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A mean-field theory for predicting single polymer
collapse induced by neutral crowders

Quentin Chaboche, ac Gerardo Campos-Villalobos,e Giuliana Giunta, ef

Marjolein Dijkstra,e Marco Cosentino Lagomarsino†*cd and Vittore F. Scolari †*ab

Macromolecular crowding can induce the collapse of a single long polymer into a globular form due

to depletion forces of entropic nature. This phenomenon has been shown to play a significant role in

compacting the genome within the bacterium Escherichia coli into a well-defined region of the cell

known as the nucleoid. Motivated by the biological significance of this process, numerous theoretical

and computational studies have searched for the primary determinants of the behavior of polymer-

crowder phases. However, our understanding of this process remains incomplete and there is debate on

a quantitatively unified description. In particular, different simulation studies with explicit crowders have

proposed different order parameters as potential predictors for the collapse transition. In this work, we

present a comprehensive analysis of published simulation data obtained from different sources. Based

on the common behavior we find in this data, we develop a unified phenomenological model that we

show to be predictive. Finally, to further validate the accuracy of the model, we conduct new

simulations on polymers of various sizes, and investigate the role of jamming of the crowders.

1 Introduction

The mechanics underlying the conformation of bacterial DNA
and its functions involve the physics of polymer collapse.1–3

In Escherichia coli, a more than a millimeter long genomic DNA
occupies a region of less than a mm3 called the nucleoid.4

Entropic crowding, caused by the depletion effect of small
neutral molecules like polyethylene glycol on the DNA as a
polymer, has been shown to be necessary in explaining the
formation of a compact nucleoid in vitro.5–8 In vivo, osmotic
shock and mechanical cell-size perturbations confirm this
picture,9 and show that a 30% increase in the crowders (ribo-
somes and proteins) concentration can lead to a 3-fold decrease
in nucleoid size, while association of DNA-binding proteins
also clearly plays a role in this process.10

To explain these observations, multiple simulation studies
have explored the impact of neutral crowding agents on a
polymer, which is represented as a chain of beads.1,9,11–13 Since
explicitly accounting for the crowder dynamics is computation-
ally expensive, particularly when numerous small crowders are
required, some studies have described the presence of crowders
as an effective short-range attraction.1,14 These theories typi-
cally leverage the classical framework of the Asakura–Oosawa
theory for depletion forces15,16 to describe the effective attrac-
tion between the beads, and to estimate its strength as a
function of the size and density of the crowders.

Other numerical investigations explicitly accounted for the
presence of crowders, represented by a fluid of hard spheres,11–13

to study their direct impact on polymer folding. In all of these
studies, the authors simulated the collapse of a polymer compris-
ing of N monomers, of fixed monomer size (which we call D), and
with a mean distance between adjacent monomers b � D, in the
presence of crowders with a diameter d and a crowder volume
fraction f. All these studies concur that an increase in crowding
results in a decrease in solvent quality. To demonstrate this, they
examine quantities related to the swelling ratio of the chain,
denoted as a = R(f)/R(y). Here, a represents the ratio between
the end-to-end distance of the polymer chain under crowding
conditions and its value in ideal conditions, where repulsive and
attractive effects between monomers are balanced, and the poly-
mer behaves as a ghost chain. The behavior of a as a function of
f reveals a sharp decline, indicating a polymer coil-to-globule
transition, which occurs at different values of f for different d.
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Laboratoire Dynamique du Noyau, 75005 Paris, France.

E-mail: vittore.scolari@curie.fr
c IFOM ETS, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.

E-mail: marco.cosentino-lagomarsino@ifom.eu
d Physics Department, University of Milan, and INFN, Milan, Italy
e Soft Condensed Matter, Debye Institute for Nanomaterials Science,

Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
f BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany

† Equal contribution.

Received 9th November 2023,
Accepted 20th February 2024

DOI: 10.1039/d3sm01522j

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 2
2 

Fe
br

ua
ry

 2
02

4.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

U
tr

ec
ht

 o
n 

9/
5/

20
24

 1
:3

3:
04

 P
M

. 

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-6565-1547
https://orcid.org/0000-0002-8986-9604
https://orcid.org/0000-0003-3490-0579
http://crossmark.crossref.org/dialog/?doi=10.1039/d3sm01522j&domain=pdf&date_stamp=2024-03-07
https://rsc.li/soft-matter-journal
https://doi.org/10.1039/d3sm01522j
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM020015


3272 |  Soft Matter, 2024, 20, 3271–3282 This journal is © The Royal Society of Chemistry 2024

To compare the varying conclusions, let us discuss these
studies in further detail. Shendruck and coworkers11,17 con-
cluded that the entropic crowding interaction is sufficient to
trigger a second-order coil-to-globule transition, but that the
Asakura–Oosawa theory was not sufficient to predict the form
of the depletion pair potential. They proposed, as a solution,
the use of a multi-parameter morphometric thermodynamic
approach for the pair potential. Kang et al.,12 instead, observed
in their simulations that the polymer collapse may or may not
reach a globular phase. The behavior of the polymer is deter-
mined by a dimensionless control parameter defined as xKang =
R(0)f1/3/d. We will refer to this as the ‘‘Kang parameter’’ in the
following. Its value is derived from scaling argument and
controls the statistical behavior of the polymer with respect to
the crowding ratio. Finally, Jeon et al.,13 argued that their
simulations supported the thesis that the swelling of the chain
was a unique function of a different dimensionless control
parameter defined as xHa = fD/d (which we will call the ‘‘Ha
parameter’’ in the following). This order parameter differs from
the one proposed by Kang and coworkers. They argued, using
approximations, that this parameter is compatible with the
Asakura–Oosawa theory, in contrast to other studies that con-
cluded the Asakura–Oosawa interactions alone cannot fully
account for their results. Furthermore, they observed that the
transition from coil to globule universally occurs for values of
xHa that are close to 1. In brief, while these three different
studies employed the same type of simulations, yielding con-
sistent quantitative results, they accessed different regimes and
analyzed the data using different paradigms, affecting their
interpretations.

Here, we conduct an integrated analysis of the simulation
results from these studies, aiming to capture the unifying traits.
These traits lead us to propose a straightforward and effective
mean-field theory capable of accurately describing all the
simulation results and extend it to various scenarios. Moreover,
to validate our predictions in novel regimes and examine
the impact of jamming of the crowders, we conduct our
own molecular simulations of polymer chains with explicit
crowders.

2 Methods
2.1 The Flory mean-field theory for real polymers

We start by a short introduction of a Flory-like mean-field
theory, which is the basic ingredient of our approach.
In polymer physics, a chain of non-interacting monomers is
described as a random walk, often called an ‘‘ideal chain’’.
In this simple model, the mean square end-to-end distance of
the chain, denoted as hR2i, can be expressed as

hR2i = Nb2, (1)

where N is the number of monomers in the chain and b
represents the mean distance between adjacent monomers.

The classic Flory theory18,19 starts from this model and aims
to predict the mean end-to-end distance of a ‘‘real chain’’ with

interactions as the minimum of a free energy function. For the
ideal chain, this free energy can be formulated as follows

bFideal ¼
3R2

2Nb2
� 3 log

R

Nb2

� �
; (2)

where b = (kBT)�1 represents the inverse temperature, with kB

the Boltzmann constant, and T the temperature.
When considering an interacting chain, we can introduce

the swelling ratio a in the theory, which represents the ratio
between the root mean square end-to-end distance R of the real
chain and the one of the corresponding ideal chain, which is
given by the expression a = R/(bN1/2). Consequently, the free
energy of the ideal chain reads

bFideal ¼
3a2

2
� 3 logðaÞ: (3)

To obtain an expression for the free energy of the real chain,
the interactions between the monomers and the solvent, as well
as the interactions between the monomers themselves can
be analyzed separately. The total free energy, Ftot = Fideal +
Finteractions, is then the sum of the ideal chain free energy, Fideal,
and the free energy contribution due to the interactions,
Finteractions, which can be described using a virial expansion,
in a similar way as done in the theory of real gases,20

Finteractions ¼
1

2
N vrþ wr2
� �

þO r3
� �

; (4)

where r = kN/R3 represents the monomer number density with
a geometrical prefactor k = 3/4p. The parameters v and w
correspond to 2-body and 3-body monomer-interaction terms,
respectively. When there is no attraction between monomers,
these terms account for the steric repulsion between beads, and
they reduce to v0 = 4pD3/3 (the monomer volume) and w0 = v0

2/6.
The 3-body interaction term w is taken as w0, and the total free
energy can then be expressed as

bF ¼ 3
a2

2
� log a

� �
þ

ffiffiffiffi
N
p

2a3
D

b

� �3
v

v0
þ D

b

� �6
1

6a6
; (5)

where the swelling ratio a can be obtained by minimizing the free
energy, i.e. setting dF/da = 0. This leads to the equation of state of
the Flory mean-field theory for real polymers, which was derived
by De Gennes in 197521,22

a5 � a3 � 1

6a3
D

b

� �6

¼ 1

2

D

b

� �3 ffiffiffiffi
N
p v

v0
: (6)

We used this equation to build our model. This equation
was solved using the fsolve function from the python Scipy
package. Further, in Section 3.4 the sets of analytical equation
were numerically solved using the minimize function from the
python Scipy package, with Nelder–Mead algorithm (non-linear
simplex).

2.2 Swelling ratio for the published simulation datasets

We now perform a detailed analysis of the simulations carried
out by Shendruck11 and Jeon et al.13 The details of the Shendruck
et al. dataset11 are presented in Table 1. The observable used in
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their plots is the radius of gyration, denoted as Rg. In order to
obtain the swelling ratio, we first normalize the radius of gyration
with its value in absence of crowders, a0 = Rg(f)/Rg(f = 0). The
difference between a0 and the swelling ratio a lies in the denomi-
nator. Therefore, a is proportional to a0, with a coefficient of
proportionality that is independent of f and d/D, but dependent
on the polymer length N and the ratio between the mean distance
of adjacent monomers and the monomer size b/D � 1. This
relation will be used throughout the whole article. This coefficient
can be determined as the value of a in the absence of crowders
(where f = 0, a0 = 1, and v/v0 = 1). We obtain its value by solving
eqn (6) with v/v0 = 1, which leads to the following relation

a
a0

� �5

� a
a0

� �3

�1
6

a
a0

� ��3
D

b

� �6

¼ 1

2

D

b

� �3 ffiffiffiffi
N
p

: (7)

This equation allows us to express the data from Shendruck
and coworkers in terms of the swelling ratio a.

The details of the dataset by Jeon et al.13 are also summar-
ized in Table 1. In their study, the measured observable is the
normalized radius of gyration a0. To determine the swelling
ratio a, we employ the same approach as used for the Shendruck
dataset.

2.3 Molecular simulations of chains with explicit crowders

Here, we provide a brief overview of the model and molecular
simulation method used to generate additional simulation data
on the collapse of chains in the presence of explicit crowders.
To ensure consistency, we adopted similar modeling choices as
described in ref. 11,13. Specifically, the DNA is represented as a
linear chain comprising N spherical beads of diameter D.
On the other hand, the crowders are modeled as spheres with
a diameter of d. The interactions between all sites, includ-
ing monomer–monomer, crowder–crowder, and monomer–
crowder interactions, are described using a truncated and
shifted Lennard-Jones potential, commonly known as the

Weeks–Chandler–Andersen (WCA) potential.23 This purely
repulsive pair potential is expressed as follows

uðrÞ ¼
uLJðrÞ � uLJ rcð Þ for ro rc

0 otherwise;

(
(8)

where uLJ(r) represents the Lennard-Jones potential given by

uLJðrÞ ¼ 4e
sij
r

� �12
� sij

r

� �6	 

; (9)

where r is the distance between the centers of the two beads,
and e and sij are the energy and length scales of the interaction,
respectively, with i,j either a crowder c or a monomer m. For our
system, we define smm � D, scc � d, and smc = (smm + scc)/2.
The cut-off radius was set to rc = 21/6sij to ensure a smooth and
purely repulsive potential.

Adjacent monomers in a polymer chain are connected by the
finite extensible nonlinear elastic (FENE) potential,24 which is
given by

uFENEðrÞ ¼ �
1

2
k0r0

2 ln 1� r

r0

� �2
" #

; (10)

where k0 represents the spring constant, and r0 is the range of
the potential. In our case, we employed the conventional values
for polymers, specifically k0 = 30e/D2 and r0 = 1.5D.25,26 This
potential is purely attractive and competes with the purely
repulsive WCA potential. The equilibrium point between these
two potentials occurs at r E 0.96D, which justifies our assump-
tion that b/D = 1.

We perform molecular dynamics (MD) simulations in the
canonical ensemble with a fixed number of beads (monomers
and crowders) Nt = N + Nc, volume V and temperature T.
The mass of the monomers and crowders was considered as
the unit of mass m, while the units of length, energy, and time

are D, e and t0 ¼ D
ffiffiffiffiffiffiffiffi
m=e

p
, respectively. The equations of motion

were integrated using the velocity Verlet method with a time-
step dt = 0.005t0. To maintain the desired temperature of
T = 1.0e/kB, we implement a Langevin thermostat with a
damping constant of 0.1t0

�1. All simulations were performed
in cubic boxes with a side length of L = 3Rg(f = 0), where
Rg(f = 0) represents the radius of gyration of the chain in the
absence of crowders. This choice of box size, which depends on
the polymer length, was made to avoid artificial finite-size
effects during the MD simulations. Additionally, we employ
three-dimensional periodic boundary conditions. We perform
simulations of single chains of length N = 60 and 120 immersed
in solutions where the volume fraction of the crowders was set
by the xHa = fD/d parameter. In particular, we study systems
where 0.15 r xHa r 1.50, for size ratios between crowders and
monomers of d/D = [0.2,0.4,0.6,0.8]. Unless specified otherwise,
the total number of MD steps of the simulations is 5 � 107, and
we collect statistics on the radius of gyration and end-to-end
distance of the chains every 1000 steps. All the MD simulations
are performed using the software package LAMMPS.27

Table 1 List of simulation data used in this work. Each row indicates the
reference from which the simulation data was taken, the number of
monomers N, the size ratio D/d between monomers and crowders and
the range of crowder packing fraction values spanned in each work. In all
cases, the chains and crowders are modeled as described in Section 2.3

Ref. N
D

d
f

Shendruck et al.11 15 3.00 o0.45
Shendruck et al.11 15 4.00 o0.45
Shendruck et al.11 15 5.00 o0.45
Jeon et al.13 50 2.00 o0.50
Jeon et al.13 50 2.50 o0.50
Jeon et al.13 50 3.33 o0.50
This paper 60 5.00 o0.60
This paper 60 2.50 o0.60
This paper 60 1.67 o0.60
This paper 60 1.25 o0.60
This paper 120 5.00 o0.60
This paper 120 2.50 o0.60
This paper 120 1.67 o0.60
This paper 120 1.25 o0.60
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3 Results
3.1 Previously proposed order parameters do not capture
crowder-induced polymer collapse from different simulations

The size of a polymer under the effect of molecular crowding
inherently depends on a wide range of variables that collectively
determine its macroscopic state (Fig. 1(A)). If a unique dimen-
sionless order parameter exists, derived from all these vari-
ables, this parameter unambiguously defines the size of the
polymer, significantly simplifying the problem of predicting the
compaction state of the polymer. In such a scenario, all the
swelling ratios would fall on a single master curve when plotted
as a function of this dimensionless order parameter.

Following this line of reasoning, we collected all the swelling
ratios from the simulation data of Shendruck et al.11 and
Jeon et al.13 (Table 1) and plotted them as a function of the
two order parameters xKang = f1/3R(0)/d or xHa = fD/d as
identified in these studies (see Introduction). Fig. 1 demon-
strates that both the Kang parameter xKang (Fig. 1(B)) and the
Ha parameter xHa (Fig. 1(C)) are insufficient to fully describe
the swelling ratio of both datasets. In each plot, the swelling
ratios from different simulations appear on distinct curves
when plotted against the corresponding order parameter. This
observation indicates that neither of these order parameters
alone can capture the complexity of the polymer collapse under
molecular crowding conditions.

On the other hand, we observe that the swelling ratios of
polymers with the same chain length N collapse onto a single
curve when plotted as a function of xHa. However, when
comparing polymers of different lengths, each of them falls
on a different curve. This indicates that the Ha parameter alone
is not sufficient to account for the variation in swelling beha-
vior among polymers with different chain lengths. Thus, based
on these observations, we conclude that the simulations

conducted by Jeon and coworkers, which solely focused on
the N = 50 polymer length, did not fully account for the role
of chain length N on the swelling ratio of crowder-induced
polymer collapse.

Moreover, both at low concentrations of crowders and under
conditions where crowding induces polymer collapse, the
radius of gyration exhibits a clear dependence on the chain
length N. Therefore, we conclude that the chain length appears
to be an essential factor, which needs to be considered
to accurately predict the behavior of the polymer collapse in
the presence of crowders.

This N dependency is well described by standard polymer
theory, which predicts that the radius of gyration scales as Rg p

N3/5 for a polymer in a good solvent, Rg p N1/2 at the transition
point, and Rg p N1/3 for the globular state18,29,30 at a mean-field
level. These theoretical predictions provide a solid basis for
understanding the observed variation in the radius of gyration
with respect to the chain length N in different crowding
conditions. In terms of the swelling ratio, this implies that
a(f = 0) p N1/10 and a(f - 1) p N�1/6.

To sum up, we can confidently rule out the existence of a
single parameter such as xHa or xKang. The reason is that no
single rescaling of the crowders’ volume fraction can account
for the different scaling in polymer length N observed in the
swollen phase compared to the globular phase.

3.2 The second-order virial coefficient is approximately set by
xHa = /D/d as the relevant dimensionless parameter

In light of the results from the previous section, we explore the
possibility of finding an intensive quantity (independent of the
polymer size N) that could be, at least approximately, described
by a single dimensionless parameter. To achieve this, we turn
to the Flory mean-field theory,21,22 which enables us to extract

Fig. 1 Joint analysis of the swelling ratio a in crowder-induced single polymer collapse from different simulation studies. (A) Sketch of a bead-spring
polymer in a crowded medium of hard spheres, illustrating the main simulation parameters common to all the studies considered here. Monomers have
size D and crowders have size d and volume fraction f. (B) Swelling ratio a (simulations from ref. 11,13), plotted as a function of the parameter xKang

proposed by Kang and coworkers.12 (C) Same data, plotted as a function of the control parameter xHa proposed in ref. 13,28.
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the quality of the solvent, represented by the second virial
coefficient v, from the swelling ratios (see Methods).

More specifically, the Flory mean-field theory establishes a
relationship between the polymer size N, the swelling ratio a,
and the second virial coefficient v through the following
equation of state

a5 � a3 � 1

6a3
D

b

� �6

¼ 1

2

D

b

� �3 ffiffiffiffi
N
p v

v0
: (11)

For a detailed derivation of this equation, see the Methods
Section 2.1. This equation provides a means for quantifying the
quality of the solvent based on the swelling ratio of the polymer
and the second-order virial coefficient. The first two terms in
the equation arise from the free energy of the ideal chain,
while the third term and the right-hand side account for the
interactions between monomers in the presence of a solvent
composed of neutral crowders. This formula takes into account
solely second- and third-order terms in the virial expansion.
Both of these terms are independent of N and can be treated as
unspecified functions of D, d, and f when the solvent solely
consists of neutral crowders.

It is important to note that three-body interactions can be
neglected for a polymer in a good solvent. Therefore, this term
becomes only relevant when the polymer undergoes a transi-
tion to a globular form in a very bad solvent. Furthermore,
higher-order interactions are also expected to be negligible.
While the derivation of eqn (11) is not strictly rigorous (as long-
range correlations were shown to be important for a polymer
chain29,31), it is often considered to be a good approximation
for reasons that are more generic than its derivation.32 Speci-
fically, eqn (11) conveniently combines three asymptotic beha-
viors, corresponding to different universality classes, into one
compact phenomenological formulation: Rg p N1/2, represent-
ing the ideal chain behavior observed near the collapse transi-
tion (v E 0), Rg p N3/5, describing the mean end-to-end
distance R behavior of a self-avoiding chain in a good solvent
(v c 0), and Rg p N1/3, characterizing the globule state in a bad
solvent condition (v { 0). Hence, eqn (11) serves as an interpola-
tion formula able to capture these three distinct scaling behaviors.

Fig. 2 shows that all the v/v0 values extracted from the
swelling ratios in simulations using eqn (11) are well defined
by the Ha parameter xHa = fD/d, nearly collapsing onto a single
curve. Remarkably, the discrepancies observed in the asympto-
tic scaling for different values of N, as seen in the plot of
a versus xHa (Fig. 1(C)), are successfully resolved when plotting
v/v0 versus xHa.

The value of v/v0, by definition, was set to unity when xHa - 0
(see Methods), and we find that it levels off to a constant value, as
identified from the simulated data as (v/v0)c C �0.35 for xHa

greater than xc C 1.35. This value is independent of the simula-
tion parameters considered, suggesting a robust and universal
behavior for (v/v0)c and xc.

In conclusion, the collapse of all data points onto a single
curve is highly satisfactory, although not entirely perfect. It is
also essential to acknowledge that these numerical values for

(v/v0)c and xc may not be entirely universal and could depend on
specific details in the potentials defining the simulated poly-
mers and crowders. However, no discrepancies were observed
in any of the available simulations.

3.3 Derivation of an effective potential for the implicit solvent

Notably, the ‘‘inverse’’ analysis presented in Fig. 2 enables the
development of an effective ‘‘direct’’ mean-field theory.

As previously mentioned in the Introduction, multiple stu-
dies concluded that the Asakura–Oosawa theory for colloidal
spheres in the presence of depletants is not directly applicable
to the collapse of a polymer in the presence of crowders. In the
Asakura–Oosawa theory,15,16 entropic crowding is effectively
incorporated through an attractive pairwise short-range
potential. Assuming that a different effective short-range
potential can describe our system, we have derived a simple
formula for this effective potential energy between two mono-
mers. Specifically, we considered a square-well potential U(r)
with a range of D + d and a hard-core repulsion of size D, as
illustrated in Fig. 3(A). The advantage of this simple discontin-
uous potential lies in its dependence on just one parameter,
bE0, representing the depth of the potential.

From a fundamental perspective, the specific shape of the
potential is expected to be of minor importance as long as it
remains short-ranged. Therefore, we assume that the range of
interactions corresponds to the size of the crowding agent d.
This choice allows us to capture the essential features of the
interactions between the monomers and crowders in a simple
yet effective manner. The functional form for E0 = E0(f,d/D) is
derived from the second virial coefficient. The second order
virial coefficient is expressed as a function of the 2-body
potential using the Mayer formula:33

v=v0 ¼
1

v0

ð
dr 1� e�bUðrÞ
� �

¼ 1þ ðd þDÞ3 �D3

D3
1� ebE0
� �

:

(12)

Fig. 2 Near collapse of the second-order virial coefficients extracted
from published simulation data (ref. 11,13) plotted as a function of xHa =
fD/d, the parameter proposed by Ha and coworkers.13,28 The plot sup-
ports a good collapse across the coil–globule transition, with some
discrepancy for intermediate values of xHa.
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We note that if we assume that the virial coefficient collapses
with xHa, the interaction energy E0 cannot be expressed solely as
a function of a single parameter xHa. Instead, it needs to be
represented as a function of both d/D and f. From the plot of
E0, calculated from v/v0 through eqn (12), as a function of f
(Fig. 3(B)), we observe that E0 can be approximated as a linear
function of f with a plateau at the coil–globule transition,
occurring when xHa = xc. Within the range of parameters
considered in the simulations, this simple observation holds
true. By definition, at the transition to the plateau, the value of
the second-order coefficient becomes v/v0 = (v/v0)c.

Based on this simple observation, we can calculate the first-
order approximation in d/D for the value of this plateau,
denoted as bEplateau

0 , which can be expressed as

bEplateau
0 ¼ log 1� v=v0ð Þc�1

1þ d=Dð Þ3�1

" #
� C

D

d
: (13)

By fitting eqn (13) to the simulated data, we determine the
constant C to be 0.223 � 0.003. The numerical value of the
constant C measured from the available simulations, combined
with the fact that in the absence of crowders there is no
attractive interaction (E0 = 0), suggests the following simple
potential as a model,

bE0 �
bEplateau

0 � 1
xc

D

d
f for foxc

d

D

bEplateau
0 otherwise;

8><
>: (14)

and its first-order approximation on the right hand side of
eqn (13) is,

bE0 �

C

xc

D

d

� �2

�f for fo xc
d

D

C
D

d
otherwise:

8>>><
>>>:

(15)

Comparing this approximation to available simulations, we
see that it works very well in the range of parameters observed
(0.20 o d/D o 0.50), since it agrees with the data for both E0 as
a function of f for different d/D (Fig. 3(B), dashed lines) and E0

as a function of d/D for different f (Fig. 3(C), dashed lines).
Interestingly, this result corresponds to a scaling of the inter-

action energy E0 / f
D

d

� �2

that does not correspond to the

classic Asakura–Oosawa energy scaling (see Appendix B for a
rationalization of why this is the case), which confirms previous
observations.

Finally, considering that E0 and v/v0 are linked by eqn (12)
and that the interaction energy E0 depends on d/D and
f separately, the model predicts that the empirical near-
collapse of v/v0 by a single dimensionless parameter xHa

reproduced in the previous Section is, in fact, not universal.
We should instead consider this collapse as the simplest
empirical approximation that is valid for the range of para-
meters considered in the available simulations. In fact, by
numerically combining eqn (12) with eqn (14), the model gives

Fig. 3 A Flory-like mean-field model captures the crowder-induced coil–globule transition. (A) The model approximates the interaction between
monomers as the sum of a hard-core repulsion and a monomer–monomer square-well attraction with a range equal to the crowder size d. (B) Depth of
the effective energy well bE0, plotted as a function of crowder packing fraction f. Triangles represent simulation data for different values of relative
crowder size d/D, and the dashed lines are fits of the empirical potential derived in the main text (eqn (15)). (C) Depth of the effective energy well bE0,
plotted as a function of relative crowder size d/D, simulation data (squares) are interpolated from the curves on panel B. (D) Normalized second virial
coefficient v/v0 as a function of the Ha parameter. The data are the same as in Fig. 2, theory (color-coded solid lines) highlight the increasing non-linear
effects as a function of d/D (obtained by combining eqn (12) and (15)), which predict the imperfect collapse observed in the simulation data.
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a different approximation, which gives a richer and more
precise description of the observed data for v/v0 as a function
of xHa (Fig. 3(D)). Note that our prediction is not a single
universal function of xHa, but the mean-field model predicts a
gradient of shapes for different crowder sizes d/D, as, shown in
Fig. 3(D). The same figure shows that the predicted gradient
reproduces a trend that is visible in the simulated data sets.

3.4 The identified effective potential generates correct
predictions for simulations of confined polymers and ring
polymers

So far, we have focused on the case of a linear unconfined
polymer. However, as mentioned in the Introduction, moti-
vated by the organization of bacterial genomes, simulations in
the literature also explored scenarios involving ring polymers
and/or polymers in confinement. In light of this, we pose the
question of whether our effective model could be generalized
straightforwardly to encompass these situations. These mod-
ifications influence the overall free energy landscape of the
polymer, but should only marginally change the monomer–
monomer interactions (which are represented in our model as
local interactions). The main correction to the current model
would arise from surface adsorption on the confining edges,
which we neglect here for simplicity. Under this assumption,
the effective pairwise interaction energy that characterizes our
model should also be valid for ring-shaped and/or confined
polymers, and only the Flory formula from De Gennes
(eqn (11)) should be modified. Since ring polymers tend to
adopt a linear two-strand configuration,35 and the diameter
occupied by a ring polymer corresponds approximately to the
one occupied by a linear polymer of half its length,36 the ring
polymer free energy can be approximated as a chain polymer
with half the number of monomers. Hence Fring

ideal(N) = Fideal(N/2);
in other words, the volume of a ring polymer is approximately
equal to the one of a linear chain with half the number of beads.
We can write:

Fring
tot (N) = Fideal(N/2) + Finteractions(N). (16)

We adopted this simple approximation and compared
our prediction with numerical simulations. Chauhan et al.34

simulated a ring polymer in crowded environment. Fig. 4(A)
compares their simulation data (triangles) to the predictions of
our modified model. The comparison (which involves no free
parameters) shows an excellent qualitative agreement and a
satisfactory quantitative agreement.

To describe a confined polymer, we extend our model with
the classic blob model from Pincus,37 for a cylindrical confine-
ment of diameter L. Specifically, we used the non-confined free
energy to compute the number of monomers NL that a free
chain would need to have a size R(NL) = L. Subsequently, when
N o NL, we employ the free energy of a free chain; conversely,
for N Z NL, we describe the polymer as a chain of Nc = N/NL

confinement blobs. In this case, the overall end-to-end distance
becomes the product of the number of confinement blobs and
the diameter of each blob. Hence, the confinement diameter
reads R(N) = NcL. This straightforward modification of our
model allows us to formulate another prediction, which we
can compare with simulations. Kim et al.28 simulated polymers
in cylindrical confinement with explicit crowding. Fig. 4(B)
compares the simulation data (triangles) to the predictions of
our model, once again finding good agreement. Finally, Yang
et al.9 simulated ring polymers in cylindrical confinement
subjected to crowding. In order to describe this situation, we
combined the two above modifications, finding again a good
match between the predictions of our model and the simula-
tion data, with no adjustable parameters (Fig. 4(C)). These
results confirm the validity of the phenomenological form of
the effective interaction energy as a function of the volume
fraction of the crowders. Moreover, they underscore its adapt-
ability for different applications.

3.5 Polymer collapse does not take place for crowders above a
critical size, as predicted by the theory

As described in Section 3.3, in all the simulations considered in
this study the polymer reaches the collapsed state when the
densities of crowders are above the critical value defined by

f4xc
d

D
. It is evident that due to its definition (f r 1), there

exists a physical limit on the size d of crowders that is capable
of inducing the collapse of a polymer chain. However,

Fig. 4 Simple modifications of our model make effective predictions for a confined linear polymer, a free ring polymer and a confined ring polymer. (A)
Prediction of the collapse curve, Rg (in units of D) versus f, for a confined linear polymer compared with simulation data from ref. 28. (B) Prediction of the
collapse curve, a0 versus f, for a free ring polymer compared with simulation data from ref. 34. (C) Prediction of the collapse curve, a0 versus f, for a
confined ring polymer, compared with simulation data from ref. 9. a0 is defined as R(f)/R(f = 0). The above comparisons involve no free or adjusted
parameters, as all parameters in the model are fixed from simulation input parameters.
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simulations from Chanil et al. and Shendruck et al. where
performed at values of d/D such that this limit would not be
relevant and collapse would always be reached (Fig. 5(A)).
To explore this limit, we conducted a fresh set of simulations
(see Table 1) that enabled the examination of a larger set of d/D
values. By plotting the swelling parameter a against increasing
d/D values, we can see how the polymer collapse transition
shifts towards higher f values. Notably, for crowder-to-mono-
mer size ratios d/D Z 0.6, no collapse was observed within the
range of f values investigated in our simulations (see Fig. 5(B)).
Particularly at f values near the point where hard spheres cease
to exhibit fluid-like behavior, the collapse was hindered by a
slowing down in the dynamics of the crowders. From these
observations, we conclude that the collapse transition can be
achieved in simulations when f r fc, where fc E 0.6. This
value is lower than the theoretical limit of 1 and closer to the
random close-packing density.38 Consequently, this establishes
a threshold for the size of crowders capable of inducing
polymer collapse (d/D o fc/xc), while for larger d/D ratios, this
would result in a polymer immersed in a jammed solvent.

The system under investigation has some analogies with the
phase transition observed in 3D glass-forming supercooled‡
binary mixtures,39–43 where jamming transitions occur at
values of fc above 0.49. In binary mixtures, the larger spheres
become glassy at lower densities compared to the smaller
spheres. Thus, provided that the d/D ratio remains adequately
small, the polymer made by these larger spheres undergoes a
collapse before the crowders become jammed. In light of this
existing body of literature, and drawing parallels with the
proposal by Kang and colleagues,12 we present a phase diagram
for the polymer–crowders mixture as a function of d/D and f
(Fig. 5(C)). This phase diagram shows a division into three
distinct regions with a triple point at (f,d/D) = (fc,fc/xc). In one
region, the polymer swells; in another, it collapses (potentially

leading to jamming); and in the third, it remains unable to
collapse due to solvent jamming or a phase transition to a
solid state.

4 Discussion

In this work, we introduced a novel mean-field approach that
employs a two-body effective interaction between monomers
within a polymer immersed in a bath of crowders. Our
approach assumes a square-well potential with a range that
equals the size of the crowders. The Mayer function establishes
a link between the depth of this potential and the second-order
virial coefficient, which we extracted from simulations with
explicit crowders. The resulting picture (see Fig. 3(B) and (C))
offers a direct model for the effective interaction, which
smoothly interpolates between two distinct regimes: an ‘‘inelas-
tic state’’ (the globule) where the short-range attractive energy
remains constant with crowder density, and an ‘‘elastic state’’
(the coil) where the energy linearly increases with crowder
density f, starting at E0 = 0 for f = 0. The density at which
the polymer collapses is defined by the intersection of these two
curves. Notably, as the second curve can be approximated
linearly as shown by the data, our mean-field model naturally
emerges, becoming entirely defined by these two regimes.

Depletion emerges as the underlying physical mechanism
driving polymer collapse. However, unlike a first principle
approach, our theory focuses solely on emergent properties.
It achieves this by interpolating two distinct polymer phases
and their specific mechanical characteristics, aligning with the
spirit of the original Flory mean-field theory.

Our approach has the advantage of being both generic and
simple, succeeding in areas where the classic Asakura–Oosawa
theory does not fit quantitatively the phenomenology. As pre-
viously discussed,11,12 the Asakura–Oosawa potentials are for-
mulated (and valid) solely in the regime of very low solvent
concentrations f o 0.2. However, none of the simulations

Fig. 5 Polymer collapse can be prevented by jamming of the crowders for large volume fractions f and size ratios d/D. (A) Simulations from Chanil
et al.13 (triangles) and Shendruck et al.11 (circles). (B) Simulations for N = 60, 120 at different d/D. The arrow indicates that swelling ratios marginally
increase with increasing d/D. For both panels the predictions of eqn (11), (12) and (15) are plotted in dashed lines (only for N = 120 in (B)). For high d/D and
high f, the transition point for the collapsed state is not reached and the prediction from our model no longer matches the simulations. (C) Phase
diagram showing the value collapse values of f (green markers). Collapse values are hand-picked at the value of f where the swelling parameter curve
flattens. For a selected subset of simulation parameters equilibration is not reached, we plot in red markers the maximum simulated f for these cases. We
have gathered data from Chanil et al.13 (triangles), Shendruck et al.11 (circles) and our simulations (diamonds). The solid line reports the solution for the
transition between the collapsed and swollen phase according to eqn (15), that is a prediction for the location of the green markers. The shaded area
indicates the regime where the fluid phase of hard spheres becomes metastable with respect to the solid phase, this regime was not investigated with
current simulations. The dashed line represents the hypothesis that the phase line should go to d/D = 0 as f tends to 0.

‡ We mean here that in a simulation the system is prepared as a fluid and then
undergoes structural relaxation and phase separation.
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available in the existing literature meet this criterion, as it
significantly deviates from the ‘‘interesting’’ regime where
polymer collapse can occur. Instead, many simulations are
often executed in the proximity of the jamming transition for
both the solvent and the polymer globular phase (see Fig. 5(C)).
For this reason, we conjecture that a theory valid for jammed
fluids might be appropriate for extending our mean-field
observations.

Other approaches found in the existing literature for the
considered regime are generally more complex and involve a
higher number of parameters as compared to our model. These
approaches include morphometric thermodynamics,44,45 3rd-
order virial expansions,20 and the scaled particle theory.46 All of
these approaches result in theories with a higher number of
parameters than the Asakura–Oosawa theory, making interpre-
tation more challenging and imposing more difficulty in esti-
mating their limits of applicability.

Another interesting feature of our model is that it allows us
to qualitatively reinterpret the phase diagram proposed by
Kang and coworkers12 for the crowders-induced collapse of
polymers, as we explained in Section 3.5. Kang and colleagues
addressed the question of why molecular crowders do not
significantly affect the conformation of disordered proteins47,48

but they affect the collapse of DNA molecules. Specifically, by
testing the effect of neutral crowders on four intrinsically dis-
ordered polymer domains by single molecule fluorescence reso-
nance energy transfer, Soranno et al. demonstrate that these
domains can be affected either by a reduction of the end to end
distance or by folding.47 For the population of molecules that
show a reduction in end-to-end distance, they tested the effects of
crowder sizes and concentrations, and demonstrated that the
effect is larger for larger crowder concentrations as well as for
larger crowder sizes at fixed density, opposite to the scaling
proposed by Ha and collaborators. The reduction in end-to-end
distance is overall modest in all conditions, and its trend appears
to change approximately linearly with crowder concentration. The
authors conclude that in order to account for these effects one has
to consider the interpenetration of the disordered domain and the
polyethylene glycol constituting the crowder agent, which in our
opinion applies only when crowder polymers are approximatively
of the same size or larger than the diluted polymer on which this
effect is measured. As such, we do not find it surprising that the
Ha scaling and the simulations with hard spheres do not present
the same trends. The conclusion drawn by Kang and coworkers is
that proteins collapse only modestly since proteins are generally
smaller than DNA molecules, and consequently they are less
affected by crowding. Instead, our model (confirmed by simula-
tions with hard spheres) suggests that it is not the size of the
polymer, but the size of its monomers compared to that of the
crowders that matters the most. Consequently, since DNA is made
of large units (in the 10 nm–100 nm size range), it can be
collapsed by protein-sized crowders due to depletion interactions.
Since proteins are composed by amino acids having a contour
length in the sub-nanometer range,49 this results in high d/D, and
our phase diagram predicts that in these conditions jamming of
the solvent prevents collapse. Hence, our model is not necessarily

in contradiction with the conclusions of Kang and coworkers,
since the Kang theory might become predictive when the finite-
size effects and interpenetration of chains are the relevant phe-
nomenon driving the end-to-end distance reduction, and it would
be very interesting to test this hypothesis through numerical
simulations. Alternatively, we propose here that an experiment
could be designed where a large protein made of alternated
disordered domains and weakly interacting folded domains
would be complemented by crowders, since the large folded
domains could effectively behave as large monomers linked by
the disordered domains, changing the effective value of d/D.
In this idealized case, our theory would predict that folded
domains would assemble into a larger ‘‘globule’’, depending on
the levels and sizes of (neutral) crowding. In the theory by Kang
and coworkers, instead, the presence of multiple folded domains
would not change the behavior at fixed protein length. Hence, it
might be possible to use this scenario as an experimental testable
discriminant between the two theories, or, assuming both the-
ories have a range of validity, to identify the crossover between the
two theories by varying the size of the folded domains and the size
of crowders. We speculate that the effects described by our theory
will be predominant when crowders are slightly smaller than
folded domains, and that jamming would be a predominant effect
for larger crowders or smaller disordered domains, while the
Kang theory may become predominant for crowders larger than
the size of the protein in good solvent.

In general, our theory is currently limited by the fact that the
monomer aspect ratio should be relevant, particularly for
slender polymers like DNA, and we expect this to add an extra
dimensionless variable to the problem. This will alter the
numerical values of all the observed dimensionless constants
extracted from the simulations and requires an extension to the
theory proposed here. Similar ideas have been developed in ref.
50. To fully elucidate this point, simulations of polymers with
rod-shaped monomers or worm-like chains in explicit crowders
will be required. While our theory is a step forward towards a
quantitative descriptions of crowder-induced bacterial chromo-
some compaction,2,6,9,13 there are still many other aspects to
address. First, it is based on simulations of polymers and
embedding media that lack any biological activity. Chromo-
somes are found in a constant state of crowding where out-of-
equilibrium effects that are relevant for polymers larger then
the ones simulated so far could slow down the polymer collapse
and lock it in a glassy state. Such states can result from
topological barriers (knots)51 and pearling.52,53 Glassy states
could theoretically survive for time scales comparable to the
cell cycle rendering the theory of globular polymers inadequate
to describe bacterial chromosomes. On the other hand, these
out-of-equilibrium effects are mitigated by opposed active
processes fueled by ATP, which can fluidize the dynamics of the
cytoplasm54,55 and will be predominant over such timescales;56

to a greater extent, active forces might play a fundamental role
in nucleoid positioning.57 Further, our model focuses only on
the effect of monodisperse neutral crowders, while in vivo
chromosomes are surrounded by both neutral and charged
crowders, with a broad distribution of sizes, as well as relying
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on further interactions, e.g. from bridging proteins and active
loop extruders.2,58,59 The size distribution of crowders turns
the jamming effects fundamental to our theory into a scale-
dependent phenomena: molecules with sizes equivalent to or
larger than the dominant crowding agent will be more affected
than small particles.60–62 Finally, we have shown the validity of
our theory for linear, confined and ring polymers simulations,
while DNA in bacterial nucleoids is supercoiled and organised
in topological domains such as plectonemes and toroids.63–66

Even without considering crowders, simulations of super-
coiled polymers show that this affects polymer structure and
dynamics in many aspects (as reviewed in Junier et al.67).
Further, it has been proposed that supercoiling can interact with
crowding and affect the way this collapses the nucleoid.68,69 A full
theory or simulation encompassing the effects of crowding as well
as a quantitative characterization of the effects of each of these
elements on the compaction of bacterial nucleoids is still missing.
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Appendix
A Data analysis

Data were analyzed by custom-made Python jupyter notebooks
with numpy, scipy, available at the following link: https://
github.com/QuentinChab/PolymerCollapseWithCrowding

B The Asakura Oosawa theory does not fit the simulations

Asakura and Oosawa15,16 predicted the existence of an attractive
short-range depletion force between two plates submerged in a
bath of colloids. This force can be generalized for other
geometries. The Asakura–Oosawa (AO) potential is in all cases
equal to the osmotic pressure of the crowder’s gas multiplied by
the gain in volume dV(r) accessible to this gas due to the
proximity of the immersed bodies,

DF ¼ UðrÞ ¼

1; for roD

�P � dVðrÞ; for r4D and roDþ d

0: for r4Dþ d:

8>>><
>>>:

(17)

For spherical bodies, this volume consists of the overlap between

two spherical shells,70,71 dV ¼ p
6
Dþ d � rð Þ2 2Dþ 2d þ rð Þ.

Eqn (17) includes the infinite hard-core potential that models
the hard spheres of diameter D, and is zero for distances greater

than r 4 D + d. Hence, the AO theory predicts short ranged
effective interactions. Because of this, eqn (17) can be approxi-
mated by a square well potential20 of depth �E0 delimited by
the hard-core potential and the interaction range D + d, the
same shape introduced by us in Section 3.3 and Fig. 3(A). The
value of E0 is commonly taken equal to dV(r)�P at r = D.20,71 As a
first approximation, the osmotic pressure is taken linear with

the crowders volume fraction P ¼ f
kBT

4=3pd3
, since in diluted

conditions (f o 0.3) the interactions between crowder particles
can be neglected.70,71 This results in the following effective
interaction energy,

EAO
0 ¼ kBT 1þ 3D

2d

� �
f: (18)

In the limit of small crowders (when D/d { 1), this formula
depends on xHa only, and this fact has been used in support of
xHa being the key dimensionless parameter.13 However, Section
3.3 shows that in order to reproduce the simulation data, and
thus the approximate scaling with xHa, E0 should scale as

bE0 �
C

xc

D

d

� �2

�f. Hence, we conclude that the scaling relation

predicted by this approximation of the Asakura–Oosawa theory
(eqn (18)) is fundamentally not compatible with the relation
between D/d and E0 obtained in simulations.
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Priego, J. Chem. Phys., 2013, 139, 104908.

45 C. D. Estrada-Alvarez, E. López-Sánchez, G. Pérez-Ángel,
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