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Reviewer #1 (Remarks to the Author): 

 

==================================================================================

===================== 

Report on MS. NCOMMS-23-33749 

Authors: Marin-Aguilar et al 

Title: A colloidal viewpoint on the finite sphere packing problem: the sausage catastrophe 

==================================================================================

===================== 

This manuscript reports on a combined experimental-numerical study on a problem originating from 

a series of mathematical papers whose basic idea is the following. 

For infinite (or unconstrained) systems, Kepler conjectured and Hales proved that the optimal way of 

packing spheres is the FCC/HCP arrangement with 74% packing fraction. But what if the system is 

confined into a container with flexible and adaptive shape? 

 

The authors discuss under which conditions a linear arrangement is favored against a cluster packing 

and provide numerical and experimental supports to their findings. 

 

The manuscript is professionally written, the work is very elegant and instructive (especially the 

possibility of observing their prediction alluded toward the end of the manuscript is very fascinating) 

and it definitely deserves publication. However, there are few points that deserve the authors' 

attention because they puzzled me and I feel that they may hamper the full appreciation of this 

work. 

 

1. The authors were stimulated by the mathematical results reported in Refs. 13-17 that are 

wrapped up in the introduction. However, it is not clear to me when the reported statements are 

proofs and when are conjectures. For instance when the authors say (page 1 first column) " On the 

contrary, in 1975 the mathematician Fejes-Toth theorized that the densest packing is always the 

linear arrangement..." what do they mean for "theorized"? Is that a proof or a conjecture requiring 

supporting evidence such as those provided in this study? As this literature is likely unfamiliar to 

most readers, it seems to me that a clarification of this point is desirable. 

 



2. I don't understand the difference between a sausage and a three-dimensional cluster. Please 

explain. Also, I found confusing the reference to " finite" as opposed to infinite packing in the 

introductory statement. A finite systems with PBC would not behave as reported in the present 

study. As clarified later on in the manuscript, the crucial difference is between packing "constrained" 

into a membrane with zero surface tension so that the membrane can shape adapt to achieve the 

densest packing. 

 

3. Is the orientation-dependent interaction Eq.(2) mimicking the floppy vesicle used in the 

experiment? I am not sure I can rationalize why. Please explain. 

 

4. What is the difference between $\eta$ and $\eta_{ch}$? And how are the values $\eta \approx 

0.12-0.28$ refereed to Fig.S2 (page 2 second column) obtained? 

 

5. As I gather from the introduction, the "sausage catastrophe" occurs in d=4 -- again not obvious 

whether a proof or a conjecture. Why the authors see their results in d=3 as "contradicting" with 

those of Refs. 15 and 16 (page 2 first column)? 

 

6. The experimental results reported in this study build on the techniques from Refs. 9 and 23. 

Likewise, the numerical results hinge on those from Ref. 29 and 30. The authors duly report 

references to these study but it is not clear to me whether the present study also reports new 

insights on the techniques themselves or not. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The manuscript by Marin-Aguilar et al. describes a combined experimental/simulation investigation 

into dense packing arrangements of finite numbers of spheres. As the authors point out, sphere 

packing has been of interest in a growing number of fields over the past few centuries. This 

manuscript presents a novel physical instance of the finite sphere packing problem via colloidal hard 

spheres enclosed in a lipid vesicle. 

 

To my knowledge, the authors report a novel contribution to the literature, and the manuscript lays 

out what seems to be a well-executed and well-described investigation. 



 

I have no quarrel with the quality of the work done in the manuscript, but I wonder if the authors 

could do a better job of situating its importance. 

 

It seems like one of the main advances of the manuscript is to construct a physical realization of the 

problem, however it seems like the authors are only able to reproducibly generate vesicles with 

small numbers of colloids inside, whereas it seems like where non-sausage clusters, the structure of 

which less is known about, are inaccessible. On the other hand, the authors are able to address this 

question with their numerical simulations, the results of which come through clearly. However, if I 

am reading their conclusions correctly, it seems like the structure of larger dense clusters is not 

achievable inside flexible vesicles. 

 

This latter effect, which the authors skim over somewhat, might appear to be a "bug". However, it 

could also be seen as a "feature" in the context of recent work showing that clusters of colloids with 

unconventional packing arrangements can be used as building blocks for hierarchically structured 

materials (e.g. Baldauf et al., Sci Adv 2022). Thus the fact that the authors produce could potentially 

produce packings other than the densest ones could provide leverage. 

 

Perhaps I'm misreading the manuscript, but to me it seems like, given the framing in the 

introduction, the main contribution of the manuscript is to give a very detailed set of numerically 

constructed proposals for densely packed collections of spheres, particularly in the range of N 

between 50 and 75. That to me seems like an interesting result, and, given the longstanding interest 

in this problem and the array of applications of the result makes the paper one that should be 

interesting to readers of Nature Communications. 

 

Overall, my assessment is that this is a valuable contribution, but the authors should more clearly 

articulate its value, particularly in final concluding paragraph. 

 

As a side note, I think that it would further add value to the contribution to make more substantive 

connection to areas where the experimental setup the authors describe here could be leveraged. In 

addition to the example mentioned above on hierarchical assembly, there has also been work on 

colloidal clusters for wet computing (e.g. Phillips et al., Soft Matter 2014), among other applications, 

and the numerically constructed clusters reported here should be of interest to the math 

community. 

 

 



 

 

Reviewer #3 (Remarks to the Author): 

 

Review on "A colloidal viewpoint... the sausage catastrophe" 

 

by Susana Marín-Aguilar et al. 

 

The paper starts out with a motivation from the finite sphere packing problem, 

including works from Wills/Tóth and coworkers. It then shifts focus towards 

collids confined by "GUVs" of which the packing behavior is accessible by 

confocal microscopy. Systems up to N=9 enclosed colloid particles are studied 

away from the close-packing limit. Linear, flat plates and spheroidal clusters 

are found, depending on an effective surface/volume ratio. In addition to the 

experiments, MD simulations with WCA particles in a meshless vesicle are 

performed, the two methods appear to produce comparable results. Then, an 

optimization scheme is used to find dense arrangements of colloids. None 

surpass the 1D string. Subsequently, cuts of the FCC lattice are studied which 

yield the expected crossover close to ~60 spheres. Excluding N=63,57, the 

densest arrangements with N>=56 are found to be clusters. 

 

The manuscript is well-written and it is clear what was done and why it was 

done. 

 

The link between the confined colloid experiments and simulations and the 

infinite-pressure packing problem is a bit tenuous - it almost seems like there 

are two papers here in one manuscript. I wonder if the authors have a way, in 



experiment, to control the surface/volume ratio of the cluster, for example by 

evaporation, and drive the system closer to dense packing. 

 

The fact that a finite system oscillates between two conformations 

(plate/linear in Fig 1j) is rather unsurprising in my opinion. It is natural 

for clear cut 'phase transitions' to emerge only in the large-N limit. Can 

the authors comment why they find this surprising? 

 

It would also be extremely interesting why the contradiction to Ref. [15,16] 

with regards to N=58 and N=64 can be resolved. This is a mathematical 

problem which should have a robust answer. 

 

 

Questions/suggestions: 

 

Is the plate-like phase (Fig 1a) expected to disappear in the large-N limit? 

 

Can the authors comment in the relative importance of the conformation entropy 

of the vesicle and the colloids? 

 

Were other Barlow stacking types than FCC considered (for example HCP) to explore 

the densest packings? Since the problem is so subtle, stacking order could 

make a difference. 

 

A Monte Carlo scheme adding/removing spheres at the boundary of the cluster 

might be able to find other candidates for the densest packing. 

 



Are the findings with respect to closest packing stable with respect to the 

definition of packing fraction (here via cluster convex hull)? 



REPLY TO THE COMMENTS OF REVIEWER 1

This manuscript reports on a combined experimental-numerical study on a problem originating

from a series of mathematical papers whose basic idea is the following. For infinite (or uncon-

strained) systems, Kepler conjectured and Hales proved that the optimal way of packing spheres is

the FCC/HCP arrangement with 74% packing fraction. But what if the system is confined into a

container with flexible and adaptive shape? The authors discuss under which conditions a linear

arrangement is favored against a cluster packing and provide numerical and experimental supports

to their findings. The manuscript is professionally written, the work is very elegant and instructive

(especially the possibility of observing their prediction alluded toward the end of the manuscript is

very fascinating) and it definitely deserves publication. However, there are few points that deserve

the authors’ attention because they puzzled me and I feel that they may hamper the full appreciation

of this work.

We thank the Reviewer for finding our manuscript instructive and well-written and for suggesting

publication after having clarified a few aspects.

1. The authors were stimulated by the mathematical results reported in Refs. 13-17 that are

wrapped up in the introduction. However, it is not clear to me when the reported statements are

proofs and when are conjectures. For instance when the authors say (page 1 first column) ” On

the contrary, in 1975 the mathematician Fejes-Toth theorized that the densest packing is always the

linear arrangement...” what do they mean for ”theorized”? Is that a proof or a conjecture requiring

supporting evidence such as those provided in this study? As this literature is likely unfamiliar to

most readers, it seems to me that a clarification of this point is desirable.

We thank the Reviewer for pointing out this aspect, which helped us to clarify the introduction

and the context of our manuscript. In summary, the finite sphere problem was initiated by

Fejes Tóth in 1975 [Fejes Tóth, Research problem no. 13, Period. Math. Hungar. (1975)]

who conjectured that, in dimension d ≥ 5, the highest packing of non-overlapping spheres is

that given by their linear arrangement. This conjecture was further supported by later works

such as [Betke, Gritzmann and Wills, Mathematika (1982); Fejes Tóth, Gritzmann and Wills,

Disc. Comp. (1989)]. Proof of the conjecture was first given in 1994 for d ≥ 13387 [Betke,

Henk, Wills, J. Reine. Angew. Math. (1994)] and later for d ≥ 42 [Betke and Henk, Discrete

Comput. Geom. (1998)], as already mentioned in the manuscript. Therefore, there exists no

formal proof of the validity of the conjecture for lower dimensions. In the context of d = 3,

several configurations have been analyzed mathematically in the past [Wills, Acta Mathematica

Hungarica (1985); Wills, Periodica Mathematica Hungarica (1983); Gandini and Wills, Math.

Pannon. (1992)]. However, as demonstrated in our work, it remains uncertain under which
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conditions linear conformations constitute the densest packings (see also our response to a later

point) or when a different type of cluster could surpass linear packing. As the Reviewer correctly

states, we indeed provide supporting evidence to the original conjecture.

We have now revised the introduction and included additional references to provide further

clarification on the state of the finite sphere packing problem.

We revised the Introduction and included additional references.

Introduction:

On the contrary, in 1975 the mathematician Fejes Tóth conjectured [14] that in dimensions

d ≥ 5 the densest packing is the one where the centers of spheres are aligned along a straight

line, resulting in a so-called sausage configuration. This conjecture, supported by other studies

[15, 16], was initially proven true only for d ≥ 13387 [17] and subsequently for d ≥ 42 [18].

No proof of its general validity has thus been reported for lower dimensions. For d = 4, a sud-

den transition in the packing density occurs from a linear to a cluster arrangement, where the

coordinates of the particles extend in all three dimensions, and is typically referred to as the

“sausage catastrophe” [19, 20]. The upper bound of N = 375769 that was initially assigned to

this transition [21, 22] has been recently reduced to N = 338196 [23]. For d = 3, different stud-

ies reported that the sausage conformation minimizes the volume of the convex hull for N ≤ 55,

and for N = 57, 58, 63, 64 [19, 24, 25], while above this limit the densest configuration becomes

a three-dimensional cluster, thereby avoiding the plate conformation where the centers of the

spheres are positioned on a plane [15, 26]. However, the precise structure of these clusters,

which are denser than the sausage, remains largely unknown. Furthermore, there may be other

unidentified clusters that present an even denser packing than the linear arrangement.

2. I don’t understand the difference between a sausage and a three-dimensional cluster. Please

explain. Also, I found confusing the reference to ”finite” as opposed to infinite packing in the intro-

ductory statement. A finite systems with PBC would not behave as reported in the present study. As

clarified later on in the manuscript, the crucial difference is between packing ”constrained” into a

membrane with zero surface tension so that the membrane can shape adapt to achieve the densest

packing.

We appreciate the Reviewer’s question that allows us to better explain the terminology used in

our manuscript. In a ‘sausage’ configuration, particles are aligned linearly, essentially forming a

one-dimensional arrangement, i.e. the center-of-masses of the particles are positioned on a one-

dimensional line. In contrast, a ‘cluster’ refers to a collection of particles that are closely grouped

together in a three-dimensional arrangement. We illustrate both configurations in Figure 2 of

the main text, providing examples from simulations and experiments.
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The term “finite packing” is employed to describe the arrangement of a limited number of

particles within a defined space, while an ”infinite packing” is an arrangement of particles that

extends to infinity in all directions. To calculate the density of a finite packing of spheres, one has

to define the volume that the spheres occupy by specifying the spatial boundaries that encloses

the spheres. The distinction between ”finite” and ”infinite” packing is thus not based on whether

the system employs periodic boundary conditions (PBC) but rather on the spatial constraints

imposed on the particles.

In a system with PBC but no spatial constraints, the particles behave as if they are part of an

infinite system, similar to crystalline or percolating systems that are often simulated with PBC

[see, for instance, Griffiths, Turci, and Royall, J. Chem. Phys. (2017); Maŕın-Aguilar, Camerin

and Dijkstra, J. Chem. Phys. (2022)]. In contrast, in our study, a ‘finite’ system is constrained by

its boundaries, which can either be rigid or flexible.

These definitions have been now clarified in the revised version of the manuscript.

These definitions have been clarified in the revised Introduction.

Introduction:

In 1611, Kepler conjectured that the densest packing of an infinite number of identical, non-

overlapping spheres in three-dimensional (bulk) conditions is the “cannonball” stacking or the

face-centered cubic (FCC) crystal [...] For d = 4, a sudden transition in the packing density

occurs from a linear to a cluster arrangement, where the coordinates of the particles extend in

all three dimensions.

3. Is the orientation-dependent interaction Eq.(2) mimicking the floppy vesicle used in the exper-

iment? I am not sure I can rationalize why. Please explain.

We appreciate the Reviewer’s suggestion to clarify this. Indeed, the orientation-dependent inter-

action employed in the model for flexible vesicles accounts for the nature of its lipid constituents,

encompassing the various tail-tail, head-head and head-tail (hydrophilic and hydrophobic) in-

teractions that enable real GUVs to maintain their closed shape [Fu et al. Computer Physics

Communications (2017)]. Without taking into account these interactions, the vesicle model

would behave differently. These details have now been incorporated in the revised version of

our manuscript to enhance clarity and accuracy.

A comment regarding the rationale for incorporating an orientation-dependent interaction has now

been included in the description of the model.

Results and discussion:
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In the molecular dynamics simulations, various vesicle shapes are investigated using a meshless

membrane model [42, 43]. In this model, lipids are represented in a coarse-grained fashion us-

ing spheres of diameter σ, which is also used as the unit of length in our simulations. The model

incorporates orientation-dependent interactions to account for the properties and interactions of

the constituent lipids in real GUVs.

4. What is the difference between η and ηch? And how are the values η ≈ 0.12− 0.28 refereed to

Fig.S2 (page 2 second column) obtained?

We thank the Reviewer for giving us the opportunity to elucidate this in the revised manuscript.

The quantity η = NV0/Vv, where N represents the number of colloids, V0 is the volume of a

single colloid, and Vv is the volume of the vesicle, serves as the packing fraction for colloids

within the flexible vesicle. This is determined by utilizing the surface mesh of the vesicle. From

this estimation, values of η in the range of approximately 0.12 to 0.28 are extracted. These

values correspond to the highest and lowest packing fractions among the state points presented

in Figure 1a and S1.

Conversely, the packing fraction of colloids enclosed within a convex hull is calculated as

ηch = NV0/Vch, where Vch denotes the volume of the convex hull, computed using the method

described in the Supplementary Information. As discussed in the text, using ηch allows us to ef-

fectively study the packing fraction within the tightest possible container. This can be compared,

for instance, with the ideal packing fraction of a linear arrangement of colloids, which is the one

given by the spherocylinder. The definition of η has been now better specified both in the main

text and in the Supplementary Information.

We have added the definition of η in the Results and discussion section, and included a paragraph

on the estimate of Vv via the surface mesh in the Supplementary Information.

Results and discussion:

We observe that state points obtained from simulations and experiments encompass a wide range

of packing fractions η = NV0/Vv ≈ 0.12− 0.28 for the colloids in the vesicle (see Fig. S1), with

V0 representing the volume of a colloid and Vv the volume of the vesicle. The latter is estimated

by generating the surface mesh of the vesicle [45, 46], which allows us to directly extract the

value of the volume enclosed within the meshless membrane (see SI).

Supplementary Information:

For the calculation of the packing fraction η, the volume of the vesicle is estimated by means of

its surface mesh with the alpha-shape method of the OVITO software, which provides a three-

dimensional surface representation of the vesicle [1, 2]. This method relies on a Delaunay

4



tessellation constructed on the basis of the input particle coordinates and uses a probe sphere

with prescribed radius Rprobe = 10 − 16σ (depending on the size of the vesicle) to assign each

tetrahedral element to a region of space, of which the volume is calculated.

5. As I gather from the introduction, the ”sausage catastrophe” occurs in d=4 – again not obvious

whether a proof or a conjecture. Why the authors see their results in d=3 as ”contradicting” with

those of Refs. 15 and 16 (page 2 first column)?

We appreciate the Reviewer’s comment. In fact, the term ”sausage catastrophe” has been used

for dimensions other than d = 4 as well. For example, it was used in the context of d = 3

with N = 56 to indicate when the linear conformation ceases to have the optimal packing [see

Gandini and Wills, Math. Pann. (1992)].

Regarding the perceived contradiction, we acknowledge that using clearer wording in our

manuscript would have better conveyed our intended meaning. We apologize for any misun-

derstanding. In fact, our work, does not contradict previous results but rather uncovers clusters

that were not previously identified or explicitly examined in [Gandini and Wills, Math. Phann.

(1992)]. Whether a rigorous mathematical proof can confirm that these clusters have a higher

packing remains an open question, and goes beyond the scope of this paper. We believe that our

work will spark the interest of an interdisciplinary community and may eventually find formal

mathematical validation. We have now rephrased the corresponding part of the manuscript.

The final paragraph of the introduction has been rewritten.

Introduction:

Finally, we identify the conditions required to form finite clusters with high packing efficiency

for a large number of spheres and study them systematically. In this way, we uncover clusters

composed of N = 58 and 64 spheres that exhibit better packing than the linear conformation.

As a result, we provide evidence for the existence of particle arrangements with higher packing

efficiency compared to those previously examined [19, 25], thereby lending direct support to

Fejes Tóth original conjecture.

6. The experimental results reported in this study build on the techniques from Refs. 9 and

23. Likewise, the numerical results hinge on those from Ref. 29 and 30. The authors duly report

references to these study but it is not clear to me whether the present study also reports new insights

on the techniques themselves or not.

We thank the Reviewer for their comment. While we did not introduce new simulation tech-

niques beyond those reported in [Fu et al., Computer Physics Communications (2017) (Ref. 30
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in the original manuscript)], our approach distinguishes itself through a systematic investigation

of controlling the vesicle shape and particle packing within a flexible container. Specifically, we

modified the vesicle shape and size by manipulating the number of solvent particles in its outer

region. This is in contrast to the approach taken in Ref. 30, where adjustments were made by

varying the size of the inner solvent particles.

Regarding our experimental method, we encapsulated particles within giant unilamellar vesi-

cles (GUVs) using a slightly modified droplet transfer method, drawing inspiration from the

technique employed in [Vutukuri et al. Nature, (2020) (Ref. 23 in the original manuscript)].

While our method bears some similarities, it is essential to emphasize that the primary focus of

our study differs substantially. In Ref. 23, active or self-propelled particles were used to study

how localized forces deform the lipid membrane, resulting in non-equilibrium membrane fluctu-

ations. In contrast, the present study focuses solely on the packing behavior of ‘passive particles’

in GUVs with very low interfacial tension.

Incidentally, we wish to clarify that our method is not based on the work described in

[Manoharan et al. Science, (2003) (Ref. 9 in the original manuscript)]. In that study, parti-

cles were encapsulated in oil emulsion droplets stabilized by surfactants in water. The resulting

tension of these droplets is several orders of magnitude higher than that of GUVs. Therefore, we

can consider them as ‘hard containers’, where it is very difficult to vary their droplet tension. In

contrast, in our work the tension in GUVs can be precisely controlled across a wide range, from

mN/m to nN/m, using osmotic shock. Therefore, we consider them as ‘flexible containers’.

For more details on this, please refer to our response to question 1 from Reviewer 3, where

we experimentally demonstrate how changes in the surface-to-volume ratio of the vesicle can

lead to a transition between linear and clustered arrangements of particles, and vice versa.

We have added this information in the revised manuscript.

Results and discussion:

In experiments, we use a modified droplet transfer method [34] to encapsulate colloidal particles

of size 2.12 µm in GUVs, drawing inspiration from a previous work by Vutukuri et al. [32]. [...]

We note that, while Ref. [32] dealt with self-propelled particles locally deforming the lipid mem-

brane, here we entirely focus on passive particles. Furthermore, the vesicles employed in this

study significantly differs from oil emulsion droplets [10], whose surface tension is several order

of magnitude higher than that of GUVs. [...]

We use explicit solvent to control the shape of the vesicle but, differently from the original model,

we only add it to the outer region thus exerting an external pressure on the membrane.
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REPLY TO THE COMMENTS OF REVIEWER 2

The manuscript by Marin-Aguilar et al. describes a combined experimental/simulation inves-

tigation into dense packing arrangements of finite numbers of spheres. As the authors point out,

sphere packing has been of interest in a growing number of fields over the past few centuries. This

manuscript presents a novel physical instance of the finite sphere packing problem via colloidal hard

spheres enclosed in a lipid vesicle. To my knowledge, the authors report a novel contribution to the

literature, and the manuscript lays out what seems to be a well-executed and well-described investi-

gation. I have no quarrel with the quality of the work done in the manuscript, but I wonder if the

authors could do a better job of situating its importance.

We thank the Reviewer for their kind words on our work and for finding it sound and well-

described in the manuscript.

1. It seems like one of the main advances of the manuscript is to construct a physical realization

of the problem, however it seems like the authors are only able to reproducibly generate vesicles with

small numbers of colloids inside, whereas it seems like where non-sausage clusters, the structure of

which less is known about, are inaccessible. On the other hand, the authors are able to address this

question with their numerical simulations, the results of which come through clearly. However, if

I am reading their conclusions correctly, it seems like the structure of larger dense clusters is not

achievable inside flexible vesicles. This latter effect, which the authors skim over somewhat, might

appear to be a ”bug”. However, it could also be seen as a ”feature” in the context of recent work

showing that clusters of colloids with unconventional packing arrangements can be used as building

blocks for hierarchically structured materials (e.g. Baldauf et al., Sci Adv 2022). Thus the fact that

the authors produce could potentially produce packings other than the densest ones could provide

leverage.

We appreciate the Reviewer’s comments and for their suggestion to turn a bug into a feature.

Indeed, it is rather challenging to realize both in simulations and in experiments systems con-

taining a large number of particles. As mentioned in the text, the main problems concern the

excessive bending we would observe for vesicles with N > 9, and the high computational cost

associated with including explicit solvent in such a system. For these reasons, we approach

the study of configurations with a high number of colloids differently in the second part of the

manuscript.

We agree with the referee that the structures we observed in the vesicle have the potential

to be used as preassembled building blocks for larger-scale exotic structures, as suggested in the

reference provided by the Reviewer. We have also recently found other works where authors

describe the use of small colloidal or nano-scaled clusters for applications as plasmonic meta-
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molecules [see, for example, Huh et al., Advanced Materials (2020)]. We have incorporated

these references and the Reviewer’s suggestion into the main text of the manuscript.

We have revisited the concluding section of our manuscript and included reference to the above-

mentioned papers.

Conclusions:

Beyond addressing the finite sphere packing problem, our findings have broader applications.

For instance, the encapsulation of a limited number of spheres within a vesicle provides a strat-

egy for pre-assembling building blocks that could be used to construct larger, more intricate

structures [57, 58], with potential applications such as the enhancement of plasmonic proper-

ties in metamaterials [59]. Moreover, our methodology can be adapted to other building blocks

like dimers, trimers, or tetramers, drawing inspiration from existing techniques that use patchy

interactions or emulsion methods to realize these clusters [10, 60-62].

2. Perhaps I’m misreading the manuscript, but to me it seems like, given the framing in the

introduction, the main contribution of the manuscript is to give a very detailed set of numerically

constructed proposals for densely packed collections of spheres, particularly in the range of N between

50 and 75. That to me seems like an interesting result, and, given the longstanding interest in this

problem and the array of applications of the result makes the paper one that should be interesting to

readers of Nature Communications. Overall, my assessment is that this is a valuable contribution,

but the authors should more clearly articulate its value, particularly in final concluding paragraph.

We appreciate the insights of the Reviewer regarding our work. In addition to providing a

first physical realization of the finite sphere packing problem, our study indeed places a strong

emphasis on analyzing in detail the range of particle numbers where the sausage catastrophe

was expected to occur. To better emphasize this aspect, we have included a dedicated paragraph

in the concluding discussion of the manuscript.

We have revised the concluding section of our manuscript accordingly.

Conclusions:

Our systematic investigation of these clusters with various shapes has allowed us to directly

prove, with a practical approach inspired by the physics of colloids, the existence of previously

unidentified clusters that exhibit a packing efficiency that is superior to the sausage configura-

tion, highlighting that the finite sphere packing problem is still open and intriguing. Neverthe-

less, it remains to be determined whether mathematical proofs can be developed for the packing

of these clusters and for the entire Fejes Tóth conjecture. We believe that our work can serve as a
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catalyst for further research in this direction. From a computational perspective, we envision the

development of cluster generation techniques, either through conventional or machine-learning

methods [63]. Such approaches could expand the exploration of even more configurations and

different Barlow stacking arrangements of spheres.

3. As a side note, I think that it would further add value to the contribution to make more

substantive connection to areas where the experimental setup the authors describe here could be

leveraged. In addition to the example mentioned above on hierarchical assembly, there has also been

work on colloidal clusters for wet computing (e.g. Phillips et al., Soft Matter 2014), among other

applications, and the numerically constructed clusters reported here should be of interest to the math

community.

We thank the Reviewer for pointing out this additional example, which highlights another po-

tential application of cluster formation. The reference to work on colloidal clusters for wet

computing is now cited in our manuscript. Due to the rapid advances in simulation techniques,

some of which have been developed in recent years, we have the opportunity to explore various

ways to expand upon our current experimental systems. Specifically, we can consider employing

different starting building blocks such as dimers, trimers, and even tetramers. These well-defined

clusters could potentially be realized using various techniques, including emulsion droplet meth-

ods, as discussed in [Manoharan et al. Science, (2002)]. Another approach could involve patchy

interactions, as described in several studies [see, for example Gong et al., Nature, (2017); He et

al., Nature, (2020); Kim et al., JACS, (2021)]. By combining these methods and building blocks,

we might be able to generate versatile structures with a wide range of functional properties.

We have revisited the concluding section of our manuscript and added the reference mentioned by

the Reviewer in the Introduction.

Introduction:

Sphere packings also have applications in coding theory, wet computing, crystallography, and in

understanding mechanical and geometrical properties of materials [2-7].
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REPLY TO THE COMMENTS OF REVIEWER 3

The paper starts out with a motivation from the finite sphere packing problem, including works

from Wills/Tóth and coworkers. It then shifts focus towards colloids confined by ”GUVs” of which the

packing behavior is accessible by confocal microscopy. Systems up to N = 9 enclosed colloid particles

are studied away from the close-packing limit. Linear, flat plates and spheroidal clusters are found,

depending on an effective surface/volume ratio. In addition to the experiments, MD simulations with

WCA particles in a meshless vesicle are performed, the two methods appear to produce comparable

results. Then, an optimization scheme is used to find dense arrangements of colloids. None surpass

the 1D string. Subsequently, cuts of the FCC lattice are studied which yield the expected crossover

close to ≈ 60 spheres. Excluding N = 63, 57, the densest arrangements with N ≥ 56 are found to be

clusters. The manuscript is well-written and it is clear what was done and why it was done.

We thank the Reviewer for the careful assessment of our manuscript and for considering it clear

and well-justified.

1. The link between the confined colloid experiments and simulations and the infinite-pressure

packing problem is a bit tenuous - it almost seems like there are two papers here in one manuscript.

We thank the Reviewer for their comment. We believe that the connection between the observa-

tion of different conformations in the vesicle and the analysis of higher-N clusters is manifold.

On one hand, the number of colloids that can be encapsulated in a vesicle is limited. Therefore,

the study of clusters with N > 9 allows us to determine which particle arrangements would

result in a higher packing efficiency than the linear conformation in a region where the sausage

catastrophe is expected to occur. For N up to 9, we can confirm that the packing is maximized

for linear conformations through a physical realization of the finite sphere packing problem.

On the other hand, we have the opportunity to explore particle states at their highest packing,

allowing us to compare them to the ideal packing fraction given by the convex hull. Experimen-

tally, achieving states with very high packing fractions would be much more challenging because

it would not be possible to directly manipulate the volume-to-surface area ratio to tightly en-

close colloidal particles within vesicles. These aspects discussed in the manuscript are therefore

conceived as complementary. We have made changes in the text to better emphasize this con-

nection.

This reasoning has been introduced in the Results and discussion section.

Results and discussion:

After implementing an optimization protocol to approach the hard-sphere limit, we determine
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the colloid packing fraction for both data sets as ηch = NV0/Vch, where Vch is the volume of

the convex hull that encloses the colloids. This numerical protocol complements the analysis

just presented on the flexible vesicle. In fact, besides being able to explore states with a larger

number of colloids, by using ηch we effectively study the packing fraction of the tightest possible

container, and thus compare it to the ideal linear packing fraction ηlin obtained from the vol-

ume of a spherocylinder with N particles (see SI). In contrast, achieving states with a very high

packing fraction experimentally would be significantly more challenging. This is because it is not

feasible to directly manipulate the volume-to-surface area ratio to tightly enclose the colloidal

particles within the vesicles.

2. I wonder if the authors have a way, in experiment, to control the surface/volume ratio of the

cluster, for example by evaporation, and drive the system closer to dense packing.

We value the Reviewer’s suggestion about the potential of controlling the surface/volume ratio

of the vesicle to optimize cluster packing and find the analogy drawn with emulsion droplets to

be highly relevant. Unlike emulsion droplets, simply evaporating the vesicle does not necessarily

lead to maximum cluster packing due to the elasticity of vesicles, which allows them to transform

into different shapes. The change in vesicle shape due to osmotic shock is attributed to a change

in volume, while the surface area of the vesicle remains relatively constant. Consequently, pre-

serving the shape of the vesicle while it deflates poses a considerable challenge.

However, following the Reviewer’s suggestion, we performed additional experiments and

simulations. In our experiments, we successfully manipulated the surface area-to-volume ratio

of the vesicle through osmotic imbalances, enabling the observation of a transition from a lin-

ear arrangement to a clustered state within a single vesicle. Correspondingly, in simulations,

a reduction in solvent density facilitated the transition of particles from a linear to a clustered

conformation. The results from these supplementary experiments and simulations have been

incorporated and are presented in Figure R1, Figure S3, and Movie S3.

We added a paragraph in the main text, and a section, figure and a video in the Supplementary

Information.

Results and discussion:

To highlight the robustness of our methods, we convincingly demonstrate the transition of the

particles from a linear arrangement to a clustered state both in simulations and experiments.

This transition is achieved by precisely controlling the surface area-to-volume ratio of the vesicle

through osmotic imbalances across the membrane, as depicted in Figure S3 and Movie S3.

Supplementary Information:
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Figure R1: (a-d) Sequence of time-lapse images from 2D composite confocal and bright field microscopy,

illustrating the transition from linear to cluster conformation as osmotic imbalances are induced in a vesicle

containing 5 particles. (e-h) Corresponding simulation configurations generated by systematically changing

the outer solvent density ρsol. (i) Dependence of the vesicle volume Vv on ρsol for the simulations shown in

(d-f), with dashed lines serving as guides-to-the-eye to denote the transitions between the three different

configurations.

To demonstrate the robustness of our experimental method, we show the transition of particles

from a linear arrangement to a cluster state by precisely controlling the surface area-to-volume

ratio of the vesicle. We induce transitions between the three distinct conformations by gradually

increasing the vesicle volume while keeping the membrane surface area constant. We achieve

this through a step-wise reduction in the osmolarity of the external solution, leading to a vesicle

volume expansion. Particles in GUVs are initially arranged linearly, then they are subjected to an

osmotic shock through the sequential addition of water outside the vesicle solution. In a typical

experiment, we add a total of 50 µL of Milli-Q water in increments of 10 µL to the 40 µL vesicle

solution. The first addition induces transition from the sausage to the plate conformation. The

second addition transforms the plate to a cluster arrangement. Finally, the last three additions

progressively transform the vesicle into a more spherical shape. We observe that each transition

took place approximately 3-4 minutes following each addition. A similar procedure is done in

simulations, where we gradually change the shape of the vesicle by removing solvent particles,

thus changing the density of the solvent. This allows us to observe the transformation from

cluster to linear conformation.

3. The fact that a finite system oscillates between two conformations (plate/linear in Fig 1j) is

rather unsurprising in my opinion. It is natural for clear cut ’phase transitions’ to emerge only in
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the large-N limit. Can the authors comment why they find this surprising?

We thank the Reviewer for their comment. While it is indeed expected for the system to oscillate

between plate-linear and plate-cluster states, bistable regions have never been identified before

for particles enclosed in a flexible container. Most importantly, we provide the value of the

parameter ν at which such transitions are expected to occur. We have now amended the text to

better convey this message.

We have revised the corresponding sentence in the manuscript.

Results and discussion:

Additionally, we find bistable regions due to the combined membrane, shape, and solvent fluc-

tuations driven by the colloids inside the vesicle.

4. It would also be extremely interesting why the contradiction to Ref. [15,16] with regards

to N=58 and N=64 can be resolved. This is a mathematical problem which should have a robust

answer.

We thank the Reviewer for pointing this out, and we apologize for any confusion. Our choice of

words may not have adequately conveyed what we actually meant. Instead of contradicting the

previous work cited in Refs. [15,16], our study unveils clusters that were not previously iden-

tified or explicitly discussed in those papers [Gandini and Wills, Math. Phann. (1992)]. While

the question of formally proving the high packing of these newly discovered clusters remains an

open topic, it lies beyond the scope of this paper. Nevertheless, we hope that our findings will

spark interest across disciplines and may eventually lead to a formal mathematical validation.

We have now rephrased the corresponding part of the manuscript.

The final paragraph of the Introduction has been rewritten.

Introduction:

Finally, we identify the conditions required to form finite clusters with high packing efficiency

for a large number of spheres and study them systematically. In this way, we uncover clusters

composed of N = 58 and 64 spheres that exhibit better packing than the linear conformation.

As a result, we provide evidence for the existence of particle arrangements with higher packing

efficiency compared to those previously examined [19, 25], thereby lending direct support to

Fejes Tóth original conjecture.

5. Is the plate-like phase (Fig 1a) expected to disappear in the large-N limit?
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The question raised by the Reviewer is indeed intriguing. Based on the phase diagram in Figure

1a, one might expect that planar conformations would remain stable even for a large number of

particles. Additionally, as illustrated in Figure 4a, none of the planar arrangements achieves a

packing efficiency that is higher than, or even close to, that of the sausage conformation, which

is consistent with Ref. [15]

We added a comment on this in the Results and Discussion section.

Results and discussion:

Nonetheless, based on the state diagram presented in Figure 1(a), we expect that planar confor-

mations would remain stable even for a large N .

6. Can the authors comment in the relative importance of the conformation entropy of the vesicle

and the colloids?

We thank the Reviewer for raising this interesting point. Indeed, the transitions from linear to

plate and cluster conformations may be affected by the configurational entropy of the vesicle

and the colloids. However, we do not expect a great difference of configurational entropy among

the states adopted by the colloids in the vesicle, considering a similar wiggling of the particles

wrapped in a tight container. We can also expect an increase in configurational entropy for higher

N . We agree with the Referee that it would be interesting to quantify the configurational entropy

for the different conformations by taking into account the membrane and particle fluctuations,

using for instance the simulations as presented here, or the approach presented in Ref. [13], or

a cell-like theory where the shape of the vesicle and the particles are kept fixed, but we regard

this to be outside the scope of our current study.

7. Were other Barlow stacking types than FCC considered (for example HCP) to explore the

densest packings? Since the problem is so subtle, stacking order could make a difference.

We agree with the Reviewer that this is a very interesting point which indeed deserves further

investigation. In fact, while FCC, HCP and other Barlow stackings have the same packing effi-

ciency (≈ 74%) in bulk, the different stacking of particle layers (A, B, C) might lead to differently

packed structures in finite systems. For this reason, we generated a series of polyhedra starting

from a bulk lattice with HCP (ABABAB) and two other orderings (ABABAC and ABACBC). For

each polyhedron, we calculated its convex hull, and thus its volume and packing fraction, similar

to the previously reported clusters. As summarized in Figure R2, we did not find any cluster with

a better packing efficiency than the linear arrangement, even for irregularly cut polyhedra. It

thus appears that the FCC ordering is best suited for generating clusters with the highest packing
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Figure R2: Packing fraction ηch of clusters of spheres in their convex hull as a function of N for the linear

arrangement of spheres (orange line) and for (a) HCP-based (ABABAB stacking) pyramids and bipyramids,

and for (b) irregularly cut HCP-based, ABABAC- and ABACBC-based polyhedra as compared to tetrahedra

and octahedra based on an FCC stacking of the particle layers (dashed lines).

fraction when confined in the tightest possible container. We now included a comment on this in

the main text and the most relevant graphs and snapshots in the Supplementary Information.

We added a paragraph in the main text, and a section, a figure and a table in the Supplementary

Information.

Results and discussion:

In the Supplementary Information, we also present a similar analysis for other representative

Barlow stacking arrangements of spheres [53-55], such as hexagonal close packing (HCP). Our

findings demonstrate that these arrangements generally provide less efficient packings compared

to the FCC.

Supplementary Information:

Along with the face-centered cubic (FCC) arrangement, it was proven that for an infinite num-

ber of spheres there exists an infinite number of other stackings that achieve the same packing

efficiency of ≈ 74% [6]. The latter are better known as Barlow stackings [7], and they are all

based on variations of the three ways of accommodating an hexagonal layer on top of another.

Each layer can be identified by the letters ‘A’, ‘B’ and ‘C’, with different combinations encoding for

different stackings. The most regular and well known stacking are the hexagonal-closed packing

(HCP) and the FCC arrangements with repeated sequences ‘AB’ and ’ABC’ respectively. Here, we

extend the study of the FCC-based structures presented in the main text by building clusters made

of 6 layers with the ‘ABABAB’ sequence corresponding to HCP, ‘ABABAC’ (seq 1) and ‘ABACBC’
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(seq 2) [8]. In Fig. R2(a) we show the convex hull packing fraction ηch of HCP-based pyramid

(PHCP ) and bipyramid (BHCP ) clusters compared to the corresponding structures based on an

FCC arrangement. We find that the different stacking introduced by the HCP arrangement is not

as favorable as the one formed by the FCC for packing finite structures. A similar situation occurs

with the other stackings, as shown in Fig. R2(b), where we show the ηch of the pyramids based

on the seq 1 and seq 2 (dashed symbols). Moreover, we perform irregular cuts to clusters based

on HCP, seq 1 and seq 2, finding that all of them have a significantly lower ηch compared to

ηlin. We report in Table S4 the corresponding clusters with their convex-hull packing fraction ηch

when compared with the linear convex-hull packing fraction ηlin and the 3D View which gives

the short name of HTML files that contain the interactive three-dimensional visualization of the

cluster.

8. A Monte Carlo scheme adding/removing spheres at the boundary of the cluster might be able

to find other candidates for the densest packing.

We thank the Reviewer for this remark. Using a Monte Carlo-like scheme for finding new clus-

ters is indeed a valuable suggestion. While the concept is straightforward, its implementation

requires certain constraints and rules regarding the types of clusters that can be generated in

order to limit their number and establish specific cuts on the polyhedra. Another promising

approach for creating densely packed clusters involves the application of machine learning tech-

niques, similar to what has been proposed, for example, in the work of Zang and Dolg, Physical

Chemistry Chemical Physics (2015). We are actually pursuing this direction to compile a large

pool of cluster candidates for an in-depth study and analysis. A comment on this aspect has been

added to the conclusions of the manuscript.

We have revisited the concluding section of our manuscript and included reference to the above-

mentioned paper.

Conclusions:

From a computational perspective, we envision the development of cluster generation tech-

niques, either through conventional or machine-learning methods [63]. Such approaches could

expand the exploration of even more configurations and different Barlow stacking arrangements

of spheres.

9. Are the findings with respect to closest packing stable with respect to the definition of packing

fraction (here via cluster convex hull)?

We thank the Reviewer for this comment. Indeed, the definition of the convex-hull packing
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fraction ηch = NV0/Vch, with V0 the volume of each particle and Vch the volume of the convex-

hull (as described in the SI), is equivalent to the common packing fraction η = NV0/Vv for

the tightest possible vesicle. To further confirm the accuracy of our approach, we compare the

resulting ηch with the estimated theoretical packing fractions for linear conformations ηlin made

from 1 to 100 spheres. The latter is calculated as the packing fraction of a perfect spherocylinder

as ηlin = 2N/(2 + 3(N − 1)). We report the difference between these two estimates as ∆η(N) =

ηlin − ηch in Figure R3, and we find that we have a precision up to the fourth decimal digit. This

comparison is now also reported in the Supplementary Information.
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Figure R3: Difference in packing fraction ∆η between the analytical value calculated for the

linear spherocylinder and the estimated value calculated using the convex hull, plotted as a

function of the number of particles N .

We added a comment and a figure regarding this point in the Supplementary Information.

Supplementary Information:

Moreover, to further validate our approach, we compare ηch of linear arrangements in the range

N = 1 − 100 with the theoretical packing fraction of the linear conformation ηlin = 2N/(2 +

3(N − 1)) obtained from the volume of the spherocylinder with N particles, as ∆η = ηlin − ηch,

as shown in Fig. S7. We find that the precision is again on the fourth decimal digit.
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REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed in full details all comments in my original review. As a result, it seems to 

me that the manuscript has gained in clarity and impact. 

I am pleased to recommend publication of this manuscript in the present form 

 

 

Reviewer #2 (Remarks to the Author): 

 

My first review of this manuscript described what I perceived to be the significance of the work, and 

my opinion of that remains the same. I think that the revised version of the manuscript clarifies what 

I think were some minor confusions in the original submission. The authors' response addresses my 

concerns, and I think that this version will be of interest to readers of Nature Communications. 
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