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While important for many industrial applications, chemical reactions responsible for the charging of
solids in water are often poorly understood. We theoretically investigate the charging kinetics of solid-
liquid interfaces and find that the time-dependent equilibration of surface charge contains key information
not only on the reaction mechanism, but also on the valency of the reacting ions. We construct a nonlinear
differential equation describing surface charging by combining chemical Langmuir kinetics and
electrostatic Poisson-Boltzmann theory. Our results reveal a clear distinction between late-time (near-
equilibrium) and short-time (far-from-equilibrium) relaxation rates, the ratio of which contains information
on the charge valency and ad- or desorption mechanism of the charging process. Similarly, we find that
single-ion reactions can be distinguished from two-ion reactions, as the latter show an inflection point
during equilibration. Interestingly, such inflection points are characteristic of autocatalytic reactions, and
we conclude that the Coulombic ion-surface interaction is an autocatalytic feedback mechanism.
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Charged solid-liquid interfaces play a central role in a
wide variety of industries such as food and coating
production [1–3], mining [4–6], medicine [7–9], soil
remediation [10–12], and even carbon capture [13]. With
the advent of nanoscale fluidics, one expects that charged
surfaces will become ever more important [14,15]. In water
and other polar solvents, chemical reactions are a common
mechanism by which surfaces obtain their charge. For ionic
solids, the de- or adsorption of a dissolved ionic compound
is often preferred over the sorption of its own counterion
[16–18]; for covalent solids such as polymers and metal
oxides, the acidic nature of surface groups ensures that the
surface (de)protonates in polar solvents and hence becomes
charged [17–21]. However, for many processes of indus-
trial and environmental importance, relatively little is
known about the surface chemistry [17–19], as the electro-
lytes in realistic applications contain a large variety of ions
that can all undergo multiple reactions [17,18,22]. Due to
experimental limitations, the majority of studies investigat-
ing surface charging are performed at (quasi)equilibrium
conditions [17,18], with the notable exception of pressure-
jump experiments [23,24]. Only recently, however, it has
been shown that the kinetics of chemical surface reactions
can strongly couple to electrokinetic fluid flows, thereby
affecting the physical surface properties on macroscopic
scales [18,25–29]. Furthermore, with the recent advent
of fast and surface-specific nonlinear spectroscopy, the
dynamic measurement of surface charge has become
feasible [29–34]. In this context, it has been explicitly
stated that there is an urgent need for theoretical models to

describe such experiments [35]. Traditionally, sorption
kinetics is typically described by (pseudo-)first-order reac-
tions [12,36,37] that exhibit single-exponential relaxation
towards equilibrium; the influence of a time-dependent
surface charge is usually neglected entirely [35,38,39]. We
are aware of one theoretical work [40] and associated
review [41] that consider a surface charge that affects the
rate constants of ion association, which, however, do not
consider the (chemistry-specific) nonlinear dynamics
induced by the electrostatic feedback as we do here.
In this Letter, we present a theory for the charging

dynamics of solid surfaces. We include the Coulombic ion-
surface interactions and reveal an intricate dependence on
the reaction mechanism and the valency of the reactive ions
already present in a mean-field description. The Coulomb
interactions not only affect the time constant of the late-
time exponential decay of the surface charge towards
equilibrium after an ion concentration (or pH) shock, but
they also induce strongly nonlinear dynamics at early times
far from equilibrium. Combined with the present-day
capability to experimentally measure the time-dependent
surface charge density, our theory forms a first step to
unveil the surface chemistry of technologically important
but ill-understood materials [18,35], such as silica [22,42]
and graphene [43], and of processes such as the cleanup of
radioactive and heavy metals [10,16,44,45].
Surfaces—for instance, silica—in water commonly

charge either by the desorption of ionic species from
neutral surface groups or by the adsorption of ionic species
onto neutral surfaces. While the exact charging mechanism
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of the silica-water interface is complex, there is support for
charging by desorption of protons at high pH and adsorp-
tion of protons at low pH [22,42,46,47]:

SiOHðsÞ⇌
kd

kaρ
SiO−

ðsÞ þ Hþ
ðaqÞ; ð1aÞ

SiOHðsÞ þ Hþ
ðaqÞ ⇌

kaρ

kd
SiOHþ

2ðsÞ; ð1bÞ

where SiOHðsÞ is a neutral silanol group that is covalently
bound to the (solid) glass, and where SiO−

ðsÞ and SiOHþ
2ðsÞ

denote a silanol group with a proton desorbed or adsorbed
in Eqs. (1a) and (1b), respectively. Here, ρ denotes the
proton density at the solid surface, and the dissociation and
association rates kd and ka will be discussed below for the
charging kinetics of a single desorptive and a single
adsorptive reaction, not only for monovalent reactive ions
as in Eqs. (1a) and (1b), but for general valency z. While
adsorption isotherms of real materials can rarely be
described by just a single charging reaction [16,47], we
show in the Supplemental Material [48] that charging by
multiple reactions can actually be well approximated by the
single-reaction kinetics presented in this Letter for a wide
range of experimental conditions.
We consider a macroscopic surface with a density Γ of

identical surface groups. A group can only be in either a
neutral or a charged state. The charging is assumed to take
place either by desorption (labeled by −) of a cation of
charge ze, or by adsorption (labeled by þ) of a cation of
charge ze, with z ≥ 0 and e the proton charge. The surface
densities of charged and neutral groups are denoted by
σ� > 0 and Γ − σ� > 0, respectively, and the surface
charge density is given by �zeσ�. Note that the charging
dynamics is invariant under the sign of the reacting ions,
and without loss of generality we can restrict attention to
reactive cations of (strictly positive) valency z. Assuming
the chargeable surface sites to be independent, we can
describe the reaction kinetics in terms of the time-
dependent surface density σ�ðtÞ > 0, which satisfies
Langmuir kinetics described by [51,52]

∂tσ− ¼ kdðΓ − σ−Þ − kaσ−ρðσ−Þ ð2aÞ

for desorptive charging reaction (1a), and

∂tσþ ¼ kaðΓ − σþÞρðσþÞ − kdσþ ð2bÞ

for adsorptive charging reaction (1b). Here, kd and ka are
the rate constants of the dissociation and association of the
reactive ion, and ρðσ�Þ is the volumetric concentration of
reactive ions at the surface, which is defined at the position
where the rate-limiting step for the reaction occurs [52,53].
We consider this surface to be impermeable to nonreacting
ions and therefore do not account for any Stern layer other

than the charged surface groups [27]. The equilibrium
surface charge follows from ∂tσ� ¼ 0 and is given by
σ�;eq ¼ Γð1þ ðkaρeq=kdÞ∓1Þ−1, which reduces to an
explicit “Langmuir isotherm” in the case that the equilib-
rium concentration of the reactive ions ρeq ≡ ρðσ�;eqÞ is a
constant independent of σ�;eq. In general, however, this
Langmuir isotherm is a self-consistency equation for σ�;eq

that requires an additional “closure” relation ρðσ�Þ for an
explicit equilibrium solution σ�;eq. Without (Coulombic)
interactions between the surface and ions, the local con-
centration ρðσ�Þ of reactive species in the vicinity of the
surface would be equal to the bulk concentration ρb of the
reactive ions far from the surface (which is independent of
σ�, and hence also independent from the reaction mecha-
nism), such that Eqs. (2a) and (2b) would be linear
differential equations whose solution can be written
as s�ðtÞ ¼ 1þ ðs�ð0Þ − 1Þ exp½−ðkd þ kaρbÞt� with the
dimensionless charge s� ¼ σ�=σ�;eq such that s�;eq ¼ 1;
here, s�ð0Þ − 1 is the integration constant and denotes the
relative deviation from equilibrium at the initial time t ¼ 0.
Note that the condition that 0 ≤ σ�ðtÞ ≤ Γ implies that
0 < s�ð0Þ < Γ=σ�;eq, where the lower bound corresponds
to an initially neutral surface, whereas the upper bound can
be as large as Oð10–100Þ, since typical equilibrium
conditions have a charge occupancy of only a few percent
of the total number of chargeable groups [54]. Thus, from
measurements of σ�ðtÞ at various concentrations of reactive
(dissolved) species, both kd and ka could in this non-
interacting case be determined.
However, as the charged surface attracts or repels

reactive ions, Eqs. (2a) and (2b) are complicated by a
nontrivial relation ρðσ�Þ, which causes a charge-dependent
decay rate and introduces deviations from purely single-
exponential relaxation of σ�ðtÞ. In fact, an explicit function
ρðσ�Þ is needed to investigate and solve the dynamics,
which we will develop here. We consider the planar and
homogeneous chargeable solid surface discussed above in
contact with a bulk solvent with permittivity ε and temper-
ature T with a three-component 1∶1∶z electrolyte of bulk
concentrations ρs∶ðρs − zρbÞ∶ρb. For convenience, we
assume trace amounts of reactive ions and therefore set
ρb ≪ ρs, where ρs is the bulk salt concentration. We also
assume the electrolyte volume to be macroscopically large,
such that ρb and ρs do not change due to surface charging.
Furthermore, we assume the charging timescale τ�, which
remains to be derived, to be the slowest timescale of the
system. Given that the typical timescale for electric double-
layer (EDL) equilibration is around 10−9 − 10−6 s and that
the (geometry- and flow-dependent) transport timescale for
ions in stirred reactors can be as short as 10−4 s [55], we
find a large window τ� ≫ 10−4 s for reactions to be well
described by our (reaction-limited) theory [56]: for exam-
ple, phosphate desorption shows characteristic reaction
timescales of hours [57], and adsorption of transition
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metals can occur on millisecond timescales [23,24]. The
slow-reaction assumption allows us to describe the EDL
within an equilibrium theory, for which we take the Gouy-
Chapman solution of Poisson-Boltzmann (PB) theory for
simplicity [20,58]. Although PB theory is based on a mean-
field assumption for a system of point ions, it is known that
for all but the highest salt concentrations, this theory is
quite accurate for 1∶1 and even 1∶2 aqueous electrolytes
[59], and we expect a similar accuracy for 1∶1∶z electro-
lytes in the limit ρb ≪ ρs of our interest. Within these
assumptions, the concentration of reactive ions at the sur-
face is determined by a Boltzmann distribution ρðσ�Þ ¼
ρb exp½−zϕðσ�Þ�, where kBTϕðσ�Þ=e is the electric poten-
tial at the surface with a surface charge �zeσ�, with kB
being the Boltzmann constant. For desorptive charging, the
surface and ions have opposite charges and hence
zϕðσ−Þ < 0, while for adsorptive charging, the ions and
surface have the same sign, yielding zϕðσþÞ > 0. With this
observation, the Gouy-Chapman solution for a 1∶1 electro-
lyte, which is relevant here as ρs ≫ ρb, gives ϕðσ�Þ ¼
�2sinh−1ðzσ�=σ�Þ [20,58], where σ� ¼ ð2πλBλDÞ−1, with
λB ¼ e2ð4πεkBTÞ−1 being the Bjerrum length of the
solvent and λD ¼ ð8πλBρsÞ−1

2 the Debye screening length.
Substituting the Gouy-Chapman potential in the Boltzmann
factor yields

ρðσ�Þ ¼ ρb exp½−zϕðσ�Þ�

¼ ρb

 
zσ�
σ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
zσ�
σ�

�
2

s !∓2z

; ð3Þ

where the exponent is positive for desorptive charging and
negative for adsorptive charging. Because Eq. (3) is
reaction-mechanism dependent, explicit information on
the charging mechanism can be deduced from the reaction
kinetics as described by combining Eq. (3) with Eqs. (2a)
and (2b).
In order to investigate the influence of the Coulombic

ion-surface interactions on the charging dynamics, we
numerically solve σ−ðtÞ from the kinetic Langmuir-
Gouy-Chapman Eqs. (2a) and (3). The symbols in
Fig. 1(a) present the resulting relative deviations from
equilibrium, s−ðtÞ − 1, for a desorptive reaction in the
experimentally common case of low equilibrium saturation
σ−;eq ≪ Γ, both for s−ðt ¼ 0Þ ¼ 2 and 0.01, corresponding
to a surface with double the charge compared to equilib-
rium and an initially almost uncharged surface, respec-
tively, for equilibrium surface potentials of 50 mV
(jϕeqj ¼ 2, circles) and 100 mV (jϕeqj ¼ 4, crosses), and
for valencies z ¼ 0, 1, 2, 3 indicated by the different colors.
Figure 1(a) shows that a desorptive surface that is over-
charged (s− > 1) decays to equilibrium faster than one that
is undercharged (s− < 1), and the more so for larger
valencies z. Interestingly, the sorption of uncharged species
(z ¼ 0, black symbols) reveals perfect symmetry between

the two cases, as expected for first-order kinetics, which is
also manifest in the semilogarithmic representation of
js−ðtÞ − 1j in the inset of Fig. 1(a) that shows a data
collapse and a single-exponential decay for z ¼ 0. For
z ≥ 1, the inset reveals a nonexponential time dependence
with an initially slower decay for undercharged surfaces
and an initially faster decay for overcharged surfaces, the
difference becoming more pronounced for higher valen-
cies. Figure 1(b) shows the deviation sþðtÞ − 1 from
numerical solutions of Eqs. (2b) and (3) for an adsorptive
charging reaction and the same low equilibrium surface
density σþ;eq ≪ Γ, and the same surface potentials and
valencies as in Fig. 1(a). Interestingly, for this reaction, the
relaxation of an initially undercharged surface to equilib-
rium is faster, rather than slower, as we found for desorptive
undercharged surfaces in Fig. 1(a). Hence, the two mech-
anisms can be distinguished by inspecting a single time-
trace of the surface charge. We do not plot the dynamics of
a desorptive surface that is saturated in equilibrium σ−;eq ≃
Γ (in which case kd ≫ kaρeq), as the equilibration (dis-
sociation) rate for such a surface ∂ts ≃ −kdðs − 1Þ is linear,
and equilibration occurs through trivial single-exponential
decay. The lack of nonlinearity for such a surface stems
from the fact that the dissociation process is unaffected by
the electrostatic surface-ion interaction. However, as can be
seen in Fig. 1(c), the dynamics of an adsorptively charged
surface with a saturated charge density σþ;eq ≃ Γ is mark-
edly nonlinear. As was the case in Fig. 1(b), we see that an
undercharged surface equilibrates faster than a single
exponential. Clearly, these rather distinctive features of
the time-dependent surface charge contain explicit infor-
mation on not only the reaction mechanism but also the
valency of reacting ions. Interestingly, such deviations from
single-exponential decay have historically been observed in

FIG. 1. Time-dependent relative deviations s�ðtÞ − 1 from the
equilibrium charge density as follows from the kinetic Langmuir-
Gouy-Chapman equations (2a) and (3) in (a), and Eqs. (2b) and
(3) in (b) and (c), for equilibrium zeta potentials ðkBT=eÞjϕeqj
equal to 50 mV (crosses) and 100 mV (circles) for valencies
z ¼ 0, 1, 2, 3 (colors), in (a) s−ðtÞ for desorptive reactions when
σ−;eq ≪ Γ, in (b) sþðtÞ for adsorptive reactions when σþ;eq ≪ Γ,
and in (c) sþðtÞ for adsorptive reactions when σþ;eq ≃ Γ. Insets
denote semilogarithmic representations of js�ðtÞ − 1j. The case
σ−;eq ≃ Γ (not shown) is trivial, with single-exponential decay
for all z.
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pressure-jump experiments [23,24]. In the Supplemental
Material [48], we show that these experiments are well
described by our theory, alleviating the need of introducing
multiple reactions to describe such experiments.
In Figs. 1(a) and 1(b), the dimensionless time on the

horizontal axes contains a factor (2zþ 1), which as we will
show now, is convenient, as it leads to a data collapse in the
asymptotic nonlinear screening regime jϕeqj ≫ 1, where
s�ðtÞ only depends on the valency, the reaction mechanism,
and the initial charge state. To see why the near-equilibrium
decay rate includes a factor (2zþ 1) in Figs. 1(a) and 1(b),
but not 1(c), we simplify the Langmuir-Gouy-Chapman
equations (2a), (2b), and (3) in the important and common
case of large equilibrium surface potentials, where
zσ=σ� > 1—say, beyond 50 mV, where jϕeqj ≥ 2. In this
limit, Eqs. (2a) and (2b) can be rewritten as a single
polynomial (Chini [60]) differential equation:

−∂ts� ¼ kaρeqðs1∓2z
� − s−z∓z

� Þ þ kdðs� − s−z∓z
� Þ; ð4Þ

for which a closed form solution can be obtained by the
separation of variables only for an adsorptively charged
surface with kd ≫ kaρeq, in which case s2zþ1

þ ðtÞ ¼
1þ ðs2zþ1

þ ð0Þ − 1Þ exp½−ð2zþ 1Þkdt�. Near equilibrium,
s� ≃ 1, Eq. (4) simplifies to the linear differential equation
∂ts� ≃ −ðs� − 1Þ=τ� with the near-equilibrium decay
rate for desorptive and adsorptive charging given, respec-
tively, by

τ−1− ¼ ð2zþ 1Þkaρeq þ kd; ð5aÞ

τ−1þ ¼ ð2zþ 1Þkd þ kaρeq: ð5bÞ

As announced, this timescale τ� shows that electrostatic
attraction can alter the linear, near-equilibrium decay rate
by a factor (2zþ 1) for z ≥ 1 compared to the neutral case
(z ¼ 0) in the experimentally common regime
ðkaρeq=kdÞ∓1 ≫ 1, where σ�;eq ≪ Γ. As for the majority
of surfaces, the equilibrium charge is much lower than
saturation, σeq ≪ Γ [54], so we expect the correction by a
factor (2zþ 1) to be common, and we note in passing that
the only other work focusing on the influence of
Coulombic ion-surface interactions on kinetics [40,41]
does not mention this factor. As already observed in
Fig. 1, our simple Eq. (4) shows that far from equilibrium,
the dynamics becomes nonlinear, and importantly, the
� sign of the reaction mechanism breaks the near-
equilibrium symmetry of dynamics with regard to a charge
excess or a charge deficit. As can be seen from Eq. (3),
desorptively charged surfaces which are overcharged,
s− > 1, will initially attract an excess of reactive ions to
the surface, thereby having an increased reaction rate
compared to uncharged equilibration. Hence, the equili-
bration for large overcharging is faster than expected from
uncharged Langmuir kinetics. Conversely, an initially

undercharged surface, s− < 1, will have a shortage of
reactive ions, and thus equilibration will be slower. For
adsorptively charged surfaces, equilibration will be non-
linear regardless of σeq=Γ, and here undercharging leads to
a shortage of reactive ions compared to equilibrium, and
hence faster equilibration, as can be seen in Fig. 1(b). The
rate changing during equilibration is reminiscent of auto-
catalytic reactions where the equilibration rate changes
because a catalyst speeding up the reaction is produced
simultaneously with a reaction product [61–63], and in the
Supplemental Material [48] we demonstrate the similarity
between Eq. (4) and autocatalytic kinetics. A characteristic
feature of such autocatalytic reactions is an increasing
decay rate up to a maximum and a corresponding inflection
point in the time-dependent decay.
Interestingly, for so-called ion displacement reactions in

which ions are involved in both the forward- and the
backreaction, inflection points are easily realizable, as there
are now two ions attracted or repelled from the charged
surface such that the Coulombic feedback is strengthened:
inflection points are hence a smoking gun that multiple ions
are involved in a charging reaction. An example of a two-
ion reaction where all reacting ions are repelled from the
charged surface is the calcium charging of silica [42] of
Eq. (6a), while an example of a reaction where all the
reacting ions are attracted to the charged surface is the
fluoride charging of the biomineral carbonato-apatite [64]
of Eq. (6b):

SiOHðsÞ þ Ca2þðaqÞ ⇌
kfρCa

kbρH
SiOCaþðsÞ þ Hþ

ðaqÞ; ð6aÞ

XCO3ðsÞ þ F−ðaqÞ ⇌
kfρF

kbρCO
XFþðsÞ þ CO3

2−
ðaqÞ; ð6bÞ

where X ¼ Ca10ðPO4Þ6, kf is the forward (charging)
reaction rate, kb is the backward (decharging) rate, and
ρi is the concentration of ion species i at the charged
surface. In the Supplemental Material [48], we derive under
the same Gouy-Chapman and large surface potential
conditions of the main text that the charge equilibrations
for Eqs. (6a) and (6b) are respectively described by

− ∂ts ¼ kfρCa;eqðs−3 − s−4Þ þ kbρH;eqðs−1 − s−4Þ; ð7aÞ

− ∂ts ¼ kfρF;eqðs3 − s2Þ þ kbρCO;eqðs5 − s2Þ; ð7bÞ

with the resulting near-equilibrium decay constant τ ¼
kfρi;eq þ 3kbρj;eq for both reactions. Comparing Eqs. (7a)
and (7b) to Eq. (4), we see that now the time evolution is
given by the difference of two polynomials of (nonzero)
unequal degree, ensuring that there is always a maximum in
the decay rate and hence an inflection point. We find that
reactions of the form in Eq. (6b) have two physically
realizable inflection points located at s ¼ 2=3 (if σeq ≃ Γ)
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and s ¼ ð2=5Þ1=3 ≃ 0.75 (if σeq ≪ Γ): the reaction in
Eq. (6a) has only one accessible inflection point s ¼ 41=3 ≃
1.6 (if σeq ≪ Γ), while its second inflection point s ¼ 4=3
is inaccessible for a saturated surface with σeq ≃ Γ.
We plot the dynamics resulting from Eqs. (7a) and (7b)

for a variety of starting conditions sð0Þ in Fig. 2 in the
experimentally common limit σeq ≪ Γ. In Fig. 2(a), excel-
lent agreement between the asymptotic Eq. (7a) and full
numerical results can be seen, while in Fig. 2(b) for large
undercharging sð0Þ < 0.2, a discrepancy between Eq. (7b)
and the full numeric solution is found. However, in general,
Eqs. (7a) and (7b) predict the location of the inflection
point accurately for a range of common surface potentials
ðkBT=eÞjϕ0j ∈ ½50; 100� mV. For ion-displacement reac-
tions of the forms in Eqs. (6a) and (6b) involving ions with
higher valencies but monovalent surface charge, the
inflection point will lie even closer to equilibrium. Thus,
surfaces that are initially undercharged by only ≃25% or
overcharged by ≃60% will generally equilibrate along
sigmoidal curves, which is a distinguishing feature that
cannot be observed for the single-ion reactions in Eqs. (1a)
and (1b). Finally, we note that ion-displacement reactions
offer a simple explanation for the recently observed
sigmoidal equilibration of the surface charge at an aqueous
silica interface [63] using only a single charging reaction of
the form Eq. (6a) rather than the proposed autocatalytic
dissolution cycle involving multiple steps.
To summarize, in this Letter we present a model for the

nonlinear dynamics of reaction-limited surface charging,
combining Langmuir dynamics with Poisson-Boltzmann
theory. The model captures how the screened electrostatic
surface-ion interaction affects the reaction rate near and far
from equilibrium in terms of a nonlinear differential
equation, where the electrostatic interaction is described
by only using the charge valency of the reactive ion. The

Coulombic ion-surface interaction leads to a charge-de-
pendent decay rate, which can be used to gain information
on the valency of reacting ions, initial charge, and reaction
rate. De- and adsorptive reactions can be distinguished by
inspecting whether far-from-equilibrium decay is slower or
faster than near-equilibrium decay, while an inflection point
is characteristic for two-ion reactions. Interestingly, we note
that inflection points are a characteristic feature of auto-
catalytic reactions and that the electrostatic ion-surface
interaction can be seen as a catalytic feedback loop. Hence,
electrostatics offers a straightforward explanation for the
recently measured autocatalytic charging of silica [63].
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