Supporting Information

Morphology Controlled Growth of Crystalline Ag-Pt Alloyed Shells onto Au Nanotriangles and their Plasmonic Properties

Xiaobin Xie, *** Marijn A. van Huis, * and Alfons van Blaaderen***

[†] Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands

‡ Present Address: Analytical & Testing Center, Sichuan University, Chengdu 610064, China

* Corresponding Author:

X. Xie E-mail: <u>xb.xie@hotmail.com</u>; A. van Blaaderen E-mail: <u>A.vanBlaaderen@uu.nl</u>.

Contents

- 1. Determination of Au NTs concentration
- 2. Reaction conditions of all the synthesis
 - 2.1 Synthesis of Au NT-AgPt NPs
 - 2.2 Synthesis of Au NT-AgPt NPs with adding KI
 - 2.3 Synthesis of Au NT-AuAgPt NPs
 - 2.4 Synthesis of Au NT-AgPd NPs
- 3. Key physical parameters of bulk Au, Ag, Pd, and Pt
- 4. Supporting Figures

1 Determination of Au NTs concentration

Determination of the concentration of Au NTs stock solution. The concentration of Au NTs solution was calculated by measuring the UV-VIS spectra and the equations showed as follow.^{S1}

$$\varepsilon = 1.6888 \times 10^8 e^{5.1742 \times 10^{-3} \times \lambda_{max}}$$
(1)
$$C = \frac{A}{\varepsilon l}$$
(2)

Where ε is extinction coefficient, λ_{max} is the wavelength of LSPR band of Au NTs, and A is the extinction intensity.

2 Reactions conditions of synthesis

2.1 Synthesis of Au NT-AgPt NPs

	Au NT	De-ionized	1 0.1 M 10 mM		10 mM	0.10 M AA	Figure
	Solution	Water	CTAC	AgNO ₃	K ₂ PtCl ₄		
1	1.50 mL	7.30 mL	1.00 mL	50 µL	50 µL	100 µL	Fig. 1
2	1.50 mL	7.30 mL	1.00 mL	60 µL	50 µL	100 µL	Fig. 2a
3	1.50 mL	7.30 mL	1.00 mL	50 µL	50 µL	100 µL	Fig. 2b
4	1.50 mL	7.30 mL	1.00 mL	40 µL	50 µL	100 µL	Fig. 2c
5	1.50 mL	7.30 mL	1.00 mL	30 µL	50 µL	100 µL	Fig. 2d
6	1.50 mL	7.30 mL	1.00 mL	20 µL	50 µL	100 µL	Fig. 2e
7	1.50 mL	7.30 mL	1.00 mL	10 µL	50 µL	100 µL	Fig. 2f
8	1.00 mL	7.80 mL	1.00 mL	50 µL	50 µL	100 µL	Fig. S3a
9	1.50 mL	7.30 mL	1.00 mL	50 µL	50 µL	100 µL	Fig. S3b
10	2.00 mL	6.80 mL	1.00 mL	50 µL	50 µL	100 µL	Fig. S3c
11	3.00 mL	5.80 mL	1.00 mL	50 µL	50 µL	100 µL	Fig. S3d
12	1.50 mL	7.50 mL	1.00 mL	10 µL	10 µL	20 µL	Fig. S8a
13	1.50 mL	7.50 mL	1.00 mL	5.0 µL	10 µL	20 µL	Fig. S8b
14	1.50 mL	7.50 mL	1.00 mL	2.5 μL	10 µL	20 µL	Fig. S8c
15	1.50 mL	7.50 mL	1.00 mL	1.0 µL	10 µL	20 µL	Fig. S8d
16	1.50 mL	7.30 mL	1.00 mL	60 µL	/	100 µL	Fig. S4a
17	1.50 mL	7.30 mL	1.00 mL	10 µL	50 µL	100 µL	Fig. S4b
18	1.50 mL	7.30 mL	1.00 mL	10 µL	20 µL	100 µL	Fig. S4c

Table S1. The reaction conditions used for Au NT-AgPt NPs growth

19	1.50 mL	7.30 mL	1.00 mL	/	50 µL	100 µL	Fig. S4d, Fig. S5
20	1.50 mL	7.30 mL	1.00 mL	50 µL	50 µL	100 µL	Fig. S6a
21	1.50 mL	7.30 mL	1.00 mL	50 µL	40 µL	100 µL	Fig. S6b
22	1.50 mL	7.30 mL	1.00 mL	50 µL	30 µL	100 µL	Fig. S6c
23	1.50 mL	7.30 mL	1.00 mL	50 µL	20 µL	100 µL	Fig. S6d
24	1.50 mL	7.00 mL	1.00 mL	50 µL	50 µL	500 μL	Fig. S9a
25	1.50 mL	7.40 mL	1.00 mL	50 µL	50 µL	100 µL	Fig. S9b
26	1.50 mL	7.40 mL	1.00 mL	50 µL	50 µL	40 µL	Fig. S9c
27	1.50 mL	7.40 mL	1.00 mL	50 µL	50 µL	20 µL	Fig. S9d

2.2 Synthesis of Au NT-AgPt NPs with adding KI

Table S2. The reaction conditions used for Au NT-AgPt NPs growth.

	Au NT	De-ionized	0.1 M	10 mM	10 mM	10 mM	0.10 M	Figure
	Solution	Water	CTAC	KI	AgNO ₃	K ₂ PtCl ₄	AA	
1	1.50 mL	7.40 mL	1.00 mL	60 µL	10 µL	20 µL	100 µL	Fig. S10a
2	1.50 mL	7.40 mL	1.00 mL	30 µL	10 µL	20 µL	100 µL	Fig. S10b
3	1.50 mL	7.40 mL	1.00 mL	15 µL	10 µL	20 µL	100 µL	Fig. S10c
4	1.50 mL	7.40 mL	1.00 mL	10 µL	10 µL	20 µL	100 µL	Fig. S10d
5	1.50 mL	7.40 mL	1.00 mL	5 µL	10 µL	20 µL	100 µL	Fig. S10e
6	1.50 mL	7.40 mL	1.00 mL	/	10 µL	20 µL	100 µL	Fig. S10f

2.3 Synthesis of Au NT-AuAgPt NPs

Table S3. The reaction conditions used for Au NT-AuAgPt NPs growth.

	Au NT	De-ionized	0.1 M	10 mM	10 mM	10 mM	0.10 M	Figure
	Solution	Water	CTAC	HAuCl ₄	AgNO ₃	K ₂ PtCl ₄	AA	
1	1.50 mL	7.40 mL	1.00 mL	40 µL	20 µL	30 µL	100 µL	Fig. S14 a, e, m
2	1.50 mL	7.40 mL	1.00 mL	30 µL	30 µL	30 µL	100 µL	Fig. S14 b, f, n
3	1.50 mL	7.40 mL	1.00 mL	20 µL	40 µL	30 µL	100 µL	Fig. S14 c, g, o
4	1.50 mL	7.40 mL	1.00 mL	10 µL	50 µL	30 µL	100 µL	Fig. S14 d, h, p

2.4 Synthesis of Au NT-AgPd NPs

	Au NT Solution	De-ionized Water	10 mM AgNO ₃	10 mM Na2PdCl4	0.10 M AA	Figure
1	2.50 mL	7.40 mL	/	50 µL	100 µL	Fig. S15a
2	2.50 mL	7.40 mL	10 µL	40 µL	100 µL	Fig. S15b
3	2.50 mL	7.40 mL	20 µL	30 µL	100 µL	Fig. S15c
4	2.50 mL	7.40 mL	30 µL	20 µL	100 µL	Fig. S15d
5	2.50 mL	7.40 mL	40 µL	10 µL	100 µL	Fig. S15e
6	2.50 mL	7.40 mL	50 µL	/	100 µL	Fig. S15f

Table S4. The reaction conditions used for Au NT-AgPd NPs growth.

3 Key physical parameters of bulk Au, Ag, Pd, and Pt

A number of physical parameters of Au, Ag, Pd, and Pt are summarized in Table S4, which include their lattice parameters, and the standard reduction potentials.^{S2-S5}

	Au	Ag	Pd	Pt
Lattice Parameters	4.078 Å	4.086 Å	3.891 Å	3.924 Å
Atomic Radius	1.442 Å	1.444 Å	1.376 Å	1.387 Å
Standard Reduction Potentials (V)	+1.00	+0.80	+0.59	+0.76
	$([AuCl_4]^-)$	(Ag^+)	$([PdCl_4]^{2-})$	$([PtCl_4]^{2-})$

Table S5. Key physical parameters of Au, Ag, Pd, and Pt

4 Supporting Figures

Figure S1. Morphology, size, and main localized surface plasmon resonance (LSPR) band of Au NTs. a) bright-field TEM image of Au NTs; b & c) HAADF-STEM images of Au NTs; d) histogram of edge length of Au NTs; e) UV-VIS spectrum of Au NTs.

Figure S2. Structural stability of Au NT-AgPt yolk-shell NPs. TEM images of Au NT-AgPt yolk-shell NPs which were placed on a TEM grid for more than six years. The Au NT-AgPt yolk-shell NPs were synthesized and dropped on the TEM grid in September 2016, TEM images showed here were acquired in June 2023. The original morphology of these Au NT-AgPt yolk-shell NPs are showed in Figure 1.

Figure S3. Morphological evolution of Au NT-AgPt NPs synthesized with various concentrations of Au NTs. STEM-HAADF (up) and TEM (down) images indicated Au NT-AgPt NPs acquired as the volume of Au NTs was: a) 1.0 mL, b) 1.5 mL, c) 2.0 mL, d) 3.0 mL. e) UV-Vis spectra and f) LSPR band position of Au NT-AgPt NPs showed in a-d. More details of the synthesis are shown in Table S1.

Figure S4. Shape evolution of Au NT-AgPt NPs synthesized by using different AgNO₃ and K₂PtCl₄ ratios. STEM-HAADF images indicated NPs acquired as the concentration of AgNO₃ and K₂PtCl₄ ratios in the growth solution was: (a) AgNO₃ (60μ M)/ K₂PtCl₄ (0μ M), (b) AgNO₃ (10μ M)/ K₂PtCl₄ (50μ M), (c) AgNO₃ (10μ M)/ K₂PtCl₄ (20μ M), and (d) AgNO₃ (0μ M)/ K₂PtCl₄ (50μ M). More details of the synthesis are shown in Table S1.

Figure S5. Morphology of Au NT-Pt. (a, b) STEM image of Au NT-Pt NPs, (c, d) TEM image of Au NT-Pt NPs.

Figure S6. Morphological evolution of Au NT-AgPt NPs synthesized with various concentrations of K_2 PtCl₄. STEM-HAADF images indicated Au NTAgPt NPs obtained as the concentration of K_2 PtCl₄ was: a) 50 μ M, b) 40 μ M, c) 30 μ M, and d) 20 μ M. e) UV-Vis spectra and f) LSPR band position of Au NT-AgPt NPs showed in a-d. More details of the synthesis are shown in Table S1.

Figure S7. The AgPt shell thickness of Au NT-AgPt NPs synthesized with various concentrations of K_2PtCl_4 . Histogram of Ag-Pt shell thickness distributions. The Ag-Pt shell thickness in above Figure was: (a) 5.1 ± 1.2 nm, (b) 4.5 ± 0.7 nm, (c) 4.4 ± 0.7 nm, (d) 4 ± 0.7 nm. Corresponding morphologies are showed in Figure S6.

Figure S8. Morphological evolution of Au NT-AgPt NPs for various concentrations of AgNO₃. STEM-HAADF (up) and TEM (down) images indicated Au NT-AgPt NPs acquired as the concentration of AgNO₃ in the growth solution was: a) 20 μ M, b) 15 μ M, c) 10 μ M, and d) 5 μ M. e) UV-Vis spectra and f) LSPR band position of Au NT-AgPt NPs showed in a-d. More details of the synthesis are shown in Table S1.

Figure S9. Morphological evolution of Au NT-AgPt NPs synthesized with various concentrations of AA. STEM-HAADF of NPs acquired as the concentration of AA was: (a) 5.00 mM, (b) 1.00 mM, (c) 0.40 mM, and (d) 0.20 mM. (e) UV-Vis spectra and f) LSPR band position of Au NT-AgPt NPs showed in a-d. More details of the synthesis are shown in Table S1.

Figure S10. Morphological evolution of Au NT-AgPt NPs synthesized with various concentrations of KI. TEM images of NPs acquired as the concentration of KI was: (a) 60 μ M, (b) 30 μ M, (c) 15 μ M, (d) 10 μ M, (e) 5 μ M, and (f) 0 μ M. (g) UV-Vis spectra and (h) LSPR band position of Au NT-AgPt NPs showed in (a-f). More details of the synthesis are shown in Table S2.

Figure S11. (a) STEM-HAADF image and (b)STEM-EDS elemental maps of Au NT-AgPt site-selective growth NPs which acquired as the concentration of KI was 60 µM.

Figure S12. (a) STEM-HAADF image and (b) STEM-EDS elemental maps of Au NT-AgPt NPs which acquired as the concentration of KI was 15 μ M.

Figure S13. Molecule structure of C₆H₈O₆ (L-AA) and C₆H₆O₆ (DHA).

Figure S14. Morphological evolution of Au NT-AuAgPt NPs synthesized with various concentrations of Au and Ag. The concentration of AgNO₃ and HAuCl₄ ratios in the growth solution was: (a, e, k) AgNO₃ (20 μ M)/ HAuCl₄ (40 μ M), (b, f, m) AgNO₃ (30 μ M)/ HAuCl₄ (30 μ M), (c, g, n) AgNO₃ (40 μ M)/ HAuCl₄ (20 μ M), and (d, h, o) AgNO₃ (50 μ M)/ HAuCl₄ (10 μ M). The details of the synthesis are shown in Table S3. The scale bar indicates 50 nm in all STEM images and 40 nm in all STEM-EDS elemental maps.

Figure S15. Shape evolution of Au NT-AgPd NPs synthesized while changing the ratio of Pd and Ag precursors. The concentration of AgNO₃ and Na₂PdCl₄ ratios in the growth solution was: (a) AgNO₃ (0 μ M)/ Na₂PdCl₄ (50 μ M), (b) AgNO₃ (10 μ M)/ Na₂PdCl₄ (40 μ M), (c, g) AgNO₃ (20 μ M)/ Na₂PdCl₄ (30 μ M), (d) AgNO₃ (30 μ M)/ Na₂PdCl₄ (20 μ M), (e) AgNO₃ (40 μ M)/ Na₂PdCl₄ (10 μ M), and (f) AgNO₃ (50 μ M)/ Na₂PdCl₄ (0 μ M). The details of the synthesis are shown in **Table S4**. The scale bar indicates 50 nm in all STEM images and 40 nm in the STEM-EDS elemental maps.

References:

S1. O'Brien, M. N.; Jones, M. R.; Kohlstedt, K. L.; Schatz, G. C.; Mirkin, C. A., Uniform circular disks with synthetically tailorable diameters: two-dimensional nanoparticles for plasmonics. *Nano Lett.* **2015**, *15* (2), 1012-7.

S2. Johnson, P. B.; Christy, R. W., Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6 (12), 4370-4379.

S3. Fan, F.-R.; Liu, D.-Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tian, Z.-Q., Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. *J. Am. Chem. Soc.* **2008**, *130*, 6949–6951.

S4. Bauer, E.; van der Merwe, J. H., Structure and growth of crystalline superlattices: From monolayer to superlattice. *Phys. Rev. B Condens. Matter.* **1986**, *33* (6), 3657-3671.

S5. Xia, Y.; Xia, X.; Peng, H. C., Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. *J. Am. Chem. Soc.* **2015**, *137* (25), 7947-66.