ2]

exp
[
3ν + 9

2
χ2
] = exp

[
ν +

7

2
χ2

]
. (S20)

We can now vary ν whilst maintaining a constant χ in order to plot parameterised forms of R̄

as a function of ϕ to fit the data in S8a. Here we fix the shell thickness to ts = 45d as measured in

Sec. S6 and use a value of χ = 0.5 which gives a reasonable fit to the observed size distributions

for ϕ = 0.85, Fig. S8b.
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Figure S8: (a) Polydisperse granule model (solid lines) in comparison to the monodisperse granule size model de-

scribed in the main text (dotted lines). Red; low-stress mixing, black; high-stress mixing. (b) Distribution of granule

sizes for ϕ = 0.85. A log-normal distribution with χ = 0.5 is overlayed for high- and low-stress mixing.
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