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Additional details on the state diagram

In Fig. S1, we present the state diagram as shown in
the main text, where the symbols are colored according
to the packing fraction η of the colloids in the vesicle
for the various state points. This state diagram confirms
that when the surface area of the vesicle is maintained
constant for a specific N , the reduced volume ν is di-
rectly proportional to the packing fraction of the vesicle
η. For the calculation of the packing fraction η, the vol-
ume of the vesicle is estimated by means of its surface
mesh with the alpha-shape method of the ovito soft-
ware, which provides a three-dimensional surface repre-
sentation of the vesicle [1, 2]. This method relies on a
Delaunay tessellation constructed on the basis of the in-
put particle coordinates and uses a probe sphere with
prescribed radius Rprobe = 10 − 16σ (depending on the
size of the vesicle) to assign each tetrahedral element to
a region of space, of which the volume is calculated.

In Figure S2, we present representative simulation
snapshots illustrating linear, planar, and cluster config-
urations. Additionally, Table S1 provides a summary of
the main parameters, including the size of the membrane
in its initial spherical state, its surface area, and the range
of solvent particle densities employed to explore various
conformations.

Transformation of the particle packings

To demonstrate the robustness of our experimental
method, we show the transition of particles from a linear
arrangement to a cluster state by precisely controlling
the surface area-to-volume ratio of the vesicle. We in-
duce transitions between the three distinct conformations
by gradually increasing the vesicle volume while keeping
the membrane surface area constant. We achieve this
through a step-wise reduction in the osmolarity of the
external solution, leading to a vesicle volume expansion.
Particles in GUVs are initially arranged linearly, then

they are subjected to an osmotic shock through the se-
quential addition of water outside the vesicle solution. In
a typical experiment, we add a total of 50 µL of Milli-Q
water in increments of 10 µL to the 40 µL vesicle solution.
The first addition induces transition from the sausage to
the plate conformation. The second addition transforms
the plate to a cluster arrangement. Finally, the last three
additions progressively transform the vesicle into a more
spherical shape. We observe that each transition took
place approximately 3-4 minutes following each addition.
A similar procedure is done in simulations, where we

gradually change the shape of the vesicle by removing sol-
vent particles, thus changing the density of the solvent.
This allows us to observe the transformation from cluster
to linear conformation. Fig. S3(a-d) show time-lapsed 2D
overlaid fluorescence and bright-field microscopy snap-
shots of the cluster-to-linear transformation. Meanwhile,
Fig. S3(e-h) depict the corresponding snapshots from
simulations by changing the solvent density ρsol. The
dependence of the vesicle volume Vv as a function of ρsol
is displayed in Fig. S3(i).

Generation of clusters

To investigate the possibility of observing the sausage
catastrophe in a flexible vesicle, and identifying cluster
conformations of spheres that pack better than the lin-
ear arrangement, we equilibrate fluid vesicles of various
sizes in such a way that a packing fraction of η ≈ 0.4
is achieved for varying number of colloids N . This is
the highest packing fraction we can reach by randomly
adding spheres to the vesicle without breaking the mesh-
less network. After adding the spheres, the system is al-
lowed to equilibrate. The colloids and vesicle are subject
to the interaction potentials described in the Methods
section. Table S2 presents a summary of the vesicle sizes
employed for a particular range of N .
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FIG. S1. (a) State diagram of colloidal hard spheres enclosed in a fluid vesicle as a function of the number of colloids N and
the reduced volume ν = Vv/Vs with Vv the volume of the vesicle and Vs the volume of a sphere with the same surface area as
the vesicle as obtained from simulations. For a specific N , the surface area of the vesicle is maintained approximately constant.
Square symbols are for linear conformations, triangles for plates, and circles for cluster conformations, while right and left
triangles represent bistable states. Symbols are colored according to the packing fraction η of the colloids inside the vesicle.
(b) State diagram of colloidal hard spheres enclosed in a fluid vesicle as a function of the number of colloids N and packing
fraction η. Symbols are the same as in (a).
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FIG. S2. Typical configurations of linear, planar and cluster conformations of colloids in a fluid vesicle obtained from simulations
with the outer solvent exerting a pressure on the vesicle. The number density of solvent particles is 0.0360, 0.0341 and 0.0327σ−3,
respectively. Note that for visual clarity the vesicle beads and the solvent particles have a smaller size than the actual ones
used in the simulations.

Optimization protocol to reach the hard-sphere limit
of the clusters

The convex-hull packing fraction of the clusters re-
ported in Figure 3 of the main text is obtained after a
series of energy minimization steps in which the interac-
tion potential between the colloids becomes more hard-
sphere-like. To accomplish this, the configurations are
subjected to a sequence of energy minimizations using
the FIRE algorithm [3], regardless of whether they are
obtained from the database [4] or generated from sim-
ulations involving colloids interacting with the repulsive
WCA potential. In each step, a 2α − α LJ potential is
used, with the exponent α increasing at each minimiza-
tion step, causing the potential to become progressively
steeper, with its minimum tending towards the sphere
contact distance. Typically, α is varied from 6 to 140
in eight subsequent steps. Fig. S4 shows typical config-

urations obtained from simulations in which we visually
describe the process of obtaining a cluster.

Convex hull

To obtain the convex-hull packing fraction ηch of the
generated clusters, we first tessellate the surface of the
constituent spheres with a certain number of points
Npoints. We then determine the convex hull of these
points [5] and the volume enclosed, and thus the pack-
ing fraction of the cluster within the convex-hull. This
protocol is depicted in Fig. S5. In Fig. S6, we demon-
strate how the packing fraction varies with Npoints. As
the calculated packing fraction only varies on the fourth
decimal for Npoints > 105, we use Npoints = 105 for the
remainder of the analysis.

Moreover, to further validate our approach, we com-
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FIG. S3. (a-d) Sequence of time-lapse images from 2D fluorescence (top row) and overlaid fluorescence and bright-field (middle
row) microscopy showing the transition from linear to cluster conformation as osmotic imbalances are induced in a vesicle
containing five particles. (e-h) Corresponding simulation configurations generated by systematically changing the outer density
solvent ρsol, as reported in the Figure in units of σ−3. (i) Dependence of the vesicle volume Vv on ρsol in simulations. Dashed
lines are guides-to-the-eye for distinguishing the transitions between the three different configurations.

N Z[σ] Av[σ
2] ρlinear[σ

−3] ρplanar[σ
−3] ρcluster[σ

−3]

3 30 2500.2±15.16 0.0364 - 0.0381 0.0331 - 0.0366 -

4 35 3364.82±9.29 0.0347 - 0.0363 - 0.0330 - 0.0322

5 40 4379.14±15.26 0.0328 - 0.0364 0.0312 0.0279 - 0.0309

6 42.5 4737.69±22.21 0.0328 - 0.0364 0.0310 - 0.0325 0.0293 - 0.0303

7 47.5 6166.72 ± 96.25 0.0307 - 0.0368 0.0286 - 0.0299 0.0261 - 0.0277

8 50 6823.54±24.53 0.0295 - 0.0368 0.0267 - 0.0288 0.0232 - 0.0258

9 55 8389.86±112.02 0.0280 - 0.0324 0.0240 - 0.0255 0.0197 - 0.0233

TABLE S1. Simulation parameters for the simulations: number of colloids N , diameter of the initial spherical vesicle Z in
which the colloids are enclosed, average surface area of the vesicle Av, and density ρx = (Nx/L

3) × (L3/σ3) with Nx the
number of solvent particles outside the vesicle and L the side of the simulation box, for obtaining x = linear, planar and cluster
configurations. Bistable states are obtained for densities in between the ones indicated in the Table and for N = 4 we do not
identify fully stable planar configurations.

(a) (b) (c) (d)

FIG. S4. Typical configurations obtained from simulations in which we show (a) the full vesicle, (b) the vesicle enclosing the
cluster of colloids interacting via a WCA potential, (c) the cluster of colloids and (d) the cluster after having performed a series
of energy minimization steps to make the interaction potential more hard-sphere-like.

pare ηch of linear arrangements in the range N = 1−100 with the theoretical packing fraction of the linear con-
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N Z[σ]

10-11 40

12-16 45

17-21 50

22-30 55

31-46 60

47-63 65

64-79 70

80-97 75

98-118 80

119-142 85

143-150 90

TABLE S2. Range of the number of colloids N added to an
initial spherical vesicle with diameter Z to study the forma-
tion of clusters in simulations.

formation ηlin = 2N/(2 + 3(N − 1)) obtained from
the volume of the spherocylinder with N particles, as
∆η = ηlin − ηch, as shown in Fig. S7. We find that the
precision is again on the fourth decimal digit.

FIG. S5. Tessellation procedure for an example tetrahedral
cluster where small spheres are added to the surface of the
colloids. The convex hull and packing fraction of the cluster
is calculated using these points.

Clusters from the database

In Fig. S8, we show from different perspectives some of
the clusters as obtained from the database that exhibit
a high value of the bond-order parameter q6 (see Figure
3 of the main text). The N = 38 cluster corresponds to
a truncated octahedron.

102 103 104 105

N

0.71

0.72

0.73

0.74

¥ c
h

50000 100000 150000 200000

N

0.71227

0.71228

0.71229

0.71230

0.71231

¥ c
h

FIG. S6. Packing fraction ηch as a function of the number of
points Npoints used to calculate the convex hull. The inset
shows that for Npoints = 105 the precision in the packing
fraction is on the fourth decimal digit.
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FIG. S7. Difference in packing fraction ∆η between the ana-
lytical value calculated on the linear spherocylinder and the
estimated value calculated by means of the convex hull as a
function of the number of particles N .

Clusters from truncated polyhedra

In Table S3, we report the main characteristics of clus-
ters that exhibit a higher convex-hull packing fraction
ηch than the linear configuration at a given N , as shown
in Figure 3 of the main text. The following character-
istics are listed: N , which refers to the total number of
colloids; ID, name of the cluster for truncated tetrahedra
and bipyramids as defined in the main text; ηch, the pack-
ing fraction of the convex hull that encloses the cluster of
spheres; Faces, the number of faces in the cluster, which
is defined as the minimum number of planes that can be
constructed on the surface of the cluster; Vertices, num-
ber of vertices of the cluster, where each vertex is defined
as the sphere at the intersection of three or more planes;
Ninner, the total number of particles that do not belong
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FIG. S8. Typical clusters from the database that exhibit a
high value of the bond order parameter q6 from different per-
spectives. The N = 38 cluster corresponds to a truncated
octahedron, transparent spheres are the ones that have been
removed from the original regular octahedron.

to any of the planes on the surface of the cluster; Nface,
the total number of particles that belong to the planes
on the surface of the cluster; Nedge, the total number of
particles located at the intersection of two planes; ηlin,
the packing fraction of the linear arrangement of spheres
at the same N ; Snapshots, which provides a reference to
the figure reporting the respective cluster; and 3D View
which gives the short name of HTML files from the Sup-
plemental Material that contain three-dimensional visu-
alization of the cluster.
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FIG. S9. Configurations of truncated tetrahedra that exhibit
a higher convex-hull packing fraction ηch than the linear ar-
rangement at the corresponding N from various perspectives,
see also Figure 3 of the main text. The transparent spheres
indicate those that have been eliminated from the original
regular polyhedron.

Comparison of the packing fraction ηch between
different stackings

Along with the face-centered cubic (FCC) arrange-
ment, it was proven that for an infinite number of spheres
there exists an infinite number of other stackings that
achieve the same packing efficiency of ≈ 74% [6]. The lat-
ter are better known as Barlow stackings [7], and they are
all based on variations of the three ways of accommodat-
ing an hexagonal layer on top of another. Each layer can
be identified by the letters ‘A’, ‘B ’ and ‘C ’, with different
combinations encoding for different stackings. The most
regular and well known stacking are the hexagonal-closed
packing (HCP) and the FCC arrangements with repeated
sequences ‘AB ’ and ’ABC ’ respectively. Here, we extend
the study of the FCC-based structures presented in the
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Truncated Tetrahedron

N ID ηch Faces Vertices Ninner Nface Nedge ηlin Snapshots 3D View

56 T ′′
4 T

′′
10 0.67102 8 11 8 18 19 0.67066 S9(a) TT56

59 T ′
1T

′
4T

′′
10 0.67047 8 11 8 21 19 0.67045 S9(b) TT59

62 T ′′′
4 T ′

10 0.67134 8 12 9 23 18 0.67027 S9(c) TT62

Truncated Octahedron

58 0.67120 10 14 10 16 18 0.67052 S10(a) TO58

59 0.67179 9 11 10 16 22 0.67045 S10(b) TO59

60 0.67237 8 8 10 16 26 0.67039 S10(c) TO60

64 0.67030 12 19 13 15 19 0.67016 S10(d) TO64

65 0.67111 12 20 13 19 13 0.67010 S10(e) TO65

66 0.67164 11 17 13 19 17 0.67005 S10(f) TO66

67 0.67241 11 18 13 21 15 0.67000 S10(g) TO67

68 0.67266 9 11 13 19 25 0.66995 S10(h) TO68

69 0.67339 9 12 13 21 23 0.66990 S10(i) TO69

70 0.67387 8 9 13 21 27 0.66986 S10(j) TO70

Truncated Bipyramid

61 B′
10B

′
20 0.67146 8 9 9 13 30 0.67033 S11(a) TB61

67 B′
4B

′
20 0.67171 8 9 10 18 30 0.67000 S11(b) TB67

TABLE S3. List of the main characteristics of clusters that exhibit a higher convex-hull packing fraction ηch than the linear
configuration at a given N .
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main text by building clusters made of 6 layers with the
‘ABABAB ’ sequence corresponding to HCP, ‘ABABAC ’
(seq 1) and ‘ABACBC ’ (seq 2) [8]. In Fig. S12(a) we
show the convex hull packing fraction ηch of HCP-based
pyramid (PHCP ) and bipyramid (BHCP ) clusters com-
pared to the corresponding structures based on an FCC
arrangement. We find that the different stacking intro-
duced by the HCP arrangement is not as favorable as
the one formed by the FCC for packing finite structures.
A similar situation occurs with the other stackings, as
shown in Fig. S12(b), where we show the ηch of the pyra-
mids based on the seq 1 and seq 2 (dashed symbols).
Moreover, we perform irregular cuts to clusters based on
HCP, seq 1 and seq 2, finding that all of them have a
significantly lower ηch compared to ηlin. We report in
Table S4 the corresponding clusters with their convex-
hull packing fraction ηch when compared with the linear
convex-hull packing fraction ηlin and the 3D View which
gives the short name of HTML files (Supplementary Data
1) that contain the interactive three-dimensional visual-
ization of the cluster.
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FIG. S10. Configurations of truncated octahedra that exhibit a higher convex-hull packing fraction ηch than the linear arrange-
ment at the corresponding N from various perspectives, see also Figure 3 of the main text. The transparent spheres indicate
those that have been eliminated from the original regular polyhedron.
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FIG. S11. Configurations of truncated bipyramids that exhibit a higher convex-hull packing fraction ηch than the linear
arrangement at the corresponding N from various perspectives, see also Figure 3 of the main text. The transparent spheres
indicate those that have been eliminated from the original regular polyhedron.
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FIG. S12. Packing fraction ηch of clusters of spheres in their convex hull as a function of N for (a) HCP-based (ABABAB
stacking) pyramids and bipyramids, and for (b) irregularly cut HCP-based, ABABAC- and ABACBC-based polyhedra as
compared to tetrahedra and octahedra based on a FCC staking of the particle layers (dashed lines). The ideal linear packing
fraction ηlin(N) is also reported (orange line).

HCP

N ηch ηlin 3D View

65 0.62719 0.67010 BHCP65

106 0.64065 0.6687 PHCP106

69 0.64074 0.66990 TPHCP69

72 0.63452 0.66977 TPHCP72

77 0.65889 0.66956 TPHCP77

53 0.62859 0.67089 TBHCP53

57 0.64236 0.67059 TBHCP57

60 0.63776 0.67039 TBHCP60

63 0.63366 0.67021 TBHCP63

Sequence 1 ABABAC

57 0.62412 0.67059 Seq1 57

63 0.63932 0.67021 Seq1 63

66 0.63291 0.67005 Seq1 66

67 0.62074 0.67000 Seq1 67

Sequence 2 ABACBC

60 0.64482 0.67039 Seq2 67

61 0.62859 0.67033 Seq2 61

64 0.63631 0.67016 Seq2 64

67 0.62955 0.67000 Seq2 67

68 0.64482 0.66995 Seq2 68

TABLE S4. List of clusters and corresponding convex-hull packing fraction ηch reported in Fig. S12b with stacking based on
HCP (ABABAB), sequence 1 (ABABAC) and sequence 2 (ABACBAC) and corresponding ideal linear packing fraction ηlin
for a certain number of colloids N .
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