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I. POISSON-NERNST-PLANCK-STOKES EQUATION
AND BOUNDARY CONDITIONS

In the main text we introduced an axially symmetric con-
ical channel of length L, base radius Rb at x = 0, and tip ra-
dius Rt ≤ Rb at x = L, with x the cartesian coordinate that
runs along the symmetry axis. The channel connects two bulk
reservoirs of an aqueous 1:1 electrolyte both at the same ionic
bulk concentration 2ρb. The viscosity is η , the ionic diffusion
coefficient is D, the dielectric constant is ε , and the Debye
length is λD =

√
εkBT/2ρbe2 where T denotes room temper-

ature, e the elementary charge, and kB the Boltzmann con-
stant. The channel has a fixed negative surface charge den-
sity eσ at a radial distance r = R(x) from the central axis,
where R(x) = Rb − (x/L)(Rb −Rt) for x ∈ [0,L]. We consider
transport of solvent, ionic charge, and salt driven by the si-
multaneous application of a steady potential drop ∆ψ and a
steady pressure drop ∆P. The transport is characterised by a
volumetric flow rate Q, an electric current I, and a salt cur-
rent J through the channel. Throughout we focus on the long-
channel thin-EDL limit λD ≪ Rt < Rb ≪ L, and on the regime
of low Reynolds number. We thus ignore overlap of the elec-
tric double layers (EDLs) and entrance effects.

In the steady state and the low Reynolds number of interest
here, the force balance is given by the steady Stokes equation

η∇
2u = ∇P+ eρe∇ψ, (S1)

where u(x,r) is the fluid velocity, P(x,r) the pressure, ψ(x,r)
the electrostatic potential, and eρe(x,r) the ionic space charge
density with ρe = ρ+−ρ− and ρ±(x,r) the cationic (+) and
anionic (-) concentration profile. The first term on the right
hand side of Eq. (S1) will mainly be driven by a pressure drop
and causes a Poiseuille-like flow through the channel, and the
second term represents an electric body force that is mainly
driven by a potential drop and causes an electro-osmotic flow
as we will see below. In thermodynamic equilibrium, where
u = 0, the pressure gradient balances the electric body force.

The ionic fluxes j± contain a Fickian diffusive, an Ohmic
conductive, and Stokesian advective contribution described by
the Nernst-Planck equations

j± =−D
(

∇ρ±±ρ±
e∇ψ

kBT

)
+ρ±u, (S2)

a)These two authors contributed equally

where D is the diffusion coefficient that is assumed to be equal
for both ionic species for convenience. In the electrolyte the
electric potential satisfies the Poisson equation

∇
2
ψ =− e

ε
ρe, (S3)

and on the channel wall, at r = R(x) with x ∈ [0,L] and sur-
face normal n pointing into the channel, we impose Gauss
law n ·∇ψ = eσ/ε . Note that this form of Gauss law implic-
itly assumes that the dielectric constant of the electrolyte is
much larger than that of the wall material, such that the elec-
tric field lines do not “leak” out of the channel. The electrolyte
is treated as incompressible, and together with the steady-state
of interest this yields the divergence-free flux conditions

∇ ·u = 0; ∇ · j± = 0. (S4)

On the channel walls we also impose no-slip boundary and
blocking conditions u = 0 and n · j± = 0. Deep into the bulk
of the reservoir connected to the base, x ≪ −L, we impose
ρ± = ρb, ψ = ∆ψ , P = P0 +∆P with P0 an arbitrary reference
pressure, and deep into the reservoir connected with the tip,
x ≫ L, we impose ρ± = ρb, ψ = 0, and P = P0.

The analysis of the PNPS equations is greatly facilitated by
the linear combinations given by the total local salt concentra-
tion ρs = ρ++ρ−, the ionic charge flux density je = j+− j−,
and the salt flux density js = j+ + j−, in terms of which the
Nernst-Planck equations (S2) can be rewritten as

je =−D
(
∇ρe +ρs

e∇ψ

kBT
)+uρe, (S5)

js =−D
(
∇ρs +ρe

e∇ψ

kBT
)+uρs. (S6)

Here we note that the conduction terms ∝ ∇ψ are proportional
to ρs for the electric flux and to ρe for the salt flux. This
coupling will prove to be key to understanding the physics of
the cone-shaped channel. In the main manuscript, we refer to
Eqs. (S1)-(S6) and their boundary conditions as the Poisson-
Nernst-Planck-Stokes (PNPS) equations.

II. DERIVATION ELEMENTS ONSAGER MATRIX

Here we will discuss the details and assumptions in-
volved in the derivation of Eqs. (1)-(3) of the main text
and the components L11,L12 and L22 of the Onsager-like
matrix starting from the PNPS equations (S1)-(S6). The
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hierarchy of length scales L ≫ Rb ≥ Rt > λD serves as
the starting point of our derivation. When the channel is
much longer than the largest radius L ≫ Rb entrance-outlet
effects to the conductance can be neglected. Additionally,
in the long-channel limit all radial components of fluxes
and gradients are expected to be much smaller than the
corresponding lateral components. Combined with the
thin-EDL limit λD ≪ Rt, which is motivated by the exper-
imental conditions in Ref.1, this ensures that the local ion
concentrations and the electric field are essentially equal to
the cross-sectional averaged salt concentration and electric
field, so ρs(x,r) ≃ ρ̄s(x) = 2π

∫ R(x)
0 ρs(x,r)rdr/πR2(x)

and ∂xψ(x,r) ≃ ∂xψ̄(x) = 2π
∫ R(x)

0 ∂xψ(x,r)rdr/πR2(x).
Moreover, the thin-EDL limit does not only allow us to
neglect the influence of channel curvature on the EDL, but
also allows us to neglect the influence of salt adsorption2

on the cross-sectional averaged salt concentration ρ̄s(x).
Hence by using the thin-EDL assumption we neglect the
inhomogeneous advection of salt through the EDL. For
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FIG. S1. (a) Poiseuille-like fluid flux QP as a function of the pressure
drop ∆P at vanishing potential drop ∆ψ = 0 and (b) electro-osmotic
potential driven fluid flux Qψ as a function of the potential drop ∆ψ

at a vanishing pressure drop ∆P = 0, both for our standard parame-
ter set (see Letter) and obtained from numerical solution of the full
PNPS equations (S1)-(S6) (symbols) and from L11 and L12 (lines),
respectively. Both fluid fluxes are linear in their respective driving
force. There is good agreement between analytic and numerical re-
sults for the pressure driven flow QP, however the analytic expres-
sion for the electro-osmotic flow Qψ overestimates the flow rate by
∼ 10%.
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FIG. S2. The electric field −∂xψ̄(x) for our standard parameter set
with pressure drop ∆P = 0 as a function of the lateral position x for
∆ψ =±0.4V and 0 volt (green) obtained from full numeric solutions
of the PNPS equations(S1)-(S6) (symbols) and Eq. (2) (line) for our
standard parameter set (see Letter). Good agreement between nu-
meric and analytic results is found, which confirms the accuracy of
Eq. (2)

.

Debye lengths orders of magnitude smaller than the pore
radius we expect this assumption to be quite robust, however
it will break down at extremely high surface potentials
eψ0/kBT ≫ 1 as in this regime salt adsorption grows ex-
ponentially with ψ0. In summary using the approximations
ρs(x,r) ≃ ρ̄s(x), ∂xψ(x,r) ≃ ∂xψ̄(x), λD ≪ Rt in conjunc-
tion with the observation from numerical calculations that
|ρe(r ≪ R(x))| ≪ |σ/R(x)| will readily result in Eq. (3) upon
radially integrating Eq. (S6).

Before calculating the fluid flux Q, we have to verify that
the linear response relation Eq. (1) in the main text is valid for
flow, as in the literature there is experimental and numerical
evidence that electro-osmotic flow can invert in conical
pores under certain experimental conditions3–5. This would
have a dramatic impact on the pressure sensitivity of the
cone. However, as can be seen in Fig. S1 we find that in the
experimental regime of Ref. [5] no flow inversions occur as Q
is linear in both the pressure and potential drop. It should be
noted that any non-linearity in the fluid flow Q(∆P,∆ψ) will
significantly change the current-pressure relation I(∆P,∆ψ).

Having verified that the flow Q is linear in their respec-
tive driving forces, it now remains to find expressions for first
L11 and then L12. When the channel has a tip radius of zero
and vanishing surface charge an expression for the fluid flux
QP = (πRtRb/L)L11∆P is known6–8. Modifying this solution
by replacing the pore length L′ of a channel with a tip radius of
zero with our actual channel length L = L′(Rb −Rt)/Rb (with
L′ ≥ L) representative of a channel with the same opening an-
gle 2α = 2tan−1(Rb/L′) = 2tan−1((Rb − Rt)/L) but now a
non-zero tip radius, we find

QP(∆P) =
∆P
η

3πL3R3
bR3

t α4

8(Rb −Rt)4(R2
b +RbRt +R2

t )
, (S7)
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which for Rb −Rt ≪ L reduces to L11 in the main text. The
agreement between this expression for the pressure-driven
fluid flux QP (solid line) and the numerically obtained flow
(symbols) is remarkable and can be seen in Fig. S1(a).

We now continue with the calculation of the electro-
osmotic flow Qψ which first requires an expression for the
electric field −∂xψ̄(x) given in the main text by Eq. (2). This
equation is valid under two conditions, (i) no electric field
lines permeate the channel wall, and (ii) the space charge out-
side of the EDL is negligible. The first condition ensures that
all electric field lines remain in the channel and holds when
the dielectric constant of the channel wall is much smaller
than that of the solvent. The second condition ensures that
the divergence of the electric field is zero ∇ ·∇ψ(x,r) = 0,
for all r several Debye length away from the channel wall,
ensuring that no new field lines appear. For straight channels
this is a natural assumption, however in conical channels the
lateral variation of the electric current I(x) could allow for the
build-up of space charge in principle. In our discussion of the
numerical results we verify that the effect of this space charge
is small and can largely be ignored in the parameter regime
of our prime interest. When both condition (i) and (ii) are
met the number of electric field lines remains constant over
the channel length and the total lateral electric field through
a radial slice multiplied by the area of the slice likewise has
to be constant, πR2(x)∂xψ̄(x) = constant. Now the electric
field as function of lateral position can be found by observing
that over the length of the pore the total potential drop has to
equal to ∆ψ = −

∫ L
0 ∂xψ̄dx, resulting in Eq. (2) of the Letter.

In Fig. S2 we compare ∂xψ̄ of Eq. (2) (solid lines), with
the numerically obtained function ∂xψ(x,r = 0) along the
symmetry axis in calculations for ∆P = 0 (symbols) and find
excellent agreement.

In order to calculate L12 from the electric field we use the
solution for the potential-driven flow through a cylindrical
pore but now with position dependent radius and electric field
−∂xψ̄(x)πR2(x)(εψ0/η)2 and observe that it is constant over
the length of the pore as ∂xψ̄ ∝ 1/(πR2(x)). Hence this Ansatz
yields a bonafide divergence-free electro-osmotic flow given
by

Qψ(∆ψ) =−∆ψ

L
πRtRb

εψ0

η
, (S8)

where we neglected terms of order λD/R on the basis of the
thin-EDL limit. In Fig. S1(b) it can be seen that there is a
minor deviation of ∼ 10% between Qψ obtained from numer-
ical calculations and this analytic approximation. Implicitly
the PNPS equations (S1)-(S6) allow for diffusio-osmotic
fluid flow, driven by the concentration gradient ∂xρ̄s. As the
concentration profile and hence the gradient is a non-linear
function of the potential drop, any diffusio-osmotic flow
would manifest as a non-linear contribution to Qψ(∆ψ). As
no significant deviation from linearity is observed in our
numerical results for Qψ(∆ψ) we neglect diffusio-osmotic
flow.

Having found expressions for both ∂xψ̄ and Q we can now
straightforwardly solve Eq. (3), directly yielding Eq. (4) of
the main text. We compare Eq. (4 (solid lines) with the con-
centration from numerical calculations in Fig. S3 (symbols)
for several ∆P and ∆ψ . We see that while the agreement
is not perfect both the non-monotonic ∆P trend and the
overall shape of the concentration profile are captured rather
reasonably. It can also be seen that the boundary condition
used for analytic calculations (ρs(0) = ρs(L) = 2ρb) are not
fully representative of the numerical calculations, as the con-
centration profile extends a small distance out of the channel.
This discrepancy is possible as in the numerical calculations
we apply the boundary condition of bulk concentrations
far away rather than at the channel edges. The description
of the concentration profiles extending out of the in- and
outlets of the conical pore would require a full description of
the flow, electric field and currents at the edges of the cone
which is not tractable analytically. More significant than
the deviation at the tip and base is the sign change of the
bulk-excess concentration profile when going from positive
∆P to ∆P ≪ −50mbar, a feature our analytic theory cannot
explain. The deviation occurs at very large negative Péclet
number and represents a secondary non-linearity unrelated to
the non-linearity reported in the main text. We speculate the
non-linearity may be due to the inhomogeneous advection
current ∂xIadv ∝ ∂x(2Qσ/R) ̸= 0 that can build up signif-
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FIG. S3. Cross-sectional averaged concentration profile ρ̄s(x) over
the full channel length from numerical calculations of the full PNPS
equations (symbols) compared to curves plotted with Eq. (4) for our
standard parameter set (see main text), potential drop ∆ψ = −0.4V
(a) and ∆ψ = 0.4V (b) and varying pressure drop ∆P. Numeric and
analytic results agree for positive ∆P but deviate for increasing nega-
tive ∆P. Concentration profiles are largest for ∆P =∓10 mbar which
is rather close to ∆P∗ =∓13 mbar, where fluid flow vanishes.
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icant space-charge ρe(x,r) outside the EDL. To study this
secondary non-linearity in full detail would require solving
for ∂xI = 0 and ∂xJ = 0 simultaneously. While striking, the
opposite sign of our deviation from bulk concentration in
our analytic and numeric concentration around Pe≪ −1 has
little influence on the current I, as the concentration deviation
is an order of magnitude smaller than the concentration
change around Pe = 0. In summary we identify three major
sources of error (i) our analytic expression underestimates
electro-osmotic flow Qψ by about 10% (ii) imposing bulk
concentrations on the channel edges ρ̄s(0) = ρ̄s(L) = 2ρb
implicitly neglects edge effects, and (iii) neglecting minor
secondary non-linearities, which are probably related to the
lateral variation of the current I(x) that are to be compensated
by a (small) space charge distribution ρ̄e(x). A final limi-
tation of our theory is that for large negative ∆ρ the theory
allows for ρ̄s(x) to become locally negative, which is clearly
unphysical. This unphysical result can emerge because the
Debye length increases when the concentration decreases,
eventually invalidating our starting assumption λD ≪ R. Care
should thus be taken not to use the theory in this regime, with
a negative conductance a hallmark that the range of validity
has been exceeded. Throughout we restrict attention to
concentration profiles that deviate less than about 30% from
the bulk concentration, which also allows for equating the
relative change of the channel conductance to (the negative
of) the change of the relative channel resistance.

To calculate the last matrix element L22 we radially inte-
grate Eq. (S5), resulting in a diffusive, conductive and advec-
tive current. In our discussion of numerical results we show
that the diffusive current is negligible, which is consistent with
the assumption of a negligible space charge outside the EDL,
ρe(r ≪ R− λD,x) ≈ 0. This leaves two components of the
current to be calculated I = Icond + Iadv whose ratio scale as
Iadv/Icond ∝ λD/R allowing us to neglect the advective com-
ponent to L22 when λD/R ≪ 1. Now the total current due to
a potential drop ∆ψ is straightforwardly found by integration
of the conductive component −(De/kBT )ρs(x,r)∂xψ(x,r) in
Eq. (S6) and by using ρs(r,x) ≃ ρ̄s(x) and ψ(r,x) ≃ ψ̄(x) we
find

Icond(x) = eD
e∆ψ

kBT
πRtRb

L
ρ̄s(x), (S9)

which is inhomogeneous for any non-constant ρ̄s(x). This
inhomogeneity will lead to formation of a space charge ρe
outside the EDL. However, in our discussion of numerical
results we will show that this space charge is small. By
treating the concentration profile as a collection of resistors in
series2 we can obtain the ultimate, laterally constant current.
From this it follows that ρ̄s(x) in Eq. (S9) should be replaced
by the inverse average L/

∫ L
0 (ρ̄s(x)−1dx which is close to

the lateral average ⟨ρ̄s⟩ as long as | log(ρ̄s(x)/(2ρb)| < 1.
The error of this approximation diverges when ρ̄s(x)/2ρb
approaches zero. As in the Letter we restrict attention to
concentration profiles that deviate less than about 30% from
the bulk concentration a regime for which this approximation
is very reasonable.

Having already calculated L12 for the electro-osmotic flow
Qψ we can invoke Onsager’s reciprocal relation, which states
that L21 = L12

9,10, to find the fully advective pressure-driven
current and obtaining the full current

I(∆ψ,∆P) =
πRtRb

L

(
e2D∆ψ

kBT
⟨ρ̄s⟩−∆P

εψ0

η

)
. (S11)

Finally, combining L11, L12 and L22 our ultimate expression
for the Onsager-like matrix Eq. (1) reads

πRbRt

L


R2

bR2
t

8η⟨R2⟩
−εψ0

η

−εψ0

η

e2D
kBT

⟨ρ̄s⟩

(
∆P
∆ψ

)
=

(
Q
I

)
. (S12)

III. IDEAL PORE GEOMETRY

As the deviation of Ohmic current is largest when the dif-
ference between the laterally-averaged concentration ⟨ρ̄s⟩ and
bulk concentration 2ρb is largest it is interesting to note that an
analytic expression for ⟨∆ρ̄s⟩ = ⟨ρ̄s⟩− 2ρb is available in the
limit Pe = 0, which is the limit near which the concentration
difference is largest,

⟨∆ρ̄s⟩=
e∆ψ

kBT
σ

Rt

Rt

Rb

(
2(

Rt

Rb
−1

)
−
(
1+

Rt

Rb
) log

( Rt

Rb

))
(1− Rt

Rb
)2

.

(S13)
The prefactor (e∆ψ/kBT )(σ/Rt) is the tip Duhkin number
times the dimensionless potential drop and bulk concentra-
tion, which diverges for vanishing tip radius, indicating that
for the maximum non Ohmic conductivity the tip size should
be as small as possible. However as we assumed a thin-EDL
limit from the very beginning this prediction only remains
valid as long as Rt ≫ λD. We estimate that optimization of
non-linear current by minimization of the tip radius holds up
to Rt ≈ 10λD. It is easily checked that for fixed tip radius
⟨∆ρ̄s⟩ of Eq. (S13) has a maximum at Rt/Rb ≃ 0.22, a ge-
ometry which hence optimizes diodic behavior. Furthermore,
while ∆ρ as defined by Eq. (5) in the main text is a measure
for the concentration profile the ratio ∆ρ/⟨ρ̄s⟩ is large, with
the proportionality constant between the two at zero flow be-
ing given by

∆ρ

⟨∆ρ̄s⟩
=

2(Rt/Rb)
−2(1− Rt

Rb
)3

2
Rt

Rb
−2− (1+

Rt

Rb
) log(

Rt

Rb
)
, (S14)

which for straight pores with Rt ≃ Rb equals 12 and
in the limit Rt/Rb ≪ 1 is well approximated by
∆ρ/⟨∆ρ̄s⟩ ≃ 2R2

b/R2
t log(Rb/Rt) which diverges for large base



5

radii. Hence for conical pores in general ∆ρ ≫ 12⟨ρ̄s⟩ and for
our standard parameter set in the main text ∆ρ/⟨∆ρ̄s⟩ ≃ 100.9
while for the optimal tip-to-base ratio ∆ρ/⟨∆ρ̄s⟩ ≃ 68.3.
In principle one could absorb the proportionality constant
Eq. (S14) in the definition of ∆ρ to obtain a measure that
accurately represents the laterally-averaged concentration
profile ⟨∆ρ̄s⟩.

At finite Pe no analytic expression for ⟨∆ρ̄s⟩ can be found,
but its value can be straightforwardly calculated by numeri-
cal integration. In Fig. S4(a) we plot [(kBT Rt)/(e∆ψσ)]⟨∆ρ̄s⟩
against Rt/Rb for Pe ∈ [0,103]. At Pe = 0 (blue line) the maxi-
mum laterally averaged concentration is found at a tip-to-base
ratio Rt/Rb ≃ 0.22 (vertical line). As observed in Eq. (S13)
for non-zero Péclet number the ideal tip-to-base ratio (sym-
bols) is always smaller than 0.22. Note that when no pressure
drop ∆P∗ is applied the Péclet number will scale with ∆ψ and
the ideal pore geometry thus depends on the voltage operating
range of a device. In Fig. S4(b) we plot the optimal tip-to-
base ratio Rt/Rb against Péclet number on a linear-logarithmic
scale. It can be seen that for small |Pe|≤ 10 the ideal ratio
0.22 holds, but for large Pe it decays algebraically to zero. In
Fig. S4(c) we plot the same data as in (b) but now in a log-log
representation to highlight the scaling in the Pe ≥ 100 regime.
We find that the relation between optimal geometry and Pe is
well described by a power law b|Pe|−ν in this regime, with
b ≃ 2.5, ν ≃ 0.9 for positive and b ≃ 0.9, ν ≃ 0.55 for nega-
tive Péclet.

IV. DISCUSSION NUMERICAL RESULTS

Here we will discuss the numerical results of the full PNPS
equations (S1)-(S6) in depth and show that the effect of the
space charge outside the EDL on the current I can be ne-
glected. In Fig. S5 we plot our numerical solutions of the
pressure excess electric current IP = I(∆P,∆ψ)− I(0,∆ψ) as
a function of the pressure drop ∆P for our standard parameter
set and (a) ∆ψ = 0, (b) ∆ψ = +0.4V, and (c) ∆ψ = −0.4V.
When no potential drop is applied we find that the electric
current is linear in the pressure drop and dominated by advec-
tion, as can be seen in Fig. S5(a) where we plot IP(∆P,∆ψ),
split into its diffusive, conductive and advective components.
When the pressure drop is applied in conjunction with a po-
tential drop we find that it is strongly non-linear, as can be
seen Fig. S5(b) and (c). A minimum in the total current is
found at ∆P = ∓10 mbar for ∆ψ = ±0.4V in Fig. S5(b) and
(c), and near the minimum the conductive current dominates
over the advective and diffusive currents. For pressure drops
larger than |∆P|>100 mbar the advective current IP dominates
and follows the linear relation observed for ∆ψ = 0 shown in
Fig. S5(a). The non-linearities in (b) and (c) are mainly due
to the conductive component −(De/kBT )ρs(x,r)∂xψ(x,r) of
the electric current Eq. (S5) which depends not only on the salt
concentration ρs(x,r) but also the electric field −∇ψ(x,r). In-
specting Fig. S6, where we plot the ∆P-dependence of the cur-
rent, the salt concentration, and the electric field at x = 0.9L
all normalized by their values at vanishing pressure drop, we
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FIG. S4. (a) Laterally averaged concentration ⟨ρ̄s⟩ normalized by
(σ/Rt)(e∆ψ/kBT ) for varying tip-base ratio Rt/Rb with the Péclet
number between curves varying by 101/2 with the yellow curve cor-
responding to Pe= 103 and blue curve with Pe=10−1 closely match-
ing Eq. (S13). Blue points denote optimal tip-to-base ratios for Pe∈
[10−1,105] and red points denote optima for Pe∈ [−10−1,−105],
with optimal ratios Rt/Rb ≪ 1 corresponding to Pe≫ 1. (b) Opti-
mal tip-to-base ratio for varying Péclet in log-linear representation,
with red points at negative Pe and blue at positive Pe. Black lines rep-
resent power-laws whose scaling is found was found in (c) by fitting
the data in log-log representation. For large positive Pe the optimal
tip-to-base ratio scales as Rt/Rb ≃ 2.5|Pe|−0.9 while for large nega-
tive Pe it is well approximated by Rt/Rb ≃ 0.9|Pe|−0.55.

indeed find that both the salt concentration ρ̄s as well as the
electric field −∂xψ̄ vary with ∆P. However, we find that the
variation of the electric field is ∼ 5 times smaller than the
change of concentration with pressure, and actually opposes
the non-linearity of the conduction current for ∆ψ =−0.4V.
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FIG. S5. Total pressure excess diffusive, conductive, advection and
net electric current (respectively Dif, Cond, Adv and IP) at x = 0.9L
from numerical solutions of the full PNPS equations (S1)-(S6) as
function of the pressure drop ∆P offset by the current at ∆P = 0 for
our standard set of parameters in the main text. For (a) where ∆ψ = 0
the current is linear in ∆P and dominated by the advective current.
For (b) and (c), where respectively ∆ψ = +0.4V and ∆ψ = −0.4V,
the current is non-linear for low pressure drops (|∆P|<50 mbar) and
here conductive current dominates the non-linear pressure-current re-
lation, with diffusive and advective components only marginally con-
tributing. At large pressures the net current is again dominated by the
advective, streaming current, current which follows the same linear
trend found for ∆ψ = 0.

As the change in electric field actually counter-acts the non-
linearity observed in the electric current we conclude that the
∆P dependency of ∂xψ̄ cannot be the dominant driving force
behind the non-linear current I(∆P). This suggests that the
non-linear current I can be essentially understood by consid-
ering the dependency of the salt density ρs on ∆ψ and ∆P,
with the space charge density ρe outside of the EDL only con-
tributing minutely to the non-linearity both through diffusive
Idif and advective Iadv currents as well as pressure dependent
electric field −∂xψ̄ . Hence Fig. S6 shows that dependency
of space charge ρe on ∆P only leads to negligible variation
in the magnitude of diffusive and advective current Idif and
Iadv as seen in Fig. S5(b) and (c). The conclusion that space
charge is negligible is based on an empirical observation of
numerical results, so we cannot rule out that there are regimes

in which space charge does dominate the non-linear current.
However, as we have chosen a set of parameters to repro-
duce the experimental set-up of Ref.1 we can conclude that
for this specific set of experiments space charge is negligible
and not of key importance to the non-linear current I(∆P).
We conclude from these numerical results that (i) the con-
ductive component of the electric current is responsible for
the extremely mechanosensitive current observed in experi-
ments, (ii) changes in the electric field and space-charge den-
sity with pressure are small and can be neglected, and (iii) the
pressure-sensitivity of the electric-field and space charge ac-
tually (weakly) oppose the non-linear conduction current and
thus cannot be responsible for the observed non-linear current.
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FIG. S6. Pressure drop dependence of the cross-sectional averaged
electric field ∂xψ̄ , salt concentration ρ̄s, and total current I, all nor-
malized with their respective values at ∆P = 0, at lateral position
x = 0.9L and for a potential ∆ψ = 0.4V, as obtained from numeri-
cal solutions of the full PNPS equations (S1)-(S6) for our standard
parameter set (see main text). The relative deviations from unity are
much larger for the salt concentration and the current than for the
electric field; in fact the current correlates well with the salt concen-
tration and even anti-correlates with the electric field.
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