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I. WHEN CAN MULTIPLE REACTIONS BE DESCRIBED
BY SINGLE-REACTION KINETICS?

The single-reaction (one-pKa) charging reaction presented
in this Letter is a simplified representation for many real
liquid-solid interfaces, which often require multiple surface
charging reactions for the reproduction of measured equilib-
rium Langmuir isotherms[1–4]. In this Supplemental Material
we show that for a wide range of conditions a two-reaction
model is well approximated by the single-reaction model pre-
sented in this Letter. For simplicity we will consider a two-
reaction (two-pKa) system with two distinct surface-sites la-
beled (SiOH)1 and (SiOH)2, charged by similar desorptive
surface reactions but with different ad- and desorption rates

(SiOH)1
kd1−−⇀↽−−
ka1ρ

(SiO−)1 +H+
(aq), (S1a)

(SiOH)2
kd2−−⇀↽−−
ka2ρ

(SiO−)2 +H+
(aq), (S1b)

and hence the sites have different equilibrium areal densities
σeq,1 ̸= σeq,2 if the site densities Γi or equilibrium constants
Ki = ka,iρ/kd,i are unequal. The Langmuir equation describ-
ing their charging kinetics is

∂tσ1 = kd1(Γ1 −σ1)− ka1ρ(σe)σ1, (S2a)
∂tσ2 = kd2(Γ2 −σ2)− ka2ρ(σe)σ2, (S2b)

with the resulting areal charge density σe = σ1 + σ2 cou-
pling the two reactions. As both reactions have the same reac-
tive ion (H+) a concentration change ∆ρ at the surface would
cause the equilibrium to shift for both reactions, and the equi-
libration kinetics resulting after this concentration shift would
in principle need to be described by the two coupled non-
linear differential equations (S2a) and (S2b) as they are cou-
pled by the Gouy-Chapman “closure”, given by Eq. (3) in the
Letter. However, here we show that if the two reactions have
dissimilar equilibrium constants Ki or site densities Γi one of
the two differential equations can almost always be neglected,
as when the equilibrium constants differ so does the shift
in equilibrium charge density ∆σi = σeq,i(ρ +∆ρ)−σeq,i(ρ)
for a given concentration shock ∆ρ . When the difference
in equilibrium charge densities of the two sites is very un-
equal (either ∆σ1 ≫ ∆σ2 or ∆σ1 ≪ ∆σ2) the change in sur-
face charge can be described using a single reaction model
(as ∂tσe ≃ ∂tσ1 or ∂tσe ≃ ∂tσ2). Solving for the coupled-
Langmuir kinetics Eq. (2) in steady-state, ∂tσi = 0, we find for
σi,eq ≪ Γi that the relative change in the equilibrium surface
charge ∆σ1/∆σ2 ∝ (Γ1K1)/(Γ2K2) while for nearly saturated
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Figure S1. Replotting of Fig.1(a) showing charge relaxation for ion
valencies z = 0,1,2,3 (respectively black, blue, red, green) calcu-
lated with curves not originating from Eq. (4) in the main Letter but
instead plotted using Eq. (S5) with dimensionless static background-
charge x ∈ [0,1]. The outermost curves with x = 0 revert exactly to
those described by Eq. (4) in the main Letter, while curves with x = 1
lie significantly closer to the black curve showing single-exponential
relaxation, with intermediate x lying in the shaded region. Note that
the near-equilibrium decay rate has changed from (2z+ 1)kaρeq to
(z+1+ x)(1+ x)2z−1kaρeq which for z = 3 and x = 1 yields a factor
32 difference in the near-equilibrium decay rate. In general however
for small x the charging kinetics is well described by the single reac-
tion of Eq. (4) in the main Letter.

surfaces with σeq ≈ Γ the relative shift scales as ∆σ1/∆σ2 ∝

(Γ1K2)/(Γ2K1). As long as ∆σ1/∆σ2 deviates significantly
from unity, the shift in one of the two equilibrium-densities
can be neglected for the shift in the total charge density. To
find an explicit maximum bound for which this approxima-
tion is valid we calculate the maximum concentration shock
∆ρm ∈ ρ[−1,∞] for which this approximation holds by solv-
ing for ∆σ1/∆σ2 = 1. This has a trivial solution ∆ρ = 0 when
Γ1 = Γ2 and K1 = K2 and a non-trivial solution

∆ρm

ρ
=

1
K1K2ρ2

Γ1K1ρ −Γ2K2ρ

Γ2(1+K1ρ)−Γ1(1+K2ρ)
−

Γ1(2+K2ρ)−Γ2(2+K1ρ)

Γ1(1+K2ρ)−Γ2(1+K2ρ)
,

(S3)

which simplifies to ∆ρm/ρ = (K1K2ρ2)−1 − 1 in the case
that Γ1 ≃ Γ2. In general, the range of validity of Eq. (S3)
is large when K1 and K2 are very unequal, except close
to a concentration where ρ2K1K2 = 1 where ∆ρm tends to
zero. Interestingly, in this case the charge density is exactly
half-occupied σe = (Γ1 + Γ2)/2, which is rare for most
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experimental conditions. For all other concentrations ρ a
very large range ∆ρm/ρ of concentration shocks remains over
which a two-reaction system essentially equilibrates through
a single charging reaction. However, while the dynamics
will be governed by a single reaction, there will be a static
background charge due to which σ1 ̸= σe such that the single
reaction is still not exactly equal to the single-reaction kinet-
ics in the Letter. That the deviation from the single-reaction
kinetics in the Letter due to this static background charge is
minor will be shown in the next paragraph.

As the total surface charge density (in units of the elemen-
tary charge) is given by σe = σ1 + σ2, the Gouy-Chapman
relation (Eq. (3) in the Letter) between the surface occupancy
σ1 and concentration ρ for two reactions now reads

ρ(σ1) =

(
z(σ1 +σ2)

σ∗ +

√
1+

(
z(σ1 +σ2)

σ∗

)2)2z

. (S4)

As discussed in the previous section we will now assume that
∆ρ ≪ ∆ρm and without loss of generality we identify σeq,2 as
the static-charge density (∆σ1/∆σ2 ≫ 1) from which follows
σ2 ≃ σeq,2(ρ) ≃ σeq,2(ρ +∆ρ) = cnst. The non-dimensional
change in total surface charge will then be ∂tse = ∂tσe/σeq,e ≃
∂tσ1/σeq,e and when σeq,e ≫ σ∗ by combining Eq. (S2a) and
Eq. (S4) we find

−∂tse = kd1(se −1)+ ka1ρeq
(
se(se + x)2z − (1+ x)2z), (S5)

where the dimensionless static surface charge density
x = σeq,2/σeq,e ∈ [0,1] is the ratio of static charge
σeq,2(ρ + ∆ρ) after the concentration shock. Interest-
ingly, the near-equilibrium decay rate τ− is altered from
(2z + 1)kaρeq to (2z + 1 + x)(1 + x)2z−1kaρeq and hence
the deviation from uncharged Langmuir kinetics becomes
even larger if the background surface charge is included.
Clearly both the timescale and dynamics revert back to the
single-reaction kinetics of Eq. (4) in the Letter when x ≪ 1.
To check how much the dynamics is affected at intermediate
x we replot Fig.1(a) in the Letter but now with Eq. (S5)
with z = 0,1,2,3 (black, blue, red, green) and s = 1 and
s = −0.99 instead of Eq. (4). The resulting shaded regions
in Fig.S1 represent curves with different x ∈ [0,1]. We
observe that for increasing x the dynamics moves closer to
single-exponential decay (black line), with this shift being
more pronounced for increasing z. However, even for x = 1
there is no over-dramatic difference from the single-reaction
kinetics explored in the Letter and in many cases a two-
reaction system is well approximated by the single-reaction
model in the Letter. However one should be cautious when
extracting the ion valency from dynamics around x ≃ 1 as
here the dynamics closely resembles that of a single ion with
z − 1. We expect this may occur in processes such as the
adsorption of heavy metal ions from ground water which
occurs on pre-charged substrates [3]. Under these condi-
tions surface charging can be readily described using Eq. (S5).

To summarize, here we have shown that the one-pKa charg-
ing reaction is a valid approximation for more complex sys-

tems, involving multiple charging reactions, when (i) the ratio
of the equilibrium constant K1/K2 is not close to unity and (ii)
the concentration shock ∆ρ is constrained within a range ∆ρm
which we show to be generally large.

II. SURFACE CHARGING KINETICS FROM
PRESSURE-JUMP EXPERIMENTS

While experimental investigations of surface charging
kinetics are rare, several kinetic studies employing a pressure-
jump technique exist [5, 6]. In such an experiment a mixture
of colloidal particles and aqueous electrolytes is slowly
pressurized to more than 1 MPa, thereby shifting the surface
reactions at the colloidal surface to a high-pressure equilib-
rium. When this pressure is suddenly released, the solution
pressure converges to atmospheric pressure in ≃ 0.1 ms.
After this jump, the colloidal surface charge must revert from
its high-pressure equilibrium to its atmospheric equilibrium.
The change in surface charge is measured indirectly, by using
the solution conductance as a proxy for the surface charge.
While it is unclear what the exact relation between charge
and conductance is, a linear relation is often assumed [6].

Of particular interest is a set of experiments where the ad-
sorption of divalent transition metals such as Cu2+, Pb2+,
Mn2+, and Co2+ onto γ-alumina (Al2O3) particles is studied.
Here the authors reject simplest adsorption mechanism, for
Cu2+ given by

AlOH(s)+Cu2+
(aq)

kaρ−−⇀↽−−
kd

AlOHCu2+
(s) , (S5)

because this single-step reaction does not show single-
exponential decay [5]. Their theoretical model used for anal-
ysis fixes the surface (zeta) potential, and hence they find that
multiple reactions are needed to explain the observed charge
equilibration [5–7]. While their analysis is valid for fixed
surface potential, for a potential varying with surface charge
we actually expect deviations from single-exponential decay,
as shown by Eq. (4) in our Letter. The Langmuir-Gouy-
Chapman dynamics of reaction (S5) with z = 2 for surface
potentials larger than 50 mV is given by

−∂ts+ = kaρeq

(
s−3
+ − s−4

+

)
+ kd

(
s+− s−4

+

)
. (S6)

To test whether the non-linear dynamics observed in the
pressure-jump experiment are explained by Eq. (S6), we ex-
tract the experimental data from the relevant pressure-jump
experiment for copper adsorption (Fig.1 in Ref. [5]). In this
experiment it is found that the conductivity after the pres-
sure jump decreases and reaches a constant value within 200
ms. In Fig.S2 we compare the experimental data (symbols)
with equilibration expected from Eq. (S6) (black line), where
we assume the experimentally common case where σeq ≪ Γ

and extract the reaction time τ+ = (5kd)
−1 ≃ 27 ms from

the single-exponential, late time, relaxation (green line). As
the final equilibrium charge density is not measured in a
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Figure S2. Comparison between experimental data from Fig.1 of
Ref. [5] (symbols), single exponential decay (green) and non-linear
dynamics (black, Eq. (S6) with initial degree of undercharging s(0)−
1 = −0.6. The reaction time τ+ ≃ 27 ms is fitted from the late time
decay, yielding k−1

d ≃ 135 ms. Inset shows the same data in a semi-
logarithmic representation.

pressure-jump experiment we use the degree of undercharg-
ing s(0)− 1 ≃ −0.6 as a fit parameter, where we note that
an undercharged surface naturally explains why conductivity
decreases: during equilibration mobile copper ions are taken
out of solution. It can be seen that the difference between the
single exponential decay (green) and experimental data (sym-
bols) is large, but that Eq. (S6) (black) can naturally explain
a large part of the deviation from single-exponential decay,
without needing to introduce a second reaction with a differ-
ent timescale.

While further analysis is required to reinstate reaction
mechanism (S5), our analysis shows the importance of taking
Coulombic surface-ion interactions into account when consid-
ering kinetics. Not only do we show that non-linear decay is
readily captured by our model, also the desorption time k−1

d
is five times slower than the late-time decay τ+, in this diva-
lent case. Furthermore, we have demonstrated that chemical
information can easily be extracted from a single equilibra-
tion curve, even when the initial degree of undercharging is
unknown.

III. SIMILARITY BETWEEN SURFACE CHARGING AND
AUTOCATALYTIC KINETICS

Here we we will show the similarity between classical auto-
catalytic kinetics and surface charging as described by Eq. (4)
in the Letter. First we derive an approximate solution for this
Chini differential Eq. (4) in the main text, by expanding it up
to second order around s = 1 obtaining a Bernoulli differen-
tial equation (Supplementary Ref.[8]). Solving this equation

by standard methods we obtain

s±(t)−1 =

(s±(0)−1)e−t/τ±

1∓ z
(
1− e−t/τ±

)(
s±(0)−1± s±(0)−1

(2z+1)(kd/kaρeq)±1 +1

) ,

(S7)

where τ± is given by Eq. (5) in the Letter. Our Eq. (S7)
reverts to single exponential decay when (s±(0)− 1)z ≪ 1,
and is valid only as long as ∓z(s±(0)− 1) ≫ −1. For most
practical purposes Eq. (S7) is not of much use, however it is
interesting to note that a similar solution exists for autocat-
alytic equations thereby substantiating the claim that surface
charging is autocatalytic. To make this comparison explicit we
consider the simplest possible autocatalytic reaction (Eq. (1a’)
from Ref.[9]),

A(aq)+Y(aq)
kfρAρY−−−−⇀↽−−−−

kbρ
q
Y

q Y(aq) (S8)

where the aqueous reactant Y(aq) together with reactant A(aq)
produces q copies of itself. The reaction is autocatalytic when
the autocatalytic order q ≥ 2. When the concentration ρA is
constant the production rate of Y(aq) is given by the Chini dif-
ferential equation

−∂ty = kfρA(yq − y), (S9)

with y= ρY/ρY,eq, which already shows similarities to Eq. (4)
in the Letter. To obtain a solvable Bernoulli equation we ex-
pand Eq. (S9) up to second order around x = 1, which has the
solution

y(t)−1 =
(y(0)−1)e−t/τy

1− q
2
(y(0)−1)(1− e−t/τy)

, (S10)

with τy = (q− 1)kfρA. While Eq. (S10) is already very sim-
ilar to Eq. (S7), the similarity becomes even more apparent
when comparing the autocatalytic dynamics to the dynam-
ics of an adsorptively charged surface with σ+,eq ≪ Γ (where
kd ≫ kaρeq) in which case Eq. (S7) simplifies to

s+(t)−1 =
(s+(0)−1)e−t/τ+

1− z(s+(0)−1)(1− e−t/τ+)
. (S11)

Comparing Eq. (S10) with Eq. (S11) we find the only dif-
ference is the definition of the timescale τi and that the ion-
valency z replaces the autocatalytic order q/2. This corre-
spondence between the ion valency z and autocatalytic order
q supports the interpretation that the Coulombic ion-surface
interactions acts autocatalytically.

IV. CHARGING DYNAMICS OF ION DISPLACEMENT
REACTIONS

Here we will generalize the derivation of Eq. (4) in the main
text from single-ion reactions to two-ion reaction also known
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as ion-displacement reactions, yielding Eq. (7) in the main
text. We will consider a general form for the single-step ion-
displacement reaction where an aqueous ion A–ZA

(aq) displaces

from the (uncharged) surface group SB(s) the ion B–ZB
(aq), leav-

ing a charged surface site SA–ZA−–ZB
(s) combining into the reaction

SB(s)+A–ZA
(aq)

kfρA−−−⇀↽−−−
kbρB

S–ZA−–ZB
(s) +B–ZB

(aq), (S12)

where –ZA and –ZB are the valencies of ad- and desorbing ions A
and B respectively , which contrary to the ion-valency zi in the
main text is here not considered to be strictly positive as the
total charge difference between A and B is important. The re-
sulting charge of the surface groups is given by –ZS = –ZA −–ZB,
such that the surface charge is eσ–ZS. As in the main text, the
charging dynamics will be described by Langmuir kinetics,
which assumes identical and independent surface sites such
that

∂tσ = kAρA(σ)(Γ−σ)− kBρB(σ)σ . (S13)

Note that now both terms contain the non-trivial ρ(σ) depen-
dence, which allows for sigmoidal equilibration as discussed

in the Letter. For ρ(σ) we use the Gouy-Chapman expression

ρi(σ) = ρb,i

(
zSσ

σ∗ +

√
1+(

zSσ

σ∗ )2

)±2zi

, (S14)

where zi = |–Zi|. The exponent for ρi is positive when –Zi–ZS < 0
and negative when –Zi–ZS > 0. When –Zi–ZS = 0 the dynamics
revert to the single-ion charging reaction in the main text. In
the high charge limit |φeq|> 2 (when zSσeq/σ∗ > 1) we find

−∂ts = kAρA,eq(s1±2zA − s±2zA)+ kBρB,eq
(
s1±2zB − s±2zA

)
,

(S15)
where the ± sign in front of zi is negative when –Zi–ZS > 0 and
positive when –Zi–ZS < 0. Substituting –ZA = +2 and –ZB = +1
(hence –ZS = +1) we find Eq. (7a) in the main text, while
substituting –ZA = −1 and –ZB = −2 (hence –ZS = +1) yields
Eq. (7b). Furthermore, for –ZA = 0 this equation reverts to des-
orptive charging and for –ZB = 0 this equation reverts to ad-
sorptive charging as described in the Letter. The presented
derivation can be naturally extended to single-step reactions
involving an arbitrary number of charged species.
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